
public class Square in Geometry {

* in Geometry;

private int x, y, s;

public Square(int x, int y, int s) {
this.x = x; this.y = y; this.s = s;

}

*(..) reads Geometry;

public void move(int dx, int dy) writes Geometry {
this.x += dx; this.y += dy;

}

public int getX() {
return x;

}

public void setX(int x) {
this.x = x;

}

…
}public aspect Colorize in Appearance {

private Color Square.col in Appearance;

public void Square.setColor(Color c)
writes Appearance

{
this.col = (Color) c.clone();

}

public Color in Appearance Square.getColor()
reads Appearance

{
return col;

}

public void Square.shadeOnPosition() {
int pos = this.getX();
…

}

…
}

public aspect Renderer in Display {

private pointcut inPlaceAppearanceChange():
callWriter(Appearance) && !callWriter(Geometry);

private pointcut shapeChange():
callWriter(Geometry);

void after() reads Geometry, reads Appearance, writes Display:
inPlaceAppearanceChange()

{
// Re-draw just the changed object
…

}

void after() reads Geometry, reads Appearance, writes Display:
shapeChange()

{
// Re-draw all objects
…

}

void before(): execution(* Square.get*(..)) {
…

}
}

concerned with Geometry, Appearance;

public class Client writes Geometry, writes Appearance {
…

Square sq;
…
sq.move(2,2);
sq.setColor(Color.RED);

Window w;
…
w.draw(…);

…
}

Solution Sketch

Supported by NSF grants
CCR-0097907 and CCR-0113181.Made on a Mac.

Central Questions

Are annotations for modeling concerns a
useful mechanism for:

• communicating intent to later readers?

• automatic, static detection of
mismatches between intent and
implementation?

• more abstract pointcut specification?

Motivation

Traditionally type annotations have:

• conveyed meaning to readers of code

• allowed static detection of errors

• helped languages’ scalability

Recently type annotations have:

• allowed static detection of race
conditions

• helped control aliasing

Objectives

Introduce annotations that:

• make aspect-oriented programs, and
their intended separation of concerns,
easier to understand

• provide immediate benefit to
programmers

Technical Approach

Language and type system design:

• develop MAO, a Modular Aspect-
Oriented programming language

• target the Java Virtual Machine,
interoperate with Java libraries

• include advice, dynamic join points,
and open classes

• use a module interconnect language

Prototype tool implementation:

• extend the Polyglot framework using
MultiJava

• use AspectJ for back-end weaving

Formal type system soundness:

• design the MiniMAO core calculus

• based on Jagadeesan, et al., 2003

Evaluation:

• perform small case studies exploring a
variety of aspect-oriented idioms

• develop a large application using the
language and techniques

All instances are in the
Geometry domain

All fields are in the
Geometry domain

All methods read the
Geometry domain

This method writes the
Geometry domain

Rejected! Method
doesn’t declare that it
writes the Geometry

domain

Objects augmented by
this aspect are in the
Appearance domain

Augmenting field is in
the Appearance

domain

Argument not in
Appearance domain,
clone is required

Return value in
Appearance domain,
clone is not required

Rejected! Method
doesn’t declare that it
reads the Geometry

domain

Matches calls to
methods that write to
Appearance but not

Geometry

Matches calls to
methods that write to

Geometry

Specifies domains
affected by advice

body

Regular AspectJ
pointcuts are allowed

All aspects related to
Geometry and

Appearance are
loaded.

Display updating is
oblivious and is woven
based on module-level
build files or compiler

arguments.

OK! Client writes
Geometry

Rejected! Client
doesn’t write Display

Q: Isn’t this tangling?
A: No, Client is already
directly manipulating

Geometry and Appearance

Q: How is this different
than named join points?
A: Annotations are used for

verifying method intent.

Q: How is this different
than data groups?

A: Domains can cross-cut the
dominant decomposition.

Q: Aren’t these
annotations a lot of

extra work?
A: Annotations aren’t

required; more annotations
allow more static checking.

Domains of Discourse: Concern Annotations for Program Understanding
by Curtis CliftonDepartment of Computer Science

cclifton@cs.iastate.edu
http://www.cs.iastate.edu/~cclifton

Key Ideas

• Use named domains of discourse to
describe subsets of memory

• Use type system to statically check
domain confinement

• Add join points based on domain
access

Q: How is this different
than ownership types?

A: Domains can cross-cut the
dominant decomposition.

