
An Aspect Oriented Performance
Analysis Environment

Jonathan Davies, Cambridge University,

jjd27@hermes.cam.ac.uk
Nick Huismans, Imperial College,

nick@huismans.com
Rory Slaney, Edinburgh University,

rss@dcs.ed.ac.uk
Sian Whiting, Imperial College,

sian_whiting@yahoo.co.uk

Matthew Webster, matthew_webster@uk.ibm.com
Robert Berry, brobert@uk.ibm.com
IBM Corporation, Hursley, UK

Abstract

Performance analysis is motivated as an ideal
domain for benefiting from the application of
Aspect Oriented (AO) technology. The
experience of a ten week project to apply AO to
the performance analysis domain is described.
We show how all phases of a performance
analysts’ activities – initial profiling, problem
identification, problem analysis and solution
exploration – were candidates for AO technology
assistance – some being addressed with more
success than others. A Profiling Workbench is
described that leverages the capabilities of
AspectJ, and delivers unique capabilities into the
hands of developers exploring caching
opportunities.

1. Performance and the Software
Development Process
Performance measurement, analysis and
improvement are central activities in the software
development lifecycle. Ideally, performance
considerations play an early role, e.g., at design
time, as recommended in performance-oriented
design methodologies [6]. But most often, they
factor into the later stages of the development
process. This is unfortunate, since design
problems detected late in the cycle are more

expensive to fix - and may not even be fixed at
all because the risked or real schedule impacts
are considered as too severe. A very important
improvement to this situation now exists thanks
to the development and adoption of development
environments such as JProbe[4], Eclipse[5] and
also VTune[1]. These development
environments bring performance awareness and
analysis technology closer to the developer by
making it easier to explore the performance of
code as it is being written. They do so by
integrating analysis tools into the development
workbench. In this paper we describe our
experiences in using Aspect Oriented Software
Development (AOSD) techniques in helping to
further narrow this gap.

1.1 Performance Profiling
When creating an application, a developer’s
focus is on program functionality. The program
is designed to work - specifically to pass its
functional verification testing. Considerations
for reliability, serviceability and performance
may factor into the design, but unfortunately are
not often first order considerations. In one
common development model, the functional code
is ultimately made available to a performance
measurement team which must then go through
the following steps to speed up the application:

1. Establish Performance Objectives for the
application (CPU time, throughput,
response time)

2. Identify workloads to test these objectives
3. Test if the application performance is

within the objectives
4. If not, profile the application with

performance tools to determine reasons
for missing the objective

5. Modify the application to bring the
application within performance objectives
(Repeat 3-5)

Steps 1 and 2 are essential and can be quite
difficult, but for this paper we assume them as
given and do not address them further. Step 3

requires the ability to exercise the application in a
tractable manner. Fortunately, application
development environments such as those
mentioned earlier typically provide this capability.
Step 4 - analyzing the application - requires the
developer to have an awareness of, and a level of
facility with, complex performance profiling tools.
Step 5 is certainly within the developer’s grasp -
but pinpointed areas of focus are needed, and this
is where Step 4 is so important.

Putting performance profiling in developers’
hands is certainly facilitated by existing
application development environments - e.g., with
hot method profiling, and call-flow profiling
capabilities typified by tools such as tprof [3],
gprof [2], Vtune [1], and JProbe [4]. Most of
these profiling tools concentrate on identifying
performance problems relating to program control
flow; i.e., they focus on finding hotspots and areas
of calling congestion. While these are very
important, they are not the only source of
optimisation opportunity.

Indeed, we find increasingly with object oriented
systems that the flow of data can be just as
important. A common type of performance
improvement involves the introduction of caching
logic into an application, or middleware library.
Justification and motivation for the complexity of
such caching logic is generally obtained through
the introduction of specialised instrumentation.
When the application is run the instrumentation
can be used to confirm particular argument and
return value combinations that support a caching
solution. For example, suppose method X(a)
were called 100,000 times, and for 80,000 of
those invocations the input argument a took the
same value, with the return value also being
identical. This would be strongly suggestive of a
caching opportunity.

However, in practice, identifying these
opportunities can be very expensive. We chose to
bring some assistance with this general class of
problems through the development of a profiling

tool based on Aspect Oriented technology. The
promise of employing these technologies for
non-invasive, flexible and adaptive
instrumentation and subsequent behaviour
modification suggested a compelling synergy
well worth exploration.

1.2 Related Work
Many existing profilers indicated above focus on
CPU time and program flow. Tools such as
Vtune also enable analysts to profile on the basis
of other hardware activity, e.g., L1 cache misses.
However, we knew of no tool that allows
applications to be profiled on the basis of data
flow – a key requirement for caching opportunity
detection. We believed this to be important
because as analysts we spend a great deal of time
in application and middleware software
improving this aspect of performance - yet we
lack general tooling to help in this important area.

We sought to develop a technique and
environment to selectively gather information on
certain methods, argument values, return values,
to conduct correlation analysis between these,
and to couple that information with timing
information. While some of this information
could certainly be gathered manually, e.g.,
JavaTM debuggers based on JVMDI are able to
track arguments and return values –this is
typically a single-step debugging operation.
Manually inserted instrumentation (e.g., using
System.out.println statements, or through the
use of a logging or other api) is also possible.
Alternately, specialised instrumentation can be
developed based on byte-code modification
techniques – indeed this is where we began – but
the flexibility of AOSD techniques quickly
suggested a different approach.

AOSD technology, and in particular for our
project, AspectJ [7], made this kind of
instrumentation feasible to explore, and provided
a basis for enhanced analysis and application
performance improvement. Further, and perhaps
of more significance, when coupled with Eclipse

the result puts technology to identify, investigate,
and prototype performance improvements (Step 5
above) within reach of the developer.

In section 2 we discuss goals for the profiler, with
section 3 introducing an overview of the design.
This is followed by a detailed description of the
implementation. Our experiences with using
AOSD techniques and AspectJ in particular, for
this effort are discussed in Section 5.

2. Goals and Approach

2.1 General Project
Our project had several ambitious aims. We
wanted first to explore the value of AOSD
technology to a real problem domain; we chose
performance analysis. We also deliberately chose
to do this with a team initially lacking familiarity
with AOSD. With this approach we expected to
gain experience with the adoption of this
relatively new technology.

2.2 Profiler Focus
We also had specific goals for the profiler.
Performance measurement/problem identification,
analysis and improvement were selected as the
domain of application. The focus was further
narrowed to a class of performance problems
characterised by solutions involving caching. We
did this in part because caching is an area of
current interest in our efforts to improve the
performance of our software. Another connection
to AOSD is the very natural view of caching as
distinct concern [9] - or indeed, more generally, of
performance improvement as a distinct concern.
We felt this created a particularly compelling
reason for selecting this combination.

2.2.1 Phases of Performance
For the broader experience of AO technology we
sought to apply AO techniques to all phases of
performance – measurement, problem (or
opportunity) detection, analysis (in this case, of
caching opportunities), and exploration of actual
performance improvement. We decided to use

AspectJ, although similar techniques to the ones
described here could also be used with other AO
tools such as HyperJ [8] and HyperProbe[11].

We saw value in developing AspectJ aspects to
extract information that would otherwise need
handwritten code to be explicitly inserted by the
programmer. We wanted to be able to identify
interesting methods in a non-invasive manner, so
the programmer didn’t have to understand the
profiling process. This required everything to be
done within a graphical environment, a Profiling
Workbench. By having an easy to use interface it
would also allow ordinary developers as well as
performance experts to profile code, and apply
performance improvements.

For measurement and performance problem
identification we create instrumentation aspects
that determine which methods have a high
invocation count or high execution time within
an application. In some respects this is the
domain of more traditional profilers. However,
unlike other profilers, we were motivated to use
Aspect Oriented Programming (AOP) in this
phase of performance because we sought the
benefits of a tight integration with the other
phases of the performance process (analysis and
then improvement). Another critical dimension
of measurement, also addressed through the use
of generated aspects, is in effectively limiting the
quantity of data collected.

Problem analysis was the next area for AOSD
technology application in the Profiler Workbench.
In this case, aspects were created to capture
argument types and values, as well as return
types and values, for selected methods.

A further aim of the profiler included
demonstrating how AO techniques could be used
to actually solve the performance problems
experienced by a particular class or method.
Whether this involves automatic caching or
pooling, a simple strategy should be able to be
put in place within the Profiling workbench. This

may not produce the most efficient solution but
should be a good indicator as to whether it is
worth implementing a more sophisticated or
specialised caching technique.

2.2.2 The Developer Experience
Another important goal was creating a solution
that would enhance the ability of developers to
explore and analyse performance problems. This
goal is challenging for two reasons. First, as
introduced earlier, developers are not generally
familiar with the discipline of performance
analysis and the use of its tools. Being able to
analyse profiler data within the user’s
development environment was important. This
would enable the code to be easily accessible
when an interesting method was found. We
needed to be able to show the programmer what
was happening in the code both for each
individual method execution and on a method by
method basis.

A second challenge for developer acceptance
came from the desire to actually hide AOSD from
the developer, the end user of the profiler. While
we planned to exploit AO techniques to facilitate
problem detection, analysis and improvement, we
needed to hide the details of this from the user.

3. The Profiling Workbench

The above figure depicts at a very high level the
use of the Profiling Workbench. It shows key
stages of the developer’s workflow while
engaging in a caching exploration. At (1) the
developer is presented with a list of candidate
methods. The contents of this list can be
modified by varying the selection criteria. When
the developer indicates a desire to profile (2), the
workbench will generate the instrumentation
aspects needed to profile the selected methods.
These aspects are applied by the framework (the
AspectJ compiler is an integral part of the
Workbench). Initial profiling results are
obtained (3), and presented to the developer (at
4). These results indicate areas of potential
improvement based on invocation frequency or
time-in-method.

This process can then be repeated, starting again
at (1) but generating new aspects aimed at
collecting method argument types and values
(and return types and values). Again, the aspects
are generated, applied to the application
codebase and new data is collected. This data is
then available for graphing and correlation
analysis.

In correlation analysis, the Workbench presents
the developer with graphical feedback on the
behaviour of the hot methods. Here it is possible
to (manually) identify caching opportunities by
observing argument values and return values for
methods.

When a potential caching opportunity is
identified, the developer can then select from a
set of caching aspects (instead of profiling
aspects) to apply to a particular method. A
caching aspect, customised to that target method,
is automatically generated, and the application
can then be rerun. The performance analysis
loop is completely self-contained – from
identification, to analysis, and then to
performance improvement prototyping and
measurement.

2

Aspect a {
 …
 …
}

4

1

3

4. Profiler Implementation and Usage
Detail

4.1 Introduction
The Profiling Workbench is written in Java as a
plugin for Eclipse. It depends on three other
Eclipse plugins: AspectJ Development Toolkit
(AJDT) which provides the AO types for Eclipse,
AspectJ Development Environment (AJDE)
which provides the compiler and is required by
AJDT, and Draw2D which is used for drawing
graphs. The profiler is also dependent on the IBM
High Resolution Time Stamp Facility [12] in
order to get high resolution event timing
information on the Windows 32 platform. The
plugin consists of one view containing three tabs:
Profiling Rules, Table and Graphs.

4.2 Profiling Rules:
The Profiling Rules View is used to select
methods to profile, parameters to log, sampling
techniques and handlers to use. Methods can be
selected for profiling and then the Workbench
produces an appropriate AspectJ pointcut.

A “Logging Parameters Wizard” allows the user
to select method parameters to log. This is an
orthogonal mechanism because logging argument
and return values is likely to cause distortions to
timing values. The advised practice is to run the
profiler twice with the same test case. On the first
run, timing information should be gathered and on
the second, values and types. The results of the
first run allow for the identification of a small set
of methods of interest. On the second profiler run,
logging all parameters for this more restricted set
of methods provides a reasonably accurate and
general overview.

The logging parameters wizard contains a
handlers page. A handler facility is provided so
that the user can extract meaningful values from
complex data types. Several pre-defined handlers
are provided with the option and documentation
for the user to write their own. The logging
parameters wizard also provides an option to

profile library packages. Execution time is
calculated by taking away the time within
method values for all sub calls from the time
within method value for the method. Profiling
library packages means that execution time
values are more accurate for methods where
library calls are made.

A “Launch Filtration Wizard” enables the user to
apply sampling techniques. If the project is large
or run for a considerable time the user will
probably want to employ some sampling to avoid
using a lot of disk space. A “Generate Aspect”
step automatically generates an aspect to perform
the profiling with all the options the user has
selected. An extra package is added to the
project containing an aspect called Profiling.java.
This contains the pointcuts created with the
wizards and the necessary logging advice.

4.3 Table:
In order to gather profiling data the project is
built and run as normal. The results are presented
through the Table View. This view shows
method entry/exit statistics, execution
frequencies, argument types and values. Data
can be grouped in a variety of ways – e.g., by
class, by method:

4.4 Graph:
The Graph View can be used for the initial
selection of hot methods, as shown below.

Detailed argument type and value data can also be
graphed for correlative analysis purposes in the
Graph View, as illustrated in the next figure. This
figure illustrates a graph of execution (wall clock)
time against return values. It appears to suggest
that return values vary more or less uniformly
across the range from [0..2,000,000,000], and so a
caching solution in this case might not be
advantageous.

4.5 Caching:
A basic general caching solution was
implemented in the Workbench by adding a set of
caching aspects. Application methods observed
with appropriate argument/return value
characteristics can be easily explored for the
benefit that a caching might afford. One such
generic caching aspect uses a hashtable with keys

based on arguments and return values stored. If
argument values for the current method have
been used before, the value from the hashtable is
returned. Otherwise the value is calculated,
stored in the hashtable and returned. For an
expensive method this should demonstrate the
value of adding a permanent caching solution.

5. Exploitation of AOSD & AspectJ
The aspect-based profiling tool was programmed
in pure Java exploiting several AOSD and
AspectJ features and methodologies. This section
details these exploitations; explains why they
were deemed useful; where they were used in the
profiler; and what the alternatives would have
been, had the profiler been developed using
traditional programming techniques.

While many of the following observations apply
generally to the use of AspectJ, they are derived
directly from our experience in using this
technology to develop and experiment with the
profiler.

5.1 Weaving of Cross-cutting Concerns
The fundamental feature of AOSD and AspectJ,
is the ability to modularise cross-cutting
concerns and to weave them into a program
before or at run-time. AspectJ, in particular,
allows the possibility for code in aspects’ advice
to be weaved into the target program achieving
the same effect as if it were in-line code, despite
it being stored in a separate modular unit. This
feature may be exploited to insert one piece of
code at an arbitrarily large number of positions
within the source code of a program.
Furthermore, with AspectJ, it is particularly easy
to uniquely identify, and define behaviour to
occur at, these positions within the execution of
the program. Moreover, these points may be
static (dependent of position in the source code)
or dynamic (dependent on the control flow of the
program).

5.1.1 Current Use
The aspect-based profiling tool gathers
information regarding the performance of a Java
program by inserting an aspect. This advises
certain methods guided by a pointcut, which is
custom-generated, based on the user’s selections.
Please refer to section 4 “Profiler Implementation
and Usage” for a more detailed explanation of this
process. The advice which is applied to these
chosen methods provides simple logging
behaviour, to gather the information regarding the
details of the circumstances of execution of the
method. This is an elementary example of a cross-
cutting concern, logging, which can be woven into
arbitrary methods across the entire program.

5.1.2 Alternatives
An alternative to having a separate module
containing the cross-cutting logging code, which
the profiler caused to be woven into the target
program, would be to actually insert the logging
code into each source file containing methods to
be logged. In other words, the alternative would
be to manually perform the same job that AspectJ
does itself. Clearly, emulating AspectJ’s
behaviour in this way would be wasteful.

A second alternative would be to modify the JVM
to explicitly extract and log the desired
performance information whilst the program is
running. While feasible, this is not an easy step,
and it would lack the flexibility of our current
approach.

5.2 Sufficiency of Expressiveness of Pointcut
Language
AspectJ uses pointcuts to pick out well-defined
points in a program. The language which is used
to define pointcuts is a powerful combination of
Boolean operators and potent pointcut designators,
including regular expressions for succinct
formation of complex pointcuts.

5.2.1 Current Use
Pointcuts are used in an aspect generated by the
profiler, which is then inserted into the target

program. These pointcuts pick out the methods
for which performance information should be
gathered. The “execution” pointcut designator, in
partnership with before and after advice, is used
to catch the start of the execution of these
particular methods. The advice records
information such as the name of the method; the
name of the thread executing the method; the
time duration spent within the method; and the
argument and return values – such information
can be used to build up a picture of the
performance of this method.

We found the pointcut language sufficiently
expressive to pick out these methods with
simplicity and succinctness. The efficiency of
pointcut expression was manifested primarily in
the way in which wildcards can be exploited. For
example, if the user wishes to log the
performance information for every method
within a certain class, then it is only necessary to
generate an aspect containing the pointcut
designator: execution(* className.*(..)).

In addition, the pointcut language is also
powerful in terms of identification of particular
sets of methods. For example, it is possible to
pick out all methods with a particular return type,
by using execution(returnType *..*(..)); or all
methods with an argument of a particular type,
by using execution(* *..*(.., argumentType, ..)).

Furthermore, the pointcut language is exploited
by using the “call” pointcut designator to gather
information about invocations of methods for
which the user does not have access to the source
code.

5.2.2 Alternatives
If wildcards were not available, then the
alternative to a pointcut designator such as
execution(* className.*(..)) would be a large
disjunction of designators for each single method
within the class. Clearly, this is inefficient and
the resulting pointcut would prove difficult to
read and is insusceptible to manual alterations.

Whilst it is reasonably easy to list all the methods
within a particular class, it is a more complex task
to list all the methods with a particular return type,
or with an argument of a particular type, across
the scope of the entire program, or perhaps within
an arbitrary limited scope. If the possibility did
not exist to use pointcut designators such as
execution(returnType *..*(..)) or execution(*
..(.., argumentType, ..)), then some search
would need to be made across the scope of the
entire source of the program to find the methods
with the desired argument or return type. Clearly,
this is a laborious process, which would require a
great deal of manual effort, or a processor-
intensive task to be executed.

5.3 Power of thisJoinPoint
AspectJ provides an object, accessible within the
scope of the advice, called thisJoinPoint. The
object contains both static and dynamic
information about the joinpoint which matched
the pointcut causing the advice to be executed.
This information is invaluable for gathering data
relevant to inspection of performance of methods.
For example, thisJoinPoint holds the name of the
executing method, and the argument values which
were passed to the method.

5.3.1 Current Use
To obtain information relevant to the performance
of methods within a program, the aspect generated
by the profiler contains one piece of before and
after advice, each to be executed for all methods
picked out by the pointcuts. Because this advice
had to be general and be used by arbitrary
methods, thisJoinPoint was invaluable for
extracting the values of arguments, in particular.

5.3.2 Alternatives
The alternative to having one general piece of
before and after advice, and using the magic of
thisJoinPoint, would be to have specific advice for
each method and use the “args” pointcut
designator to extract argument values and
“returning” keyword to obtain the return value.
This would require knowledge about the signature

of each method, to determine the layout of the
args pointcut designator’s arguments, in each
specific pointcut. Moreover, there would have to
be an individual pointcut and an accompanying
piece of advice, for each method to be profiled.
Clearly, in a program of any reasonable size, this
would lead to the generation of a huge aspect,
which is difficult for a human to read and
understand; and to amend or modify.

Traditional profilers do not extract the values of
arguments and the results of methods. Using
non-aspect-based profiling techniques, the user
would be expected to insert logging code into his
program (perhaps using System.out.println, or
similar) to gather the values of arguments and
results of methods the user is interested in. This
is clearly not an ideal situation, because it
involves extra effort on the part of the user. Also,
this enforces the necessity that the program must
be run twice – first to identify the methods
susceptible to profiling; and second, once the
logging code has been manually inserted, to
gather the values of arguments and results of the
methods under inspection. If the program is
processor-, memory-, or time-intensive, then
running the program more than once is
undesirable. Using the aspect-based profiler,
there is the possibility for values of arguments
and results of methods to be gathered directly.

5.4 Power of Around Advice
AspectJ allows the implementation of a
particular method to be replaced through the use
of “around” advice. In addition the use of
“proceed” allows new logic to be introduced
before and after execution of the original method
if required.

5.4.1 Current Use
Once a method has been identified as performing
below its expected level of performance (in terms
of execution time), the decision must be made
regarding how to improve the performance of the
method. Typical solutions may be to implement a
caching or pooling policy. Caching aims to save

time by avoiding repeating expensive sections of
code; pooling aims to save time by avoiding
expensive re-creation of objects when existing
objects may be re-used.

The aspect-based profiler encompasses not only
the identification of performance problems, but
also aims to aid the user to address these problems,
by implementing a simple, out-of-the-box caching
algorithm, for expensive methods. This caching is
achieved by inserting an aspect into the target
program which contains a pointcut for a specific
method and accompanying around advice. This
advice implements simple caching by checking to
see if the method’s argument values have been
used before – and, if so, returning the same return
value; if not, calling proceed and storing the
obtained return value in the cache. (Notably, such
caching techniques will only be meaningful for,
and will only improve the performance of,
methods within a restricted set.)

Such simple caching is not intended to be a
complete solution, but merely enables the user to
identify quickly and easily whether some sort of
caching technique may be useful for improving
the performance of the method in question. If a
performance gain is experienced, it is expected
that the user would then modify the caching
aspect to tailor its behaviour to suit the particular
method. If no performance gain is experienced,
then it is a simple matter to remove the caching
aspect, to return to the original, uncached
implementation of the method.

5.4.2 Alternatives
The alternative to using a separate caching aspect
would be to modify the source code of the
program. This has the obvious disadvantage that it
is difficult to switch on and switch off to rapidly
determine if a performance gain is realised. It is
also considerably more error prone. Furthermore,
the generic nature of the aspect means that it can
be re-produced to suit any arbitrary method, with
ease

6. Conclusions
The ability to identify, analyse and potentially
solve performance problems within an IDE
(Integrated Development Environment) is
compelling. Both the flexibility (through the use
of wildcards) and the control (using pattern and
type matching) available with the AspectJ
pointcut language make it possible to extract
detailed information from an executing program
without resorting to either handwritten
instrumentation or JVM modifications.
Furthermore the use of execution pointcut
before/after advice allows the collection of data
for the target application only rather than the
whole system as is common in other profiling
techniques. The use of call pointcuts before/after
advice can also eliminate from results the cost of
invoking library classes. Finally the use of an
aspect to apply performance enhancements
demonstrates a classic example of modularizing
a cross-cutting concern, in this case caching or
pooling.

As the project developed some of the limitations
of AspectJ became apparent. The current version
of the compiler rebuilds any source code that is
likely to be affected by an aspect, something that
can be very time consuming for large
applications. Future versions are expected to use
incremental compilation which will greatly
improve the usability of the profiler. In addition
the extra pathlength (executed lines of code)
associated with the profiling aspect can perturb
results, especially for small methods, making
“hot” method identification difficult. Whilst the
use of sampling techniques can reduce data
volumes, pathlength is still affected as the checks
are made in the aspect not at the joinpoint.

The Aspect Oriented Profiler has been adopted
by the eBusiness Integration Technologies
performance team for analysing existing and
future IBM products. Other groups at the IBM
Hursley Laboratory have also expressed an
interest is using the profiler.

The work so far has concentrated on only one area
of performance analysis: pathlength measurement
and reduction. However, the analysis of other
factors impacting system throughput such as
object lifetime, locking and the use of exceptions
also lend themselves very well to the use of
AOSD. Events such as object creation, monitor
contention and exception handling can all be
intercepted using the powerful pointcut definitions
of AspectJ. Future enhancements could allow the
profiler to address a broader range of performance
concerns.

7. Extreme Blue and Project Roles
This project was conducted as an IBM Extreme
Blue initiative. It took place over a 10 week
period in the summer of 2002 at the IBM
Laboratory, Hursley, UK. The mentors for the
project were Matthew Webster and Robert Berry.
Robert Berry has 20 years of experience with
performance measurement and suggested the
application of AOSD techniques to this field.
Matthew conceived the idea of “whole lifecyle of
performance analysis” within the Eclipse
environment. The development of the plugin was
split between the students. Jonathan wrote the
Aspect generator and Rory developed the various
sampling mechanisms. Nick created the tables for
data selection and worked with Sian to design the
graphing tools for data analysis. The project was
an intensively collaborative effort benefiting from
a tremendous level of teamwork.

Acknowledgements
We would like to thank our management sponsor,
Dr. Mark Thomas for his strong support and
direction. We gratefully acknowledge the
assistance and encouragement of the IBM
European Extreme Blue program director, Stuart
Fawkes.

8.0 References

[1] VTune. Intel Corporation.
http://www.intel.com/software/products/vtune/ind
ex.htm

[2] gprof. http://www.gnu.org/manual/gprof-
2.9.1/gprof.html
[3] Rudy Chukran, “Accelerating AIX:
Performance Tuning for Programmers and
System Administrators”, Addison-Wesley,
Paperback, Published March 1998
[4] JProbe. Sitraka Corporation.
http://www.sitraka.com/software/jprobe/
[5] Eclipse. http://www.eclipse.org
[6] Connie U. Smith, “General Principles for
Performance Oriented Design”, pp138-144,
Proceedings of the Computer Measurement
Group, 1987, Orlando Florida.
[7] G. Kiczales, E. Hilsdale, J. Hugunin, Mik
Kersten, J. Palm, W. Griswold, “An Overview of
AspectJ”. In Proceedings ECOOP’01, Springer-
Verlag, June 2001.
[8] H. Ossher, Peri Tarr, “Multi-dimensional
Separation of Concerns and the Hyperspace
Approach”, In Proceedings of the Symposium on
software Architectures and Component
technology: The State of the Art in Software
Development, Kluwer, 2001.
[9] Stanley M. Sutton, Jr., Isabella Rouvellou,
“Concerns in the Design of a Software Cache”,
Proceedings Advanced Separation of Concerns in
Object-Oriented Systems, Workshop at OOPSLA
2000, Minneapolis, Minnesota, October, 2000.
[10] SPECjbb2000, Java Business Benchmark,
Standard Performance Evaluation Corporation,
http://www.spec.org.
[11] D. Kimelman et al, HyperProbe - An
Aspect-Oriented Instrumentation Tool for
Troubleshooting Large-Scale Production
Systems, Demonstration at AOSD 2002,
Enschede, 2002.
[12] High Resolution Time Stamp Facility,
alphaWorks, IBM Corporation,
http://www.alphaworks.ibm.com/tech/ibmts

Java is a trademark of Sun Microsystems, Inc.

