
Applying AOP for Middleware Platform Independence 
Ron Bodkin1, Adrian Colyer2, Jim Hugunin3 

1 New Aspects of Security*, 216 27th Street, San Francisco, CA 94131 
rbodkin@newaspects.com 

2 IBM UK Limited, Hursley Park, Winchester, Hanst. SO21 2JN 
adrian_colyer@uk.ibm.com 

3 Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304 
hugunin@parc.com 

Abstract. This report discusses experiences applying AspectJ [1] in a consult-
ing project at IBM. The purpose of this project was to evaluate the suitability of 
AspectJ for modularizing crosscutting concerns in a middleware product line. 
This report describes and assesses the design approaches, tools integration, and 
cultural impact. 

1   Introduction 

The investigation worked with several components of a middleware product line. The 
investigation project team consisted of three consultants from PARC working with six 
IBM employees. The overall development effort for this product line encompasses 
several hundred developers and thousands of Java classes.  

The primary motivation for using AOP [2] was to target multiple runtime environ-
ments with a single source code base. This was intended to allow certain components 
to be released under an open source license, allowing them to run in open source envi-
ronments. However, it was important to continue to take advantage of improved plat-
form-specific facilities when executing inside a specific container. It was important to 
keep the source code for platform-specific features separate, yet to ensure the two 
versions would remain in synch. 

The most important concerns that were addressed were tracing and logging, event 
reporting, error handling, and performance monitoring. The project addressed each of 
these, as well as several additional concerns. An important secondary motivation was 
assessing the overall impact on architectural quality of using AOP to separate out 
these concerns. 

The process involved two weeks of remote collaboration, including code reviews, 
preliminary design, and other preparation. This was followed by an intense week of 
hands on training and workshops that accomplished the following: 

• reviewed the design of the pilot components 
• analyzed specific concerns for these components 
• interactively designed new aspects  
• rapid prototyping, modifying production code using AspectJ 1.0.3 

                                                             
* The author was working for Palo Alto Research Center, Inc. at the time of this work. 



• integration of the AspectJ tool set into production build processes 
• integration of prototype code into a deployable format 
• analysis of findings 

Following the workshop the team spent additional time investigating the issues in-
volved in integrating the technology into the process and culture of the product devel-
opment organization. 

2   Technical Design 

This section describes how aspects were used to address the various concerns and as-
sessments of the benefits and drawbacks. 

2.1   Tracing and Logging 

All components in the product line have extensive logging requirements. The product 
architecture team defines a detailed policy (about a fifty page document), which has 
been revised with each major release of the application. There are two major applica-
tions of logging: for tracing method entries and exits, and for recording system events. 
Error handling also performs a type of logging, but that is handled through a separate 
infrastructure (and is further described in section 2.2). 

It was straightforward to implement an effective tracing policy with one global as-
pect plus one aspect per coarse-grained component of approximately one hundred 
classes. The global aspect defined a consistent policy of when and how tracing is per-
formed. It also ensures that all calls to tracing are “guarded” with a check to a method 
that determines whether tracing is enabled. The per-component aspects defined the 
scope of application (i.e., they define a concrete pointcut so the tracing advice applies 
to the component in question) and made inter-type declarations of toTraceString 
methods to override default logging output where necessary. Moreover, it was easy to 
plug in any of multiple different logging implementations, just by using a different 
global logging aspect. 

This infrastructure represented a significant improvement over the status quo. In 
creating the prototype, the team found several examples where tracing was not im-
plemented completely, other cases where there was inconsistency and ambiguity in 
interpreting the policy, and some places where tracing calls were not correctly 
guarded with checks on whether tracing was enabled. These last policy violations can 
cause runtime performance overhead when running in production (by making calls 
that create strings needlessly). 

However, implementing the logging concern exposed the importance of optimized 
performance. The AspectJ compiler has been targeted at generated crosscutting code 
that has a performance within 1-5% of the performance for hand coded Java. How-
ever, even this small penalty isn’t acceptable for the widespread tracing and logging 
code scattered across a highly optimized server. The major concern is that the AspectJ 
1.0.3 compiler creates thisJoinPoint objects eagerly, which would degrade perform-



ance (even when not tracing).  This issue should be completely resolvable by tuning 
the compiler output for this kind of situation. 

Moreover, the tracing facility used by the middleware product requires classes to 
register once with the tracing facility, and to use a returned object for all future trac-
ing. By convention, the name used for identifying this tracing is the name of the class. 
However, AspectJ 1.0.3 did not support any means of identifying the class in which a 
static method is executing. This support would be important for statically initializing 
tracing for many classes in the same aspect. 

Systematic logging for capturing events was also prototyped with good results. In 
this case, an aspect was created for each component that defined pointcuts, typically 
using wildcards in names to identify when an event occurred. In some cases, deter-
mining that “events” happened required refactoring the code to extract a method. 
However, these refactorings generally improved the quality of the code independently 
of their supporting the logging concern. 

While event logging was significantly improved with AspectJ, there was concern 
about pointcut fragility. If a developer subsequently refactors code, this can break the 
definition of events. One possible approach to mitigating this concern is using the As-
pectJ tools that visually show where advice applies to given code. Another could be to 
extend AspectJ to allow declaring warnings or errors if the events are no longer pre-
sent (i.e., the pointcuts are empty). A longer-term solution is to integrate pointcut 
definitions into refactoring tools, and rely on these tools to correctly refactor all ele-
ments of a program. 

An additional significant benefit of applying AspectJ to logging came from writing 
an aspect that policed improper usage: it generated compile-time errors when the user 
wrote results to System.out or System.err and code that otherwise used the logging fa-
cility improperly. This policing aspect found several policy violations in one of the 
components. 

2.2   Error Handling 

The product line uses a sophisticated error analysis and reporting subsystem which 
ensures that each error is logged once at the source. Classes catch errors and pass the 
error and associated context (e.g., the executing object, a unique identifier for the line, 
and the type of error) to the subsystem. 

The Java code of the product line was converted to use the error handling subsys-
tem with a complex hand-built tool that rewrote source code. Another tool was cre-
ated and maintained to test for violations of policy (including checking for comments 
to indicate that an exception should not be reported). New code or third party code 
needs to be manually instrumented. This tool is inflexible, and automated the process 
only for the initial introduction of error handling logic. However, the pain of handling 
the crosscutting error handling concern accurately made it better to introduce special 
purpose tools than trying to enforce coding discipline without tools. 

By contrast, it was easy and effective to implement the error handling policy in 
AspectJ. A single reusable aspect was developed to codify the error handling policy. 
This effectively represents the important points where errors were detected (in excep-
tion handlers and in method returns). Ideally, AspectJ would provide a throws join 



point, to capture the first point where exceptions were generated. However, the proto-
typed version does invoke error handling immediately after an exception is thrown 
(when it is handled or the method exits). In addition to the abstract aspect, the proto-
type included one aspect for each component to define the scope of application and to 
define exceptions that should not be dealt with by error handling.  

There was initially concern about pointcut fragility in determining where excep-
tions were being handled that shouldn’t be passed to the error analysis and reporting 
subsystem. However, close analysis showed that there was always a principle behind 
which exceptions and in which context exceptions weren’t analyzed and reported. So 
the pointcuts that excluded handling certain errors dealt mostly with classes of excep-
tion and domain classes, and did not need to enumerate lists of methods or combina-
tions of methods and exceptions. 

An example of a common case that needed to be excluded from the exception han-
dling logic was all calls to java.lang.Class.forName.  This method throws a ClassNot-
FoundException to indicate a missing class.  Every time this method was used in the 
code base the exception was treated as a normal return value and handled at the call 
site.  The reusable aspect was able to capture this pattern in a general way and remove 
the need to hand-label each call-site which the current hand-built tool requires. 

The AspectJ solution was not only consistent in applying policy and making it ex-
plicit, but it also made it easier to change the policy and it automatically updates new 
code for the policy. 

2.3   Performance Monitoring 

This application is extensively instrumented to capture performance information. 
Components provide a class with Java beans interfaces to access performance statis-
tics for the component. The first component that was prototyped had statistics gather-
ing scattered across ten classes and subtle inconsistencies in where information was 
collected. 

By contrast, a single aspect was prototyped that defined a consistent policy for how 
to capture all the performance statistics for a component. Indeed, looking at the places 
where performance monitoring advice in the Eclipse AJDT tool allowed the team to 
find bugs. For example, there was one case where the counter was not being updated 
but should have been. Moreover, the original code had to manage state in multiple 
places just to count correctly. In contrast, the AspectJ version was able to centralize 
this logic and disentangle it from the core component logic. 

This approach was easily generalized to a second component with comparable 
convenience and further reduced effort. Overall, performance monitoring was signifi-
cantly improved by using AspectJ. 

2.4   Additional Concerns 

During the workshop the team also did preliminary prototyping and achieved good re-
sults in separating the definition of business events from source code. This was fairly 
analogous to defining events for logging purposes (as described in section 2.1). How-



ever, the pointcuts used were also able to support events in customer (3rd party)-
written code by supporting a naming pattern (or customer defined pointcuts). 

Likewise, the project designed how to use of aspects to instrument code with JMX 
for systems management. An aspect would allow adding management operations to 
an existing class or defining an adapter for management. The aspect approach to sys-
tems management would be very similar to the solution used for performance moni-
toring. 

AspectJ was also helpful as a debugging tool throughout the prototyping effort. In 
addition, one attendee of the training tutorial who was not part of the prototyping ef-
fort immediately applied AspectJ to debugging a distributed system. The aspect re-
duced the time required to solve the problem because it did not require invasive modi-
fication of code to identify what was wrong. 

3   Tools Integration 

This section discusses how adding AspectJ to the existing system affected integration 
with the project’s development tools and process. 

The project team already had a very heterogeneous set of tools (including almost as 
many favored editing environments as there were people prototyping). Most develop-
ers on the team preferred to use command-line compilation. The combination of 
Eclipse integration, emacs integration, and the stand-alone browser tool supported 
everyone’s preferred development approach. 

The team worked with an alpha version of the AJDT toolkit for Eclipse. This was 
helpful for visualizing concerns, but was hard to use because it was not yet a mature 
tool. 

The AspectJ compiler worked quite well on the code base: it was easy to compile 
existing code, add aspects to it, and to test it. The project uses a sophisticated set of 
ant scripts, including a custom ant task for compilation, and maintaining separate files 
that define the classes in each component. However, in about one person day of effort 
the team was able to integrate AspectJ compilation into the process completely. 

The biggest drawbacks in the resulting build process resulted from how it handled 
reusable aspects in multiple components. AspectJ 1.0 does not provide a means for 
packaging a reusable library of aspects, so reusable aspects needed to be included as 
source in the definition of each component to which they applied. A more troubling 
concern is the possibility that the build process will generate incompatible class files 
for the same reusable aspects because they were compiled separately. This issue was 
not encountered in prototyping, but it was a concern nonetheless. Incremental linking 
and intermediate forms for aspects, which will support jar libraries, are features that 
are expected in AspectJ 1.1 and that would resolve these issues. A secondary issue 
was the lack of incremental compilation for AspectJ, which made compiling compo-
nents about twice as slow, though this still remained tolerable. This, too, is expected 
to be addressed in AspectJ 1.1. 

During the week of prototyping, the team had a good opportunity to assess the 
quality of the AspectJ 1.0.3 compiler’s error messages. The consensus was that the er-
ror messages were good for compiling pure Java code, but needed improvement when 



AspectJ-specific problems occurred.  In practice, even the most confusing error mes-
sages weren’t a problem on this project because one of the AspectJ compiler writers 
was present to translate any odd messages.  However, it was clear that improving 
these messages would be important for teams without this sort of on-site consulting.  
The clearest lesson learned from error handling was that having the compiler signal as 
many errors as possible was extremely helpful.  All of the developers on the team 
used the 1.0 compiler’s –Xlint options to get the most possible warnings and the only 
complaint with this was that it didn’t indicate more problems.  As a result of this ex-
perience, AspectJ 1.1 will provide much more extensive support for catching simple 
spelling and type errors. 

The project did not test ajdoc integration for generating Javadoc output, nor did it 
test the debugging support. It also did not investigate any issues in working with de-
sign tools that convert between Java code and UML diagrams, nor testing tools that 
parse Java code. There should not be integration issues with these if the project 
uses .aj file extensions for AspectJ source, rather than .java. However, these tools may 
introduce secondary problems (e.g., refactorings that break pointcuts or generated 
tests that don’t take account of aspect behavior). 

4   Effective Adoption 

The results from the prototyping were quite promising technically, and the issues en-
countered were deemed to be addressable. Because of the scale and importance of the 
system under study, the dominant concerns to be considered in an adoption roadmap 
were risk management and change management (i.e., how to train people and how to 
change processes to use the technology). 

The principles defined in the follow up plan were phased adoption, clear vision and 
sponsorship, and building on continued successes from using the technology. Indeed, 
these same factors worked together to produce good results in short iterations during 
the investigation process. 

The phased adoption plan envisioned increasing scale and scope of usage to 
achieve increasing benefits over multiple releases. This, in turn, allowed for isolating 
how the technology would impact different roles and skill sets. In particular, an im-
portant goal would be to allow a small number of specialists to define and maintain 
project policies in AspectJ initially. This would limit the training required for most 
developers to a basic level of awareness, rather than learning how to design and de-
velop with AOP. 

In addition, the plan needed to address integration with a broader set of tools, in-
cluding how to interoperate with ones that parse Java code such as UML modeling 
and testing tools. 

5   Conclusions 

The project had tremendous success in converting broad system-wide policies from 
large and ambiguous paper documents into AspectJ source code that unambiguously 



captured the same policies.  This made the policies easier to understand, implement, 
modify, and switch between different implementations.  This provided a convincing 
demonstration that AspectJ could be used to modularize many important crosscutting 
problems.  While the findings were mostly positive technically, the project also iden-
tified some specific areas, primarily tools maturity issues that needed improvement. 
Subsequently, many of these became the focus of improvement in developing AspectJ 
1.1. 

The project also achieved significant results culturally; a large organization learned 
about AspectJ and AOSD and many individuals started applying it to their own pro-
jects. Naturally, adopting a new technology like AOSD is not to be taken lightly on a 
massive engineering project, and there is a lot of additional effort required to mitigate 
risks and manage the change. 

Overall, the results of this effort were deemed to be very favorable and formed an 
important input to IBM’s assessment of AOSD. 

6   Acknowledgements 

Thanks to Andrew Clement, Tracy Gardner, Ian Robinson, Jeremy Hughes, Graham 
Wallace, and all the team at IBM Hursley for making this project happen. Thanks also 
to Gregor Kiczales who was instrumental in delivering the consulting, and to Erik 
Hilsdale, Mik Kersten and Wes Isberg for supporting the project efforts. 

References 

1. Kiczales, G., Hilsdale , E., Hugunin , J., Kersten, M., Palm, J., Griswold , W. An Overview of 
AspectJ. In Proc. of ECOOP ’01, LNCS 2072, pp. 327-353, Springer, 2001 

2. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J. As-
pect Oriented Programming. In Proc. of ECOOP ’97, LNCS 1241, pp. 220-243, Springer-
Verlag, 1997 


