
Using AspectJ to Eliminate Tangling Code in EAI-Activities
Arno Schmidmeier
Sirius Software GmbH

Lohweg 9
91217 Hersbruck

+49/91 51/ 90 50 30

Arno.Schmidmeier@web.de

ABSTRACT
Enterprise Application Integration imposes various non-
functional requirements on integration teams and application
manufacturers, which are hard to separate with OO languages
and tools. This paper describes how the overall integration effort
has been dramatically reduced by using AspectJ [1] to integrate
different Sirius EOS Service Monitors [16] in a NGOSS [18]
compliant EAI architecture realized with Vitria BusinessWare
[22].

Keywords
Aspect Oriented Software Development, EAI, enterprise
application integration, AOP, Aspect Oriented Programming,
AspectJ, NGOSS, coding guidelines

1. INTRODUCTION
The economic competition and challenge to launch and support
new services requires a constant integration of new applications
into current legacy systems. Today these integration projects are
normally solved as expensive professional service tasks. The
majority of the money is spent on solving non functional,
technical concerns and problems. Reducing the integration cost
is a major strategic objective in many business domains.

This paper first describes a predominant solution concept, and
how this concept affects current object oriented “off-the-shelf”
software products and existing applications. It explains why this
approach creates a number of crosscutting concerns at the
application level; and, how these crosscutting concerns were
easily modularised and then localized by using the general
purpose aspect language (GPAL) AspectJ. Sirius Research used
this approach very successfully in several real world projects.
Sections 4 and 5 discuss our most important coding conventions
and the features we found lacking from AspectJ 1.0. Finally we
discuss modifications to our development process and
development activities as a result of adopting AspectJ.

2. Current Solution Approaches
The naive approach to integrate the nth application with n-1
other applications has an unacceptable drawback: it requires
O(n2) integration projects.

The predominant solution is to integrate all applications via a
common message oriented middleware platform used as an
information bus, to use common shared infrastructure services,
and to use common business modelling tools like Business-rule
engines, state machines, etc. to model and realize the process
flow and define a common shared data (object) model. If such
architecture is in place the initial integration cost is reduced to
O(n). New applications can be added with cost O(1), not O(n).
Several domain groups have standardized such architectures, for
example the Tele Management Forum (TMF) [17] with NGOSS.
The NGOSS architecture is left technology neutral. It can be
realised with a combination of two extreme approaches: the first
is to use one of the multiple “off-the-shelf” EAI products (e.g.
Vitria BusinessWare), and the second is to combine standard
middleware platforms with multiple standard infrastructure
services and commercial off the shelf applications, which are
responsible for modelling and realising the business flow (e.g.
ILOG JRules [6]).
The TMF defined several realisation guidelines for the first
approach. Currently a guideline exists for CORBA [19], and
XML [20]. A separate guideline [11] was released for J2EE
from Sun Microsystems in cooperation with TMF.
The decision to leave the NGOSS architecture technology
neutral offers the possibility to more easily adopt new protocols
and new technologies as well as to integrate legacy applications.
The drawback is that application providers must support an
individual customized EAI environment for each NGOSS
adopter. Normally these environments differ dramatically in
their deployed infrastructures, their process flows, and shared
object model. There is no easy way for interoperation. For
example, products implementing Java Specification Request
(JSR) JSR 89 [7], JSR 90 [8], JSR 91 [9] or JSR 142 [10]
cannot be directly integrated in EAI architectures based on
CORBA [19].

As a result, an application provider must realize the following
technical or architectural requirements for each of his customers
separately:

• = Merging internal information buses with the
information bus from the EAI architecture.

• = Integrating information exchange sequences from the
EAI project into the existing sequences from the

application with the expected quality of service. (For
example, a pull based application may be required to
be changed to an application which implements the
observer pattern [4])

• = Adopting common infrastructure services as opposed
to those of the native enterprise application.

• = Using a central security service, which often requires a
different security protocol and different security
concepts,

• = Supporting a common shared data model that differs
from the native data model of the application.

• = Dealing with different transactional policies and
behaviour

• = Finally, implementing excessive crosscutting logic,
such as caching of stewarded data to meet expected
non-functional requirements for customer specific EAI
support.

These requirements are currently fulfilled:

• = As expensive professional service tasks, on top of the
standard APIs, where the realisation of these
requirements does not pollute the application core
with customer specific elements, but faces challenges
to overcome performance penalties and limitations of
the available APIs

• = Or, as a bunch of customer specific, tangled code
fragments cluttered all over the applications

• = Or, a combination of both.

However, none of these approaches is satisfying. They are too
costly, provide a maintenance nightmare for the application
providers, or violate the architectural integrity of the application.
For this reason we used AspectJ to modularise and consequently
solve these technical and architectural requirements in the EOS
application suite.

3. Overview of our solution
In the EAI-projects discussed in this paper, all application
providers were required to integrate their whole application or
submodules of their enterprise applications with Vitria
BusinessWare. In the project “SLM for Wireless IP” [21] for
example, Sirius Software integrated their QoS-mediation and
their service monitor modules, Amdocs their IPDR billing,
Contract &Order Management, and their billing module, Cvidya
their optimiser, Sodalia their provisioning application and Edocs
their eCRM-System via Vitria BusinessWare. BusinessWare
was responsible for providing the common EAI integration
infrastructure.
None of these projects required a central transaction policy or a
common security infrastructure. A central transaction policy in
the EAI-projects was replaced by excessive use of pre and post
conditions. It was a trivial task to realize these checks using
AsectJ’s advice. . Implementing a central transactional policy
was practically not doable, because the majority of the

underlying network equipment, used network and element
management systems and design patterns are based on best effort
policies.
The requirement for a common security infrastructure was
dropped, because a sufficient secure computing infrastructure
could be more easily and cheaply created by the operating
telecom companies with a closed WAN.

3.1 Using Aspects to Merge Our Internal
Information Exchange with the Information
Exchange on the Vitria Information Bus
In the projects, we had three different scenarios:
In the first, we had to distribute internal observer notifications
to the Vitria bus.
In the second, we had to implement a kind of observer, for
entities which strictly entailed a create select, update, delete
lifecycle, where the change notification and parts of the changed
data must be placed on the Vitria bus.
In the third scenario, we received information from the Vitria
bus, which we needed to process and then put the original
information together with the results of the computation back on
the bus.

The first scenario was implemented by adding advice around the
execution of the internal update methods responsible for
distributing the change notifications. We decided to implement
this approach as aspects and not as standard OO-solutions for
following reasons:

• = We had verified empirically in previous projects the
theoretical result from [13 that aspects are superior to
the OO-observer solution.

• = We did not need to insert to any code in the original
code base. So we could avoid creating any
dependency from the EAI-code to the code base of the
application.

For the second scenario, we used around advice on all join
points which could cause relevant changes. The advice could
easily extract the critical data (which may be changed) via
inexpensive internal method calls. First the advice fetched and
stored the old values, then proceeded with the calculation.
Finally the advice fetched the potentially updated values and
compared them with the original one; and, if they found a
difference, they dumped the change notification to the Vitria
bus.

The third scenario was implemented by objects listening as
CORBA-objects on the bus. Upon receiving notification, they
invoked the relevant internal methods, extracted the result, and
dumped the information back on the Vitria bus.
We could have use basic object orientation for that task, but we
needed aspects for following reasons:

• = The creation of the CORBA objects was initiated by
advice, which was bound to some methods during the
start-up phase of the application. Thus we could easily

ensure that the application was correctly connected to
the bus as soon as it was ready to perform its work,
and we did not need to change the bootstrap source
code off the application.

• = Some data structures should piggy-back some extra
data, which was needed to perform the transformation
from the common shared data model to our internal
one and back again.

• = We had to extend the functionality of some objects, to
satisfy several interfaces for the Vitria integration.

The last two tasks were realized by introduction.

3.2 Using Aspects to Integrate the
Information Exchange Sequences from the
EAI Project into the Existing Sequences of
the Application.
This task was solved for free with the aspects, which integrated
the information exchange sequences. The change from a pull to
a pull-push scenario was performed without any of the
traditional problems. For example, we did not need to write any
change logs, which could be pulled or observed in short
intervals, we did not use any caches, and we did not need to
work with any tricky functionality of the of the application
infrastructure (e.g. triggers, stored procedures, etc.) Still the
actual performance of the implementation exceeded the
performance expectation of the customers by a factor of ten. A
previous project based only on standard OO performed only half
as well.

3.3 Use of Common Infrastructure Services
Instead of those Native to the Enterprise
Application.
Access to infrastructure services is performed via proxies in our
application suite. The proxies are implemented as singletons. All
changes were isolated inside these singletons. All but one of
these singletons were reusable, with only configuration
parameters needed to be changed. The remaining singleton
needed to be fully replaced. By using a plain OO-solution we
would have had to introduce a more sophisticated bootstrap
mechanism, change all static getInstance calls to the new class,
or replace the original one, with the modified new one. The first
two options would require changes in the existing code base,
and the last option would break our build system. We decided to
use a simple around advice, around the getInstance() calls,
which returns the correct singleton.

3.4 Using Aspects to Support the Common
Shared Data Model.
The individual tasks of each application in an EAI project are
such that the common-shared data model of the project is
normally fairly close enough to the object models of the
applications. Therefore a transformation is usually possible.
There are at least two transformations necessary.

The first one is the data representation, (e.g. Java-Object to
CORBA-struct and vice versa, or Java-objects to XML and vice
versa) and the second one is the transformation of the class
structure. For a more efficient or easier to implement
transformation it is often necessary to piggy-back additional
data, which is normally not used inside the application. E.g.
detailed customer information, like contact information, etc are
not used inside provisioning or service monitoring applications,
however this information needs to be shared between CRM and
billing applications, so it will be stored on the bus. In a classic
OO-framework, this information must be additionally stored in
the data transformation layer, or it must be retrieved expensively
via the bus from the application which stewards the data.
Alternatively, the existing class hierarchies have to be touched,
so that this information can be piggy-backed inside the
application.
Often we could use static crosscutting from AspectJ to add the
piggy-backed data to the existing class hierarchy. If static
crosscutting was not an option, we used aspects declared as
perthis, pertarget, or percflow to store the additional
information. The rest of the translation from the common shared
data model to the data model of the application was performed
using object oriented programming.

3.5 Using Aspects to Implement Non-
functional Requirements
Finally as in most enterprise projects we encountered non
functional requirements, like logging; auditing of relevant
changes; sophisticated exception handling; retry of failed
requests; fail over; caching of stewarded data by other
applications, etc.
Each of these requirements can be implemented in a
straightforward way with simple OO. Unfortunately, a simple
OO-approach creates a bunch of tangling code. A high reliable
and well performing plain OO-implementation requires an
overhead of 50 to 100 lines of code for each method which
accesses the EAI infrastructure. This implementation is normally
added by a high error prone, hard to maintain and extend copy
and paste session. Often the macros facilities of modern IDEs
are also used for this task. Several projects and tools also use
custom compilers, often based on commercial or freely available
CORBA compilers with an extensible backend (e.g. omniorb
[14]), to create customized stubs which realize these
requirements. With the use of aspects we were able to reduce the
required lines of code dramatically and still avoid implementing
our own customized compiler.

4. Lessons Learned for Coding Guidelines
AOP is a very young programming paradigm, so most of the
team members did not think in aspects when the projects started.
We needed therefore several coding guidelines. These guidelines
helped us to maintain a more manageable codebase.
All of these guidelines, with the exception of one, deal with the
application of aspects. We made one modification to our java-
coding guidelines: a programmer can access private member
variables directly; he does not need to use the set and get
methods. We liberated these regulations based on the experience

from previous projects that we could implement on demand all
of the flexibility-benefits of the set and get methods by applying
specific advice.
We were very restrictive on the use of cflow and cflowbelow. It
is prohibited to use it, to narrow a set of pointcuts. E.g. it was
not allowed to use following pointcut statements:

pointcut pc():

pc1()&&!cflowbelow(pc1());

These types of statements were prohibited, for the rule of least
surprise. Because, what the developer really wanted in our
scenario and codebase is:
pointcut pc():pc1()

&&!cflowbelow(

firstaroundadvice(pc1())

);

where firstaroundadvice is a non existing pcd, which defines the
execution of the most dominating around advice at this pointcut.
We may drop this coding convention as soon as we have a
pointcut discriminator for advice and a more powerful advice
precedence concept.

Additional we did not permit the use of cflow-pointcuts, if the
flow of execution leaves the actual compilation unit, in which
some of the pointcuts are defined. We emulate the behaviour
with (thread) local variables and if-pointcuts.

In addition, pointcut declarations should not rely on coding
conventions. We recognized that for large-scale projects and
application, with a great amount of legacy java-code, the coding
conventions are not as reliable and consistent as required for the
use in pointcuts. In our projects, this was caused mostly by
different coding conventions in different technologies, (e.g.
difference of mapping of attributes, Java-CORBA binding [15]
vs. java-Beans), changing style guides and change of knowledge
of the developer over the time.
Pointcuts, which are used in advices, shall be as restrictive as
possible and reasonable.
In addition, we do not permit advice on global pointcuts which
use patterns in a way that may result in a globally matching
pointcut. These types of pointcuts are only allowed for declare
error and declare warning. Each non-excluding pointcut
declaration, used in a pointcut, must be narrowed by a class, or a
package. The debugging overhead of accidental joinpoint
clashes resulting in wrongly “advised” code, outweighed the
benefits from the automatically fitting to newly added code in
other modules.
As an example, the advice
before(): call(* *(..))&&!within(A){

System.out.println("before");

}

must be written as
before(): call(* MyObject.*(..)){

System.out.println("before");

}

to avoid potential double advice recursion.
In addition, we limited the use of the body of advice. The body
of advice should contain as little code as possible. All this code
should be refactored to functions of the aspect. This offered us
the possibility to advise the body of the advice. So changes
could be performed more easily and different concerns, which
crosscut advice, could be separated more easily. We may drop
this coding convention as soon as we have a pointcut
discriminator for advice.

Advice that must be woven to multiple classes in different
packages is defined in an abstract aspect, where each abstract
aspect implements at most one concern. The advice is bound to
abstract pointcuts. The abstract pointcuts are made concrete in
final aspects - each of them containing only the pointcuts for one
specific module, which implements one business concern.

During our first AspectJ-based project, we recognized that most
of our aspects were advising the same pointcuts, so we traded
initially tangling code against tangling pointcuts. We believe
now, that tangling pointcuts are not better than tangling code.
We recognized soon, that the joinpoints, which were captured by
the tangling pointcuts, reference specific architectural places,
e.g. methods, which are exposed to or using Vitria. All of these
tangling pointcuts have been refactored according to our style
guide.
This required the creation of one aspect for each module of a
business concern, which defined all relevant architectural
pointcuts of this business concern. Each of these aspects had
only public atomic pointcuts. We call these aspects reference-
aspects and the pointcuts reference-pointcuts.
This also required, that the pointcut declarations of the concrete
sub-classed aspects were changed to reuse as many of the
pointcuts of the reference aspects as possible.
With this concept, we could eliminate tangling pointcuts and
tangling code. We are only left with tangling aspects, but this is
at least a magnitude better than tangling code.
If we re-factor code, e.g. we rename a method, we have now
only to update the relevant reference-aspect. We hope for
extensible pointcuts as proposed on the AspectJ mailing list,
because this approach would eliminate also the tangling aspects.

5. Missed Language Features in AspectJ 1.0
The projects were based on the language specification from
AspectJ 1.0. This version lacks several features, which would be
quite useful for this job. The AspectJ-team plans to address
several of this features in AspectJ 1.1 and they are currently
heavily discussed on the AspectJ mailing list [2]. We feel that all
of these issues are in the composition of advices.
A big obstacle is the current dominates precedence rule. With
dominates alone, a very concrete aspect cannot specify, that it
should be dominated by a very general aspect. For example,. an

observer-aspect must be dominated by a general transaction
handling aspect. As a result of this the general aspect must
specify that it dominates the very concrete aspect, which violates
the need to know principle.
We missed a pointcut descriptor for advice. Several advice-
bodies should be advised for a clean design. We could use our
coding style guides as a workaround of this missing language
feature for before and after advice. Around-advice caused us the
biggest trouble. We could inline them manually, which breaks
the concept of separation of concerns, or we had to emulate
them with dominating advice. The approach with dominating
advice resulted in tangling pointcuts or tangling aspects.
The lack of extensible pointcuts forced us to emulate that feature
with abstract aspects and concrete aspects, which contain only
pointcuts. Our codebase showed us that an aspect language with
both of these concepts, extensible pointcuts and abstract aspects,
would be better.

6. Adjusting the Development Activities and
Process
As in all of our current AspectJ based projects, we faced the
same general early adopter obstacles. We had to adjust the
development process to cover several of these obstacles and had
good workarounds available for most of the issues. Most of the
remaining obstacles are early adopter tooling and language
feature issues, which we have already discussed. We are quite
sure they will be fixed as the tools and the language matures.
Several may be already fixed when this paper appears.
One of the biggest obstacles we faced in the past is the lack of
good non-trivial examples, good articles and books, education
programs and training courses. The number of good examples
increases through the ongoing projects. We kept a sample
reference file, where we listed locations in our code base, which
were simple and declarative enough to work as good samples.
Additional good samples were the test cases, which tested the
functionality of the aspect.
As soon as we have identified a new and interesting use of an
aspect, we created a short talk, which covered that usage idiom.
We named them communication units. As new members entered
the team, we just “replayed” a selection of the most used and
most important communication units. As a result, we had our
developers up to speed in a very short timeframe, based on the
individually tailored training and mentoring courses. Several
communication units helped us to identify and separate general
non-functional requirements, inside the process flow of the
common shared data model. The most famous ones were for
asynchronous acknowledgement, and for error messages. These
crosscutting concerns could only be modularised by a very
dense combination of object-oriented patterns and aspect-
oriented idioms. For each new type of combination, we created
internally a new communication unit.

The increased understanding about aspects, the new idioms and
their applications was necessary to overcome the lack of a good
debugger. Debugging aspect-object interactions was and is the
greatest challenge during the development process.

Many of the problems we encountered arose from the incorrect
application of advice. E.g. a wrong order of advice at a specific
set of pointcuts, an advice was weaved at code fragments, where
it should not, or missing advice caused by wrong pointcut
descriptions. The rest were conflicting behaviour of aspects and
objects at some specific pointcuts.
Developing, debugging and testing a concern were simple and
easy. In addition, the separation of concerns was finally simple
enough. The biggest challenge was the assembly of all the
different concerns. We feel a need to officially keep track of
when, how and by whom the different concerns should be
integrated. We have a great need for simple to use diagrams,
which can easily represent and list the interactions of the
concerns, in a non-tangling way. We would like to use these
diagrams to document and track the integration.

Standard refactoring activities required slight modification to the
classical refactoring process defined by [3]. After the developer
knows which code fragments he or she wants to re-factor, the
programmer asks the ajcbrowser (integrated in his IDE) how the
code is influenced (and by which) aspects. After the re-factoring
he compiles the codebase and verifies manually with the help of
the ajcbrowser, that all influences are still the same, if they differ
he has to fix some of the pointcut declaration. For instance, to
ensure that no advice is lost or duplicated. We wish for more
sophisticated tool support here. We want an aspect aware re-
factoring browser.
Summing up, our main modification to our current process was
an extensive emphasis on coaching, training and pattern/idiom
hatching.

7. Results, Conclusions, and Next Steps
We could modularise and separate all non-functional concerns
regarding the integration of a large-scale enterprise application
into an EAI scenario by the joint application of OOP and AOP.
This approach was a total success. The number of required lines
of code for these EAI tasks was approx. 95% less than on
previous projects, which had a comparable complexity and used
only object oriented techniques. Additionally the non-functional
requirements were more significantly fulfilled. For example, the
downtime of the EAI bridge could be reduced by a factor of 100
with the AOP solution and the performance increased by a factor
of two. We could reuse most of the abstract library aspects
between the two projects. Despite the expensive coaching and
idiom hatching activities, we needed only one quarter of the
time than comparable projects, with equal developer resources.
We are confident that the realisation time can be still reduced
approximately by a factor of four, if there is no need for
additional education and the integration aspect library is in a
final state.
We currently recommend strongly having an AOP experienced
developer on board for mentoring and training activities.
We concluded that the current EAI integration approaches
require AOSD for successful and efficient EAI projects. We
expect that the approach of this paper will also work with other
GPAL, e.g. Hyper/J [5].

We also suspect, that there are many crosscutting concerns in
current EAI architectures, and shared object models. We believe
that these crosscutting concerns can be modularised by AOP.
This would enable a new breed of EAI architectures and EAI
products.

8. Biography
Arno Schmidmeier is Chief Scientist at Sirius Software GmbH,
where he is responsible for the commercial adoption of new
technologies like AOP. He and his team has successful deployed
several large-scale projects based on AspectJ. He and his team
offer consulting services for use and introduction of AspectJ in
commercial projects.
He is an independent expert on JSR 90 and represents Sirius
Software in the TeleManagement Forum.

9. Literature
[1] AspectJ Team, The AspectJ Programming Guide,

http://AspectJ.org/doc/dist/progguide/index.html ,
September 2002

[2] AspectJ-mailinglist, http://aspectj.org/pipermail/users
[3] Martin Fowler, Kent Beck, John Brant, William

Opdyke, Don Roberts, Refactoring, Addison-Wesley,
1999

[4] Gamma, E., Helm, R., Johnson, R., Vlissides, J.
Design Patterns, Addison-Wesley, 1995

[5] HyperJ, http://www.research.ibm.com/hyperspace ,
Dezember 2001

[6] ILOG Rules, http://www.ilog.com/products/rules ,
October 2002

[7] Java Specification Request 89, OSS Service
Activation API

[8] Java Specification Request 90, OSS Quality of
Service API

[9] Java Specification Request 91, OSS Trouble Ticket
API

[10] Java Specification Request 142, OSS Inventory API
[11] Java Specification Request 144, OSS Common API
[12] Kiczales, G., Lamping, J., Mendhekar, A., Maeda,

Ch., Lopes, Ch.V., Loingtier, J.-M., Irwin, J., Aspect-
Oriented Programming, in: Proceedings of ECOOP
1997, Jyväskylä, Finland, June 9-13, 1997, pp. 220-
242, in: Lecture Notes in Computer Science, vol.
1241, Springer, 1997

[13] Martin E. Nordberg, Aspect-Oriented Dependency
Inversion, Workshop on Advanced Separation of
Concerns in Object-Oriented Systems at OOPSLA,
2001

[14] OMNIORB Team, http://omniorb.sourceforge.net/,
October 2002

[15] OMG, IDL to Java Language Mapping Specification
Version 1.2, August 2002

[16] EOS Monitor Units, http://www.sirius-eos.com,
October 2002

[17] TeleManagement Forum, http://www.tmforum.org ,
October 2002

[18] TeleManagement Forum 2002, TMF 053 v2.5: TM
Forum NGOSS Technology Neutral Architecture

[19] TeleManagement Forum 2001, TMF 055 v1.5
NGOSS Phase 1 Technology Application Note –
CORBA

[20] TeleManagement Forum 2001, TMF 057v1.5
NGOSS Phase 1 Technology Application Note –
XML

[21] TeleManagement Forum 2002, TMF 837 Service
Level Management for Wireless IP, Interface
Implementation Specification

[22] Vitria BusinessWare,
http://www.vitria.com/products/platform, October
2002

