
S E C O N D I N T E R N AT I O N A L C O N F E R E N C E O N

Aspect-Oriented
Software Development

March 17–21, 2003

Conference Registration . 2

Conference Program . 3

Tutorials . 5

Workshops . 9

Keynotes . 11

Talk . 12

Papers . 13

Demonstrations . 15

Student Research Extravaganza 19

Finding Your Way: Maps and Directions 20

Table of Contents

Registration:

Sunday: 4 pm–8 pm, second-floor foyer, Sheraton Boston Hotel

Monday: 7 am–5 pm, 240 Raytheon Amphitheater, Egan Research Center, Northeastern University

Tuesday: 7 am–3 pm, outside 240 Raytheon Amphitheater, Egan Research Center, Northeastern University

Tuesday: 4 pm–8 pm, second-floor foyer, Sheraton Boston Hotel

Wednesday: 7:30 am–5 pm, second-floor foyer, Sheraton Boston Hotel

Thursday: 7:30 am–5 pm, second-floor foyer, Sheraton Boston Hotel

The following abbreviations are used throughout this brochure:

AO: aspect-oriented

AOP: aspect-oriented programming

AOSD: aspect-oriented software development

IDE: integrated development environment

UML: Unified Modeling Language

2 | A O S D

Monday Tuesday Wednesday Thursday Friday

7:45–8:45 AM Talk

I. Jacobson

(Egan, Raytheon

Amphitheater)

8:45–9:00 AM Opening

9:00–10:30AM T1 (Sh 220) T5 (Sh 220) Keynote Keynote Papers G (SBH,

T2 (Sh 210) T6 (Sh 210) G. Kiczales S. Matsuoka Republic Ballroom)

ACP4IS (Sh 215) AOM (Sh 215) (SBH, Republic (SBH, Republic Demos IV (SBH,

Early Aspects (Sh 315) COMM (Sh 315) Ballroom) Ballroom) Commonwealth Room)

FOAL (Sh 415) SPLAT (Sh 415)

11:00–12:30 PM T1 (Sh 220) T5 (Sh 220) Papers A (SBH, Papers D (SBH, Papers H (SBH,

T2 (Sh 210) T6 (Sh 210) Republic Ballroom) Republic Ballroom) Republic Ballroom)

ACP4IS (Sh 215) AOM (Sh 215) Demos I (SBH, Demos II (SBH, Demos I (SBH,

Early Aspects (Sh 315) COMM (Sh 315) Back Bay D) Back Bay D) Commonwealth Room)

FOAL (Sh 415) SPLAT (Sh 415)

2:00–3:30 PM T3 (Sh 220) T7 (Sh 220) Papers B (SBH, Papers E (SBH,

T4 (Sh 210) T8 (Sh 210) Republic Ballroom) Commonwealth Room)

ACP4IS (Sh 215) T9 (Sh 325) Demos II (SBH, Demos III (SBH,

Early Aspects (Sh 315) AOM (Sh 215) Back Bay D) Back Bay D)

FOAL (Sh 415) COMM (Sh 315)

SPLAT (Sh 415)

4:00–5:30 PM T3 (Sh 220) T7 (Sh 220) Papers C (SBH, Papers F (SBH,

T4 (Sh 210) T8 (Sh 210) Republic Ballroom) Republic Ballroom)

ACP4IS (Sh 215) T9 (Sh 325) Demos III (SBH, Demos IV (SBH,

Early Aspects (Sh 315) AOM (Sh 215) Back Bay D) Back Bay D)

FOAL (Sh 415) COMM (Sh 315)

SPLAT (Sh 415)

5:30–7:00 PM Reception (SBH, Banquet (SBH,

Independence Back Bay C)

Ballroom) (18:30–20:30)

(18:00–19:00)

7:00–9:00 PM Birds of a Feather Birds of a Feather Student Research Banquet

Sessions Sessions Extravaganza (SBH, (continued)

(Egan) (Egan) Republic Foyer)

Conference Program

A O S D | 3

Monday and Tuesday’s events take place at Northeastern University; all others take place at the Sheraton Boston Hotel.

Sh = Shillman Hall, Northeastern University

SBH = Sheraton Boston Hotel

Egan = Egan Research Center, Northeastern University

N O R T H E A S T E R N U N I V E R S I T Y S H E R A T O N B O S T O N H O T E L

It is our pleasure to welcome you to AOSD 2003, the

Second Conference on Aspect-Oriented Software

Development. After last year’s successful meeting in the

Netherlands, we are confident that this new conference

will be the major meeting forum for exchanging ideas

and experiences, and demonstrating new techniques and

results, in the rapidly growing field of aspect-oriented

software development.

This second AOSD conference is organized by a team

from Northeastern University under the auspices of the

Aspect-Oriented Software Association, led by an interna-

tional steering committee. The conference is sponsored

by IBM Research and Intentional Software Corporation,

and is held in cooperation with ACM SIGPLAN and

ACM SIGSOFT.

The first two days of the conference are dedicated to

workshops and tutorials, located at Shillman Hall on

Northeastern University’s campus. The main confer-

ence, including demonstrations, takes place at the

Sheraton Boston Hotel, located at the Prudential Center.

The conference program offers two keynote presenta-

tions, as well as research papers and a practitioner’s

report session. Of special interest to PhD students is the

Student Research Extravaganza on Wednesday evening.

Thank you for joining us in Boston. We wish you a

pleasant stay and a productive conference.

William Griswold, General Chair

Mehmet Aksit, Program Chair

Karl Lieberherr, Organizing Chair

College of Computer and Information Science

161 Cullinane Hall

Northeastern University

360 Huntington Avenue

Boston, MA 02115-5000

617.373.2077 (voice)

617.373.5121 (fax)

lieberherr@ccs.neu.edu (e-mail)

4 | A O S D

Welcome to AOSD 2003

Supporters

AOSD 2003 is organized in cooperation with the

Association for Computing Machinery SIGPLAN

and SIGSOFT special interest groups. The

Association for Computing Machinery (ACM)

is an international scientific and educational

organization dedicated to advancing the arts,

sciences, and applications of information technol-

ogy. With a world-wide membership of 80,000,

ACM functions as a locus for computing profes-

sionals and students working in the various fields

of information technology.

IBM Research is a financial supporter of the

conference. Computer Science at IBM Research

has more than one thousand researchers located

at eight labs around the world. Leading-edge

research across many disciplines, including pro-

gramming languages and software engineering,

is often done in concert with colleagues in

academic and government research centers,

as well as “in the marketplace” with customers

who provide challenging research problems.

Intentional Software Corporation is a finan-

cial supporter of the conference.

Verizon Communications is a financial

supporter of the conference.

The AOSD workshop and tutorial program is

hosted by Northeastern University.

The Aspect-Oriented Software Association

is a non-profit organization whose mission is to

be the primary sponsor for the annual Conference

on Aspect-Oriented Software Development.

T1: Aspect-Oriented Programming
with AspectJ

Erik Hilsdale, Palo Alto Research Center
Wes Isberg
Level: Introductory

AspectJ is a seamless AO extension to Java. It can be

used to cleanly modularize the crosscutting structure of

concerns such as exception handling, multi-object pro-

tocols, synchronization, performance optimizations, and

resource sharing.

When implemented in a non-AO fashion, the code for

these concerns typically becomes spread out across

entire programs. AspectJ controls such code-tangling

and makes the underlying concerns more apparent,

making programs easier to develop and maintain.

This tutorial will introduce AOP and show how to use

AspectJ to implement crosscutting concerns in a con-

cise, modular way. We will also demonstrate and use

AspectJ’s integration with IDEs such as JBuilder,

NetBeans, Emacs, and Eclipse, in addition to the core

AspectJ tools.

AspectJ is freely available at http://eclipse.org/aspectj/.

T2: JMangler: On-the-Fly Transformation
of Java Class Files

Günter Kniesel, University of Bonn
Michael Austermann, SCOOP Software GmbH
Level: Intermediate

JMangler is a freely available framework for load-time

transformation of compiled Java programs. The trans-

formation of byte code is a core technology that can be

used for a variety of purposes, including the implemen-

tation of new AOSD languages and tools. This tutorial

will provide attendees with a thorough understanding of

JMangler and Java byte code transformation, from an

AOSD perspective.

Unlike simple byte code transformation libraries,

JMangler provides a complete solution for hooking into

the class loading process. It does so in a JVM and class

loader independent way, which also works for classes

that employ their own custom class loaders. Therefore,

JMangler can transform any application classes and can

be used in environments such as application servers,

which make heavy use of custom class loaders.

Since JMangler uses no source code, it even can be

applied to third-party libraries. Since it works at load

time, it provides the guarantee that transformations will

be applied to every class that will be executed at run-

time, even if the class is created dynamically or loaded

from some possibly remote host.

For programmers, we will provide guidance and

hands-on experience in writing, composing, and apply-

ing their own transformer components. For AOSD lan-

guage and tool developers, we will show how to use

JMangler’s capabilities for load-time aspect weaving and

for injecting hooks that enable run-time weaving. For

managers, our aim is to convey an understanding of the

potential of load-time byte code transformation.

The tutorial will conclude with a demonstration of

CC4J, a powerful code-coverage tool developed with

JMangler. CC4J is an application that transforms pro-

grams in a way that is beyond the scope of all known

high-level AOSD languages and systems.

T3: Hyper/J: Multi-Dimensional Separation
of Concerns for Java

Peri Tarr, IBM, T. J. Watson Research Center
Harold Ossher, IBM, T. J. Watson Research Center
Stanley M. Sutton Jr., NFA
Level: Introductory

Multi-dimensional separation of concerns (MDSOC) is

an AOSD approach that promotes flexible, powerful sep-

aration and integration of software based on all kinds of

concerns. MDSOC allows developers to encapsulate

overlapping, interacting, and crosscutting concerns,

including features, aspects, variants, roles, business

rules, components, frameworks, etc. MDSOC further

supports developers in specifying relationships among

concerns to allow concerns to be systematically separat-

ed, combined, and traced.

MDSOC treats all concerns as first-class and co-equal,

including components and aspects, allowing them to be

encapsulated and composed at will. This is in contrast

to most AO approaches, which enable aspects to be

A O S D | 5

Tutorials

composed with components, but do not support compo-

sition of components (or aspects) with one another.

Some other key benefits of MDSOC include the ability

to identify and modularize concerns at any stage of the

software lifecycle (prospectively and retrospectively); the

ability to define, manipulate, and integrate different

decompositions of the same software simultaneously;

the ability to customize, adapt, reuse, and evolve soft-

ware non-invasively; and the ability to reconcile different

class hierarchies modeling overlapping domains from

different perspectives. MDSOC can therefore reduce

complexity, improve reusability, and simplify evolution

and integration.

This tutorial describes how to accomplish MDSOC

with Hyper/J, a prototype tool available for free down-

load, in the context of standard Java development. It will

demonstrate how Hyper/J addresses some real, perva-

sive problems in participants’ own Java development.

Example problems include adding a feature; adding

instrumentation; creating and evolving product lines;

separating concerns in retrospect (i.e., extracting con-

cerns from existing software); supporting team develop-

ment, including use of different domain models by dif-

ferent teams; separating, integrating, retrofitting, and

reusing design patterns; and facilitating unplanned inte-

gration. Hyper/J works on Java class files, so it can be

used on any off-the-shelf Java software, even when

source code is not available. It requires no special com-

pilers, development tools, or processes.

T4: Dynamic and Distributed Aspect-
Oriented Programming with JAC

Renaud Pawlak, University of Lille
Lionel Seinturier, Laboratoire d’Informatique de Paris 6
Level: Intermediate

Modern business systems run in open and distributed

environments, often involve the Web, and are often

based on industry-standard middleware such as CORBA

and Java RMI. Distributed applications are critical to

businesses and must deal with concerns such as data

consistency, scalability, dynamic resource discovery,

fault tolerance, run-time maintenance, and remote ver-

sion updating. For all these issues, the need for dynam-

ic and fast software reconfiguration is increasing.

Aspect-oriented techniques can provide powerful ways

to deal with such challenges: indeed, separating con-

cerns not only makes applications easier to develop and

maintain, but also offers means to add or remove con-

cerns to applications in a dynamic fashion at run time.

This tutorial presents Java Aspect Component (JAC), a

fully operational programming environment for devel-

oping aspect-oriented, dynamically reconfigurable, dis-

tributed, and Web-based software. JAC offers the pro-

grammer a set of concepts for creating, manipulating,

and composing aspects at run time within distributed

and changing environments.

In this tutorial, we describe the entire process of

developing and configuring AO software with JAC.

After introducing the basic concepts and features of the

environment, we explain why it is suitable for develop-

ing distributed applications. We show how to design an

application in JAC’s UML-flavored IDE, and we config-

ure that application to work with the Web and use spe-

cific application-level aspects to implement a fully run-

ning online store. We then demonstrate the clustering

features of JAC by deploying the application atop JAC

remote containers using a communication layer imple-

mented on RMI or CORBA. We show how to include

dynamic adaptation features that allow the application

to react to changing environments. Finally, at the end of

the tutorial, we demonstrate the rapid development of

applications and reuse of aspect capabilities.

JAC is available from http://jac.aopsys.com/.

T5: Advanced Aspect-Oriented
Programming with AspectJ

Erik Hilsdale, Palo Alto Research Center
Wes Isberg
Level: Advanced

This tutorial will provide involved hands-on program-

ming exercises that both use some of AspectJ’s

advanced features, and feature AspectJ used in advanced

contexts. We will show how AspectJ can be used to solve

problems in instrumentation (including logging), test-

ing, quality management, and feature management. In

addition, advanced parts of the AspectJ design and

implementation will be introduced, along with discus-

sions of possible future features. Exercises will use the

core AspectJ tools and IDEs.

AspectJ is freely available at http://eclipse.org/aspectj/.

6 | A O S D

T6: Identifying and Modeling Aspects Using
Domain Analysis Techniques

Mehmet Aksit, University of Twente
Lodewijk Bergmans, University of Twente
Level: Advanced

Although object-oriented design methods and program-

ming languages offer several advantages, experience has

shown that effective composition of software remains a

difficult task. This is especially true if the software sys-

tem is large and employs complex crosscutting behavior.

Aspect-oriented techniques can help to manage such

complexity, and “best practices” are beginning to

emerge for applying these techniques to both new and

existing software.

This tutorial consists of two parts: (1) guidelines for

identifying aspects and (2) approaches to modeling and

implementing aspects with current AOSD technologies.

The first part of the tutorial provides a set of guide-

lines to identify the obstacles that software engineers

may encounter in designing large systems using object

technology. To this aim, first, we will discuss general

aspects that are common to many software domains.

Second, we will consider the special characteristics and

challenges of several specific kinds of software: applica-

tion generators, concurrent systems, constraint systems,

control systems, distributed systems, and real-time sys-

tems. This detailed analysis will help software engineers

to identify the possible obstacles arising from crosscut-

ting behavior in each of these areas.

In the second part of the tutorial, we will further

describe the current AO design methods and languages

in solving the identified obstacles. The tutorial will con-

clude with advantages and limitations of current aspect

technologies, and give references to the relevant

research activities.

T7: Feature-Oriented Programming
for Product Lines

Don Batory, University of Texas at Austin
Level: Introductory

Feature-oriented programming (FOP) is both a design

methodology and supporting tool for program synthesis.

The goal is to specify a target program in terms of the

features that it offers, and to synthesize an efficient

program that meets these specifications. FOP has

been used to develop product lines in widely varying

domains, including compilers for extensible Java

dialects, fire-support simulators for the U.S. Army,

high-performance network protocols, and program

verification tools.

GenVoca is a simple mathematical model of FOP that

is based on step-wise refinement, a methodology for

building programs by adding one feature at a time. The

incremental units of implementation/design are refine-

ments that encapsulate the implementation of an indi-

vidual feature. GenVoca models of product-lines treat

programs as values and refinements as functions (that

map input programs to output programs with augment-

ed features). Application designs are equations—compo-

sitions of functions and constants—that are amenable

to optimization and analysis.

FOP and AOP are complementary, as both aspects

and feature refinements encapsulate cross-cuts, i.e.,

fragments of multiple classes. The primary difference is

emphasis: FOP follows more of a traditional object-

oriented design approach to define cross-cuts, which

focuses on how algorithms compose to build complete

systems, rather than the AOP emphasis on join-points,

point-cuts, and advice to modify existing programs.

This tutorial reviews basic results on FOP, including

general models and tools for synthesizing a consistent

set of code and non-code artifacts by composing refine-

ments (cross-cuts), automatic algorithms for validating

refinement compositions, synthesizing product-lines of

product-families (e.g., tool suites), and automatic algo-

rithms for optimizing application designs (equations).

T8: Aspect-Oriented Programming for
Database Systems

Awais Rashid, Lancaster University
Level: Intermediate

Database systems are central to the day-to-day function-

ing of most businesses, but are notoriously costly to

design and maintain. Like other software, database sys-

tems are subject to many crosscutting and overlapping

concerns at both the design and implementation levels.

AOP aims at easing software development by providing

abstractions that serve to localize crosscutting concerns,

e.g., code that cannot be encapsulated within one class

but is tangled over many classes.

A O S D | 7

This tutorial will describe how AOP can be applied to

address crosscutting concerns in database systems in

order to make them more customizable, evolvable, and

maintainable. The aims of the tutorial are fourfold.

First, attendees will be introduced to the basic concepts

of AOP. Second, the tutorial will highlight crosscutting

concerns in database systems at both the DBMS and

database levels. Third, the tutorial will describe the use

of AOP concepts to achieve cost-effective customization

and reduced maintenance overheads at the DBMS and

database levels. Finally, new requirements imposed on

database systems in terms of aspect storage and integra-

tion with AO programs will be discussed. Solutions to

address these emerging requirements will be presented.

T9: Model-Driven Engineering with
Contracts, Patterns, and Aspects

Jean-Marc Jezequel, IRISA
Level: Intermediate

The “non-functional” aspects of a software application—

such as persistence, fault tolerance, and quality of

service—should be separate and untangled from the

“functional” aspects of that application. Furthermore,

the specification of a non-functional aspect should be

separate from any (platform-specific) implementation

of that aspect. Languages and tools are needed to map

from the design or model of an aspect to its ultimate

implementation, for example, atop middleware such

as .NET or others.

UML gives the software designer a rich set of views

on a model, and also provides many ways for the

designer to add non-functional annotations to a model.

In this tutorial, we will show how to organize models

around the central notions of (1) quality of service con-

tracts for specifying non-functional aspects and (2)

aspects for describing how those contracts can be

implemented. Based on our experience in previous

projects, we will show how to model contracts in UML

with a small set of stereotypes, and how to represent

aspects and applications of design patterns at the

meta-model level using parameterized collaborations

equipped with transformation rules expressed in an

extension of OCL2.

The second part of this tutorial will present our trans-

formation-based approach, implemented in our

UMLAUT framework and tool, to build design-level

aspect weavers. An aspect weaver, based on a meta-level

interpreter, reads a platform-independent model (writ-

ten in UML), processes the various aspect applications

as specified by the designers, and then outputs a new

platform-specific model (also in UML) that can serve as

the basis for application code generation. Tutorial atten-

dees will learn how to use UMLAUT for managing

aspects in their own model-centric software develop-

ment projects.

8 | A O S D

ACP4IS: Aspects, Components, and
Patterns for Infrastructure Software

Yvonne Coady, University of British Columbia
Eric Eide, University of Utah
David H. Lorenz, Northeastern University

Aspect-oriented programming, component models,

and design patterns are modern and actively evolving

techniques for improving the modularization of

complex software. In particular, these techniques

hold great promise for the development of “systems

infrastructure” software, e.g., application servers,

middleware, virtual machines, compilers, operating

systems, and other software that provides general

services for higher-level applications. The developers

of infrastructure software are faced with increasing

demands from application programmers needing

higher-level support for application development.

Meeting these demands requires careful use of soft-

ware modularization techniques, since infrastructural

concerns are notoriously hard to modularize.

Building on the meeting on the ACP4IS meeting at

AOSD 2002, this workshop aims to provide a highly

interactive forum for researchers and developers to dis-

cuss the application of and relationships between

aspects, components, and patterns within modern infra-

structure software. The goal is to put aspects, compo-

nents, and patterns into a common reference frame and

to build connections between the software engineering

and systems communities.

Early Aspects: Aspect-Oriented
Requirements Engineering and
Architecture Design

João Araújo, Universidade Nova de Lisboa
Awais Rashid, Lancaster University
Bedir Tekinerdogan, Bilkent University
Ana Moreira, Universidade Nova de Lisboa
Paul Clements, Software Engineering Institute

This workshop aims to support the cross-fertilization of

ideas in requirements engineering, software architec-

ture design and AOSD. From a requirements engineer-

ing and architecture design perspective, aspects will

improve and broaden the understanding of the identifi-

cation and management of requirements and architec-

ture-level concerns. From an aspect-orientation perspec-

tive, the workshop will provide attendees with a forum

for discussing issues that can lead to a better under-

standing of how aspects can be used to support system-

atic and rigorous development of software from the very

early stages.

The workshop will focus on challenges to defining

methodical software development processes for aspects

from early on in the software life cycle, and explore the

potential of proposed methods and techniques to scale

up to industrial applications.

FOAL: Foundations of Aspect-Oriented
Languages

Gary T. Leavens, Iowa State University
Curtis Clifton, Iowa State University

FOAL is a forum for research in the foundations of

AOP languages. Areas of interest include but are not

limited to: semantics of AO languages, specification and

verification of such languages, type systems, static

analysis, theory of testing, theory of aspect composition,

theory of aspect translation (compilation) and rewriting,

and applications of such theories in practice (such as

language design studies). The workshop aims to foster

work in foundations, including formal studies, promote

the exchange of ideas, and encourage workers in the

semantics and formal methods communities to do

research in the area of AOP languages.

A O S D | 9

Workshops

COMM: Commercialization of
AOSD Technology

Ron Bodkin, New Aspects of Security
Adrian M. Colyer, IBM UK
Juri Memmert, JPMDesign
Arno Schmidmeier, Sirius Software GmbH

This workshop will address the development of com-

mercially successful AOSD technology. Topics of inter-

est include value propositions, requirements for adop-

tion (technical, organizational, standards), business

cases, business models, strategies, industry lessons, sell-

ing, likely customers, and communication mechanisms.

The goal is to bring together practitioners, users, con-

sultants, and vendors to discuss the opportunities and

challenges in delivering commercial solutions using

AOSD. These discussions are intended to improve mar-

ket opportunities and increase the scale and number of

deployments of AOSD. This workshop will also start a

conversation about mechanisms for cross-industry dis-

cussion and common initiatives to support market

awareness and support for AOSD.

The workshop format will consist of structured discus-

sions about topics drawn from position papers. A warm-

up discussion will draw together various threads, dis-

cuss open issues, and reach conclusions.

SPLAT: Software-Engineering Properties
of Languages for Aspect Technologies

Lodewijk Bergmans, University of Twente
Johan Brichau, Vrije Universiteit Brussel
Peri Tarr, IBM, Thomas J. Watson Research Center
Erik Ernst, University of Aarhus

The ultimate goal of AO languages and systems is to

improve the quality of software by enhancing software-

engineering properties such as modularity, comprehen-

sibility, evolvability, composability, and analyzability.

Consequently, each feature included in an AO language

is intended to promote good software-engineering prop-

erties.

Yet the design of AO languages and systems is much

more complex than it appears from examining a lan-

guage construct or system feature in isolation. Each fea-

ture entails a trade-off among different software engi-

neering properties—e.g., power vs. comprehensibility,

flexibility vs. analyzability, complexity vs. evolvability.

Moreover, individual features may interact in beneficial

or undesirable ways, resulting in either improvement or

loss of the software-engineering abilities targeted by

each feature.

This workshop will advance the field of AOSD lan-

guage design by emphasizing the need to understand

the practical consequences of design decisions on the

software-engineering properties of AO software. In par-

ticular, it will help language designers understand and

evaluate the tradeoffs entailed by aspect language fea-

tures, and address the need for consistent language

design with respect to composability of language con-

structs and features.

AOM: Aspect-Oriented Modeling with UML

Omar Aldawud, Lucent Technologies
Mohamed Kandé, Swiss Federal Institute
of Technology
Grady Booch, Rational Software Corp.
Bill Harrison, IBM, Thomas J. Watson Research Center
Dominik Stein, University of Essen

AO modeling is a critical part of AOSD that focuses on

techniques for identifying, analyzing, managing, and

representing crosscutting concerns in software design

and architecture, while filling the gap between aspect-

oriented requirements engineering and aspect-oriented

programming.

This workshop is dedicated to the definition of AO

modeling techniques, methods, and tools based on

UML. Suggested issues are: How can we apply UML

artifacts to AOSD? Are the existing notations and

modeling techniques of UML sufficient to model

aspects, or do we need to extend UML to support

AOSD? Is UML the appropriate modeling language on

which to base modeling for AOSD? Is UML capable of

expressing “core” components and “aspectual” compo-

nents as well as associations linking them together?

If we have to extend UML, are the extension mecha-

nisms provided by UML adequate? What could then

be a UML profile for AOSD? Or would it be possible to

rely only on a restricted subset of the UML for AOSD?

What would this subset be?

1 0 | A O S D

Making the Code Look like the Design

Gregor Kiczales, University of British Columbia
and Intentional Software Corp.

Many software development advances can be character-

ized as making the code look more like the design—

from the looping constructs of structured program-

ming, to object-oriented programming and model-based

development. The first part of this keynote will outline

the contribution AOP is making to this evolution. What

is unique about AOP? What does it share with previous

advances? What can we learn from previous advances

about work we still have to do?

The second part of the talk will explore a further step

in the evolution. Intentional technology is a synthesis of

object-oriented, aspect-oriented, and intentional pro-

gramming techniques. This integrated technology

enables code for a wider variety of systems to look more

like the design. Examples will illustrate what intentional

technology can be, and explore the unique role that

aspect-orientation has to play.

Aspects of Grid Computing

Satoshi Matsuoka, Global Scientific Information and
Computing Center, Tokyo Institute of Technology

“The Grid” is slated to become one of the major infra-

structures for network computing. Indeed, there are

very large and active national and international projects

to not only build grids but to carry out significant

research and development on grid middleware and

applications. This keynote will introduce the current sta-

tus quo of grid research, and will attempt to identify its

aspects as well as prospects for AOP to play a role in its

construction, since the current trend is to define a set of

“grid services” as Web-based component models.

A O S D | 1 1

Keynotes

Use Cases and Aspects: Working Together

Ivar Jacobson,
Rational Software Corp.

Use cases have been adopted for requirements univer-

sally. Use cases start there and are translated into collab-

orations in analysis and design, and to test cases in test;

this is the central idea behind use-case driven develop-

ment. With use cases we can cut the system into use-

case slices with elements from each life cycle model.

Almost. It is just “almost true” because today the coding

of a component or a class requires us to merge the

code derived from several use cases so that the individ-

ual slices will be dissolved and not recognizable any

more. The root problem is limitations in currently

used languages.

AOP in general is “the missing link.” It will allow us

to slice the system cleanly, use case by use case over

many models, to achieve separation of concerns all the

way down to code. In fact, we will get use-case modules

crosscutting many models and their artifacts. It will

subsequently allow us to recompose or weave back these

slices into a consistent whole: the deployed system. The

result is a variant of AOSD, AOSD with use cases. And

it is here to be harvested, now.

1 2 | A O S D

Talk

Papers A: Analysis and Design

Architectural Views of Aspects

Mika Katara, Tampere University of Technology
Shmuel Katz, The Technion

Modularization and Composition of
Aspectual Requirements

Awais Rashid, Lancaster University
Ana Moreira, Universidade Nova de Lisboa
João Araújo, Universidade Nova de Lisboa

JAsCo: An Aspect-Oriented Approach Tailored
for Component-Based Software Development

Davy Suvée, Vrije Universiteit Brussel
Wim Vanderperren, Vrije Universiteit Brussel

Papers B: Program Analysis

Static Analysis of Aspects

Damien Sereni, Oxford University Computing Laboratory
Oege de Moor, Oxford University Computing Laboratory

A Case for Statically Executable Advice:
Checking the Law of Demeter with AspectJ

Karl Lieberherr, Northeastern University
David H. Lorenz, Northeastern University
Pengcheng Wu, Northeastern University

Back to the Future: A Retroactive Study of
Aspect Evolution in Operating System Code

Yvonne Coady, University of British Columbia
Gregor Kiczales, University of British Columbia
and Intentional Software Corp.

Papers C: Programming Languages (I)

Arranging Language Features for
Pattern-Based Crosscuts

Kris Gybels, Vrije Universiteit Brussel
Johan Brichau, Vrije Universiteit Brussel

Aspect-Oriented Programming with Jiazzi

Sean McDirmid, University of Utah
Wilson C. Hsieh, University of Utah

Parametric Introductions

Stefan Hanenberg, University of Essen
Rainer Unland, University of Essen

Papers D: Dynamic Weaving

Conquering Aspects with Caesar

Mira Mezini, Darmstadt Technical University
Klaus Ostermann, Siemens AG

Just-in-Time Aspects

Andrei Popovici, Swiss Federal Institute
of Technology Zurich
Gustavo Alonso, Swiss Federal Institute
of Technology Zurich
Thomas Gross, Swiss Federal Institute
of Technology Zurich

Web Cache Prefetching as an Aspect: Towards
a Dynamic-Weaving-Based Solution

Marc Segura-Devillechaise, Ecole des Mines
de Nantes/INRIA
Jean-Marc Menaud, Ecole des Mines de Nantes/INRIA
Gilles Muller, Ecole des Mines de Nantes/INRIA
Julia L. Lawall, DIKU University of Copenhagen

Papers E: Systems

Persistence as an Aspect

Awais Rashid, Lancaster University
Ruzanna Chitchyan, Lancaster University

Quantifying Aspects in Middleware Platforms

Charles Zhang, University of Toronto
H.A. Jacobsen, University of Toronto

A O S D | 1 3

Papers

Model-View-Controller and Object Teams:
A Perfect Match of Paradigms

Matthias Veit, Fraunhofer FIRST
Stephan Herrmann, Technical University Berlin

Papers F: Programming Languages (II)

Aspects and Polymorphism in AspectJ

Erik Ernst, University of Aarhus
David H. Lorenz, Northeastern University

Pointcuts and Advice in Higher-Order
Languages

David B. Tucker, Brown University
Shriram Krishnamurthi, Brown University

Strategic Programming Meets
Adaptive Programming

Ralf Laemmel, Free University of Amsterdam
Eelco Visser, Utrecht University
Joost Visser, Software Improvement Group

Papers G: Practitioner Reports

Aspect-Oriented Profiler

Jonathan Davies, Cambridge University
Nick Huismans, Imperial College London
Rory Slaney, Edinburgh University
Sian Whiting, Imperial College London
Matthew Webster, IBM UK
Robert Berry, IBM UK

Performance analysis is motivated as an ideal domain

for benefiting from the application of AO technology.

The experience of a ten-week project to apply AO to

the performance analysis domain is described. We show

how all phases of a performance analysts’ activities—

initial profiling, problem identification, problem

analysis, and solution exploration—were candidates for

AO technology assistance, some being addressed with

more success than others. A profiling workbench is

described that leverages the capabilities of AspectJ, and

delivers unique capabilities into the hands of developers

exploring caching opportunities.

Using AspectJ to Eliminate Tangling Code
in EAI Activities

Arno Schmidmeier, Sirius Software GmbH

Enterprise application integration (EAI) imposes various

non-functional requirements on integration teams and

application manufacturers, which are hard to separate

with object-oriented languages and tools. This paper

describes how the overall integration effort has been

dramatically reduced by using AspectJ to integrate dif-

ferent Sirius EOS Service Monitors in a New

Generation Operations Systems and Software-compliant

EAI architecture realized with Vitria BusinessWare.

Applying AOP for Middleware Platform
Independence

Ron Bodkin, New Aspects of Security
Adrian M. Colyer, IBM UK
Jim Hugunin, Palo Alto Research Center

This report discusses experiences applying AspectJ in a

consulting project at IBM. The purpose of this project

was to evaluate the suitability of AspectJ for modulariz-

ing crosscutting concerns in a middleware product line.

This report describes and assesses the design approach-

es, tools integration, and cultural effect.

Papers H: Tools

Navigating and Querying Code without
Getting Lost

Doug Janzen, University of British Columbia
Kris De Volder, University of British Columbia

Visual Separation of Concerns through
Multidimensional Program Storage

Mark C. Chu-Carroll, IBM, T. J. Watson Research Center
James Wright, IBM, T. J. Watson Research Center
Annie T. T. Ying, University of British Columbia

1 4 | A O S D

Demonstrations I: Aspects
and Performance

Aspect-Oriented Profiler

Matthew Webster, IBM UK
Robert Berry, IBM UK

Performance measurement, analysis, and improvement

are central activities in the software development life

cycle. Ideally, performance considerations play an early

role (e.g., at design time), as recommended in perform-

ance-oriented design methodologies. But most often,

they factor into the later stages of the development

process, and require the involvement of performance

analysts wielding specialized profiling technology.

Further, most existing profilers focus on CPU time

and program flow. Instead, we sought a solution to

allow applications to be profiled on the basis of data

flow, a key requirement for a common, but not well-

addressed problem of caching-opportunity detection.

We required a technique and environment to selectively

gather information on certain methods, argument val-

ues, and return values, to conduct correlation analysis

between these, and to couple that information with

timing information. While some of this information

could certainly be gathered manually (e.g., Java debug-

gers based on JVM debug interface are able to track

arguments and return values), this is typically a single-

step debugging operation. Manually inserted instrumen-

tation (e.g., using System.out.println statements, or

through the use of a logging or other API) is also

possible. Alternately, specialized instrumentation can

be developed based on byte-code modification tech-

niques—interestingly this is where we began, but the

flexibility of AOSD techniques quickly suggested a

different approach.

One of the key benefits of AOSD and AspectJ in par-

ticular is the ability to identify specific methods within a

Java program and add new logic in a non-invasive man-

ner. Reflective mechanisms also allow the extraction of

argument and return values at runtime. AspectJ is fur-

ther exploited when prototyping caching opportunities.

Any method identified as performing below its expected

level of performance can be intercepted through the use

of around advice. A simple caching scheme can then be

deployed such as checking to see if the method’s argu-

ment values have been used before and, if so, returning

the same return value; if not, calling proceed and stor-

ing the obtained return value in the cache.

The profiler is an Eclipse-based plugin developed as

part of an Extreme Blue project. The AspectJ plugin is

used to build an aspect into the program being profiled.

The aspect is generated by the profiler so a deep under-

standing of AOSD is not required by the user. The

demonstration will show the identification, analysis, and

solution to a performance problem in a Java program.

At each stage, the exploitation of AOSD techniques will

be highlighted.

AspectC++: Bringing Aspects into Deeply
Embedded Devices

Olaf Spinczyk, University of Erlangen-Nürnberg
Andreas Gal, University of Erlangen-Nürnberg

AspectC++ is an AO language extension for C++. Its

design was strongly influenced by the core concepts of

AspectJ and, thus, can be seen as an AspectJ equivalent

in the C++ world. With this demonstration, the

AspectC++ developer team wants to increase the aware-

ness of the project and its current state in the AOSD

community. Furthermore, it should be demonstrated

that AOP with C++ can be much easier to understand

and much more powerful than approaches that are

based on C++ template meta-programming. There are

several domains in computer science and the IT indus-

try where C/C++ still dominates Java. One of these

domains is the area of small (so-called “deeply”) embed-

ded systems. This area is characterized by extreme con-

straints in memory and processing power. Most of these

embedded systems are equipped with 8-bit microcon-

trollers and only a few kilobytes of RAM. However, in

the year 2000, the segment of 4- and 8-bit microcon-

trollers had a market share of 80 percent of all produced

units. With AspectC++, it is now possible to apply

AOSD concepts even in such restricted, but very impor-

tant, domains. The focus of the demonstration will

therefore be the minimal resource consumption of the

AspectC++ generated code and its runtime system.

A O S D | 1 5

Demonstrations

This will be underlined by the presentation of a small

embedded device equipped with meteorological sensors

and an 8-bit microcontroller running AspectC++ code.

The whole picture of the language and its implementa-

tion will be rounded up with a demonstration of the

unique language features of AspectC++. One of these

features is the concept of aspect-behavior contract,

which helps to reduce the number of required tests after

changes in aspect or component code. Depending on

the state of the implementation in March, it is also

planned to extend the code of a well-known open source

project with an aspect during the demonstration. This

should point out the standard and dialect conformance

of the AspectC++ parser and proves that the implemen-

tation has reached a state where it can deal with real-

world projects.

Demonstrations II: IDE Extensions

The AspectJ Development Tools Project:
Developing with AspectJ in Eclipse

Adrian M. Colyer, IBM UK
Andy Clement, IBM UK
Matthew Webster, IBM UK

This demonstration will show how Eclipse can be used

to develop AO software using AspectJ. We will walk

through a set of a typical project development scenarios,

showing how AspectJ can be applied and along the way

illustrating the features of the latest AspectJ

Development Tool plugin for Eclipse. The plugin and

the Eclipse IDE are both made freely available so every-

thing shown can be tried out on your own development

projects too.

FEAT: A Tool for Locating, Describing, and
Analyzing Concerns in Source Code

Martin Robillard, University of British Columbia
Gail Murphy, University of British Columbia

Developers working on existing programs repeatedly

have to address concerns, or aspects, that are not well

modularized in the source code comprising a system.

In such cases, a developer has to first locate the imple-

mentation of the concern in the source code comprising

the system, and then document the concern sufficiently

to be able to understand it and perform the actual

change task.

In this demonstration, we will present FEAT, a tool for

locating, describing, and analyzing the code implement-

ing a concern in a Java system. The demonstration will

consist of using the tool to locate and analyze a set of

concerns scattered in an existing code base. Specifically,

we will show how, by visually navigating structural pro-

gram dependencies through the tool’s graphical inter-

face, we can rapidly locate the code implementing a con-

cern, and store the result as an abstract representation

consisting of building blocks that are easy to manipulate

and query. We will also show how the representation of

the concerns supported by FEAT can be used to investi-

gate the relationships between the captured concerns

and the base code, and between the different concerns.

Finally, we will show how this representation can be

used to robustly keep track of the actual source code

implementing the concern.

We argue that the FEAT tool supports AOSD by allow-

ing users to easily produce and analyze descriptions of

the actual code implementing concerns in existing sys-

tems. The novelty of our approach is to capture con-

cerns using an abstract representation that can be

mapped back to source code, instead of working directly

at the level of program text. This way, developers can

use the abstract representation as a support for manag-

ing the code in a concern, and can potentially use the

representation as a basis from which to refactor the

concern into an AO programming language.

FEAT Version 2 is implemented as a plugin for the

Eclipse platform. It uses the compiled representation

(bytecode) of programs to extract the structural relation-

ships between different program elements, such as

classes, methods, or fields. It uses IBM’s Jikes

Bytecode Toolkit to represent and manipulate Java

classes at run-time.

1 6 | A O S D

Demonstrations III: Tool Infrastructure

Towards a Concern-Manipulation
Environment: An Open, Extensible
Environment for Aspect Tools

Peri Tarr, IBM, T. J. Watson Research Center
William Harrison, IBM, T. J. Watson Research Center
Harold Ossher, IBM, T. J. Watson Research Center
Vincent Kruskal, IBM, T.J. Watson Research Center
Andrew Clement, IBM UK
Adrian M. Colyer, IBM UK
John Hatcher, IBM UK

This demonstration will show early work towards a con-

cern-manipulation environment (CME). The CME is

envisioned as a set of open, extensible, reusable compo-

nents upon which are built a suite of tools that support

AOSD across the software life cycle. The CME repre-

sents the next stage of research and development on

multi-dimensional separation of concerns and Hyper/J.

An important goal, however, is to support multiple

AOSD approaches. At present, a variety of aspect mod-

els exist, each with different benefits. The CME will per-

mit the use of multiple models, to allow developers to

leverage their respective benefits, and will aid in the

development of, and experimentation with, new models.

As part of the CME work, we will provide an initial set

of tools that support multiple models of AOSD and

multiple artifacts (e.g., UML class diagrams, Java

source, and Java class files). These tools will be integrat-

ed into the Eclipse environment.

The use of the tools will be demonstrated by running

through an aspect development and evolution scenario,

and showing how different aspect models can be used

to develop software, and how these models can be used

in an integrated manner; and how the standard Eclipse

tools can be used, in conjunction with the CME tools, to

perform AOSD.

We will also give AOSD tool developers a sense of

how to build on the CME components when creating

their own tools. For example, the concern-assembly

toolkit provides common, low-level weaving support on

artifacts of different kinds, and is suitable for use as a

back-end in a variety of AOSD tools supporting compo-

sition or weaving.

JMangler: Load-Time Weaving for Java
Class Files

Günter Kniesel, University of Bonn
Michael Austermann, SCOOP Software GmbH

AOSD improves separation of concerns by making it

possible to express crosscutting concerns of a system

modularly. However, modular expression of a concern

requires techniques to “weave” the related code back

into the code of all the affected classes.

JMangler is a freely available framework for load-time

transformation of compiled Java programs that provides

a comprehensive infrastructure for load-time weaving.

This means that an AOSD system can translate its

aspects to JMangler transformer components and let

them be applied at load time. Alternatively, a knowl-

edgeable programmer can use Jmangler directly to

express aspect-like crosscutting transformations of arbi-

trary application classes. Yet another option is to inject

code at load time that enables run-time weaving.

Load-time weaving has many advantages, the smallest

being that it requires no source code and can hence be

applied to third-party libraries. More importantly, it pro-

vides the guarantee that transformations will be applied

to every class that will be executed at run-time, even if

the class is created dynamically or loaded from some

possibly remote host. Last, but not least, load-time weav-

ing inherently processes only classes relevant to the run-

ning application and applies to them only the adapta-

tions required in that context. It can therefore prevent

static proliferation of adapted program versions that

might never be used.

Unlike simple bytecode transformation libraries,

JMangler provides a complete solution for hooking into

the class-loading process. It does so in a JVM- and class-

loader-independent way, which works also for classes

that employ their own custom class loader. Therefore,

it can transform any application classes and can be used

in environments like application servers, which make

heavy use of custom class loaders.

In addition to its general applicability, Jmangler

provides another unique feature. It is the only approach

for load-time adaptation that provides a partial solution

to the problem of aspect interference. For a certain class

of transformations, it can guarantee that their joint use

will not lead to undesired effects (interferences) even if

A O S D | 1 7

the transformations have been developed independently,

unaware of each other.

The demo will consist of two parts that will be pre-

sented piecemeal, in alternation: the introduction of the

base concepts and the demonstration of their practical

use. The shown examples will include, among others, a

code-coverage tool developed with JMangler. This is an

application that requires transformations at the level of

individual lines of code or individual statements, hence

at a finer granularity than expressible in all known high-

level AOSD languages and systems.

Demonstrations IV: From Design to Code

Aspect-Oriented Software Development
with Codagen Architect

Mario Cardinal, Codagen Technologies Corp.

This demonstration will present Codagen Architect, a

“model-driven architecture” tool that enables AOSD by

allowing the transformation of UML models directly

into working software code. Codagen Architect enables

software development teams to promote AOSD by

abstracting aspects such as architectural issues, encap-

sulating aspects in transformation templates, and weav-

ing aspects across business objects during the genera-

tion process.

Codagen Architect has existed since 1999, and version

3.0 generates Java, C#, C++, and Visual Basic code.

Codagen Architect is one of the first model-driven-archi-

tecture-compliant tools that enables AOSD.

Codagen Architect implementation techniques are

based on UML metaprogramming. The audience will

learn how easy it is to abstract aspects such as debug-

ging issues inside Codagen transformation templates

and how, using a UML model as input, they can easily

weave the debugging code inside business objects.

From Aspect-Oriented Design with Concepts to
Aspect-Oriented Programming with
Composition Filters

Lodewijk Bergmans, University of Twente
Dennis Wagelaar, Vrije Universiteit Brussel

Composition filters are an extension to the object-orient-

ed model that address a number of modeling obstacles

that conventional object-oriented techniques cannot

address or can only solve with poorly maintainable

designs. The composition-filters approach can be

classified as an AO approach that integrates aspects

and classes, retains strong encapsulation, and supports

composability. ComposeJ is a tool that takes Java classes

and (separate) composition filters specifications, and

transforms the Java classes so that they implement

the behavior as specified in the composition filters

specification.

Like object-oriented programming, the benefits of

AOP can only be exploited through appropriate design

methods and tool support. CoCompose is a design tool

that addresses this. The main characteristic of

CoCompose is that it is a visual, concern-oriented tool

(i.e., supports the modeling of software as independent,

possibly crosscutting, concerns) that allows for recursive

definition and reuse of concerns. Concerns in the

design phase may be similar to entities or classes, or to

single operations, or even to complete design pattern

templates. A single concern may in fact have several

implementation forms; during code generation, the best

possible (interoperating) combination of forms is select-

ed. Thus, CoCompose works as a design tool that can

generate the best possible program from a concern-

based design (if the concerns include one or more

implementations).

During the demonstration, we will show how the

design of a particular example problem can be

approached in a concern-oriented manner and modeled

with CoCompose. We will demonstrate how

CoCompose can generate implementations in several

programming languages (especially Java and composi-

tion filters). One of the important points of this demon-

stration is to argue that, even with the ability to generate

code, the composability of the target language is impor-

tant in order to retain the structure of the design, and

hence the ability to revise and extend the design in an

incremental manner.

In particular, we will look at generated composition

filters code, illustrate that it is structurally close(r) to the

design, and explain the basic composition filter mecha-

nism. We will demonstrate our tool Compose/J that

translates combined composition filters/Java code into

pure Java code. One of the interesting features of

Compose/J that we will highlight (and demonstrate) is

the ability of generating optimized (i.e., inlined) code

from a declarative specification.

1 8 | A O S D

Goals

• Provide a venue for students to vet research ideas

and directions with experts in the field.

• Expose students to possible research directions.

• Allow students to intermingle and get to know

each other.

Format

• Formal Portion: After a brief introduction from the

organizers, two experts in the field each will speak

for five minutes about where they see the field head-

ing and interesting problems likely to be encoun-

tered along the way. We will also introduce other

experts attending.

• Semi-Formal Portion: Various parts of the room

will be designated as focusing on different topics

such as programming languages or software

engineering. Student posters will be displayed in

the appropriate part of the room. Students will be

invited to present their posters. One or two experts

in the field will move around the relevant area and

comment on work.

• Informal Portion: Mingling around posters will

continue, giving students a chance to talk to each

other and the roaming experts.

Students should put up posters prior to the start of the

event. Food will be available.

Attendees

The event is only open to students and participating

experts to ensure that the students have ample opportu-

nities to discuss their work with these experts.

A O S D | 1 9

Student Research Extravaganza

To get to the conference from
the Sheraton Boston Hotel:

On foot:
Take Dalton Street south to Belvidere

Street. Go left on Belvidere and take it 250

yards to Huntington Avenue (The Avenue

of the Arts). Go right on Huntington and

take it approximately two-thirds of a mile to

Forsyth Street. Take a left on Forsyth. After

one block you will see Shillman Hall on the

right and Egan Research Center on the left.

By subway (known as the “T”):
Take Dalton Street south to Belvidere

Street. Go left on Belvidere and take it 250

yards to Huntington Avenue (The Avenue

of the Arts). Just to the left you will find an

entrance to the Prudential station on the

“E” branch of the Green Line subway. Take

the Green Line two stops in the direction of

Heath Street (outbound). Get off at the

Northeastern stop. Continue a half block

down Huntington Avenue (in the direction

the train was going) to Forsyth Street. Take

a left on Forsyth. After one block you will

see Shillman Hall on the right and Egan

Research Center on the left.

Finding Your Way

HUNTINGTON AVENUE

FO
RS

YT
H

ST
RE

ET

LEON STREET

Egan Center

Shillman

Hall

Ruggles

T

Curry
Student
Center

Forsyth

Circle

Krentzman Quadrangle

Northeastern University Campus Map

T

NORTHEASTERN
UNIVERSITY

Symphony Hall

Museum of
Fine Arts

HUNT INGTON AVENUE

TR
EMONT S

TR
EET

CO LU
M

BUS
AVEN

UE

Sheraton
Boston

exit 22

M
A

SSA
CH

U
SETT

S A
VEN

U
E

Kenmore
Square

Fenway Park

CO MM

RUGGLES STREET

Back Bay
Fens

PARK DRIVE

BOYLSTO N ST REET

FE
N

W
AY

MELNEA CASS

BOULEVARD

NE

DALTON ST

WBURY STRE

N

BELVIDERE ST
T

FO
RS

YT
H

 S
TR

EE
T

Boston Area Map

2 0 | A O S D

