IOWA STATE UNIVERSITY

Department of Computer Science

Central Questions

Are annotations for modeling concerns a
useful mechanism for:

e communicating intent to later readers?

e qutomatic, static detection of
mismatches between intent and
implementation?

e more abstract pointcut specification?

Motivation

Traditionally type annotations have:

e conveyed meaning to readers of code

e allowed static detection of errors

e helped languages’ scalability
Recently type annotations have:

¢ allowed static detection of race
conditions

e helped control aliasing

Objectives

Introduce annotations that:

e make aspect-oriented programs, and
their intended separation of concerns,
easier to understand

e provide immediate benefit to
programmers

Domains of Discourse: Concern Annotations for Program Understanding

by Curtis Clifton

Solution Sketch

All instances are in the
Geometry domain

All fields are in the
Geometry domain

Q: How is this different

than data groups?
A: Domains can cross-cut the

dominant decomposition.
T

All methods read the
Geometry domain

This method writes the

Geometry domain
public class Square in Geometry {

* in Geometry;

Q: How is this different

than named join points?
A: Annotations are used for
verifying method intent.

private int x, y, s;

public Square(int x,
this.x = x;

int y, int s) {
this.y = y; this.s = s;

} Matches calls to

methods that write to

Appearance but not
Geometry

Rejected! Method
doesn’t declare that it
writes the Geometry

domain }

*(..) reads Geometry;

public void move(int dx,
this.x += dx;

int dy) writes Geometry {
this.y += dy;

public int getX() {
return x,;

Objects augmented by)
this aspect are in the
Appearance domain

public aspect Renderer 1in Display {

pUhT*r void <etX(int x) { privn+p nointcitt inPlaceAnnearanceChanoe()

this.x = x: ca11Wr1ter(Appearance)'&& !callWrité}(Ceometry) AAaujweS(xﬂlsfo
} methods that write to
private nointcut shaneChange(): Geometry

: : — callWriter (Geometry);
Augmenting field is in (y)

the Appearance
domain

public aspect Colorize in Appearance { void after() reads Geometry

inPlaceAppearanceChange ()

{
// Re-draw just the changed object

reads Appearance, writes Display:
private Color Square.col in Appearance;

public void Square.setColor(Color c)
writes Appearance

}
{
: this.col = (Color) c.clone();
Argument not in)

Appearance domain, _ | {
: : public Color 1in Appearance Square.getColor ()
clone is required

reads Appeaiance
{

void after() reads Geometry,
shapeChange ()

reads Appearance, writes Display:

Specifies domains

affected by advice
body

// Re-draw all objects

return col; }
s void before(): execution(* Square.get*(..)) {

: -

1

concerned with Geémetry, Appearance;

Return value in
Appearance domain,
clone is not required

public void Sauare.shadeOnPosition() {
int pos = this.getX();

: ”

public class Client writes Ceometry, writes Appearance {

Regular Aspect]

Square sq; pointcuts are allowed

sg.move(2,2);
S¢g.s<tCoioi (Color.RED);

Rejected! Method
doesn’t declare that it
reads the Geometry
domain

Q: How is this different

than ownership types?

A: Domains can cross-cut the

dominant decomposition.
e —

Window w;

Q: Aren’t these
annotations a lot of

extra work?
A: Annotations aren’t
required; more annotations

allow more static checking.
T

All aspects related to
Geometry and

Appearance are
loaded.

w.draw(..);

OK! Client writes
Geometry

Q: Isn't this tangling?
A: No, Client is already
directly manipulating

Geometry and Appearance
T

Display updating is
oblivious and is woven
based on module-level
build files or compiler

arguments.

Rejected! Client
doesn’t write Display

r
. Made on a Mac.

Supported by NSF grants
CCR-0097907 and CCR-0113181.

cclifton@cs.iastate.edu
http://www.cs.iastate.edu/~cclifton

Key Ideas

e Use named domains of discourse to
describe subsets of memory

e Use type system to statically check
domain confinement

e Add join points based on domain
access

Technical Approach

Language and type system design:

e develop MAO, a Modular Aspect-
Oriented programming language

e target the Java Virtual Machine,
interoperate with Java libraries

e include advice, dynamic join points,
and open classes

e use a module interconnect language
Prototype tool implementation:

e extend the Polyglot framework using
Multijava

e use Aspect] for back-end weaving
Formal type system soundness:

 design the MiniMAO core calculus

* based on Jagadeesan, et al., 2003
Evaluation:

e perform small case studies exploring a
variety of aspect-oriented idioms

e develop a large application using the
language and techniques

