Applying Aspectd to J2EE Application Development
Nicholas Lesiedi

VMS

5151E. Broadway, Ste. 155
Tucson, AZ85711
520202-3119

ndlesiecki /at/ ap ache /d/o/t/ org

ABSTRACT

This report focuses on the application of Aspect] to the
development of a J2EE web application for Video Monitoring
Services of America (VMS). Aspects were used to cleanly
modularize concerns ranging in scope from auxiliary (error-
handling) to application-specific (shopping basket price
calculation) to framework-level (object relationship
management). VMS saw benefits resulting from the aspect-
oriented implementation of these concerns in the areas of code
size, understandability, and reduced defects. This report will
detail specific areas to which Aspect] was applied, the
development team’s reaction to the new technology, strategies
employed to ease adoption, and some of the pitfalls
encountered when using the development tools.

Keywords

Aspect-orientation, Aspect], XP, Extreme Programming, -ilities

1. INTRODUCTION

In January 2004, Video Monitoring Services of America (VMS)
began to investigate the adoption of Aspect] into the
development of their J2EE-based application, Adbase. Adbase
supplies a web-based search and ecommerce interface on
VMS’s library of advertising data. In many ways, it might be
regarded as typical of J2EE application development. It uses a
wide range of J2EE technologies, both commercial (e.g.
Weblogic’s EJB and Servlet implementations) and open source
(e.g. Hibernate and Tapestry). The Adbase team varied from
four to seven full-time developers during the time frame
covered by this report. We follow a modified version of
Extreme Programming (XP) with a focus on emergent design
and adherence to the code-level practices of XP (such as
programmer testing and pair programming). As Principal
Engineer of the project and coauthor of Mastering AspectJ [1],
I championed the investigation and subsequent adoption of
AOP.

This report will first discuss examples of concerns
successfully modularized with Aspect), and discuss some of
the benefits observed as a result. The first example covers a
common auxiliary concern handled with aspects: improved
error logging. In the second example, the report describes an
application-specific aspect typical of Adbase: dynamic
repricing of a shopping basket after a change to its contents.
The final example covers VMS’s most sophisticated aspects:
those that manage bidirectional relationships between
persistent objects.

The rest of the report will focus on the issues surrounding the
adoption of AOP into the team’s development process.

Because AOP allows modules to affect the behavior of other
modules transparently, two perceived risks of AOP adoption
are loss of comprehensibility and unexpected side effects. We

managed these risks by drawing on the strengths of our
established development processes: testing and pair
programming.

A key challenge to our adoption has been tool support. We
spend most of our development time incrementally changing
code, compiling, testing, and changing again. The long
compile times typical of Aspect] development disrupt this
cycle and lower hour-to-hour productivity. Furthermore,
Aspect] IDE support for concerns such as refactoring lags
behind pure Java support.

Although not a major concern, the Adbase team did encounter
some incompatibilities between other tools and Aspect). This
report documents those problems.

Despite these caveats, the Adbase team in general regards
Aspect] as successfully integrated into both the application
and our development process.

2. APPLICATIONS
2.1 Error Logging

Our investigation of Aspect] began with a typical “first use”.
Our application had been plagued by poor exception handling
in a third party library. Our problem was code of the following
form:

public void evaluate(String arg) throws

JspException{

try{
useReflectionToCallIntoApplication(arg);

}catch(Exception e){

throw new JspException(e.getMessage());

}

(Note that this is pseudocode.) This type of handler block
discards the stack trace from the underlying exception, leaving
application developers mystified about the original cause.

The Adbase team decided to use the bytecode-weaving
capabilities of Aspect] to advise handler blocks of this type.
Because the offending library was open source we could have
patched the library to correct the offending handlers. However,
we would then face a choice between submitting the patch and
ensuring our code was general enough to serve all clients of
the library and maintaining our modifications as new versions
of the library were released.

To improve the error behavior we crafted a pointcut to identify
handler blocks in an area of the code that we knew from
experience was troublesome. Then we added before advice to
log the exception “argument” to the handler block. Writing an

ant script to automate the weaving of the library took less than
an hour.

Although this implementation fulfilled our needs, it did bring
us into contact with one of the implementation limitations in
the ajc compiler. The end of a handler block is indeterminate in
bytecode. Because of this, ajc does not allow after or around
advice to be applied to handler join points. [2] This limitation
stymied several attempts to make the aspect more
sophisticated (techniques were possible with Aspect] 1.0). For
instance, if handler join points supported after advice, it
would be easy to hold a reference to the original exception and
subsequently attach it (using Java 1.4 exception-chaining) to
a newly thrown exception. Despite this limitation, the team has
since revisited the error-logging aspect and added similar
behavior by using percflow aspects and heuristics about the
likely source of an exception.

2.1.1 Analysis of Impact

The net effect of our first aspect was positive. Errors that
formerly required a trip to the debugger or careful analysis of
the source code were solved in a matter of moments once we
saw stack trace information in the application log. The
exposure to Aspect] in this limited context encouraged the
team to explore further.

2.2 Application-specific aspects

After the successful investigation above, the Adbase team
experimented with other auxiliary aspects (e.g. for gathering
quick-and-dirty performance statistics). Finally, after formal
presentations to the team about AOP and Aspect], we agreed to
add Aspect] to our development process with a pilot aspect.
The aspect was deliberately limited in its scope, because we
wanted the ability to reincorporate a traditional
implementation of the feature should the experiment prove
unsuccessful. This aspect managed the qualification of new
data by an administrator, and also the corresponding
suspension of automated processing of that data. Although we
encountered some challenges, the pilot was a success and the
aspect became the first of many limited-scope, application-
specific aspects that we wrote in the following months. While
aspects are frequently touted for their utility at modularizing
widely crosscutting concerns (such as security or transaction
management) we have derived significant benefit from using
them in areas where only a few classes or join points are
affected.

2.2.1 Basket Repricing

A good example of such an aspect is the one we wrote to
handle the dynamic repricing of an online shopping basket in
response to changes on it’s content or to its delivery options.
Basket pricing in Adbase is complex. Different charges apply
to items, groups of items, and the order as a whole. Some
charges depend on the presence of other charges. A change to a
setting in one part of the basket can require the recalculation
of the price of items in another part. Since so many operations
and objects can impact the chargeable state of the basket, we
decided to that repricing was a clear crosscutting concern.

The aspect we chose to implement operates by tracking state
changes with a dirty flag. Any operation that can affect the
price of the basket sets the flag. Then, before a client reads
pricing information from the basket, the aspect reprices the
basket and clears the flag.

The aspect selects dirtying operations with pointcuts like the
following:

pointcut basketChange (ShoppingBasket basket):
(execution(public void
addItem(ShoppingBasketItem, ..))
|| execution(public void remove*(..))

) && this(basket);

pointcut groupChange (ShoppingBasketGroup group):
(execution(public void setDeliveryMedium(..))
|| execution(public void setCopies(..))

) && this(group);

Then it uses an inter-type field and advice to mark the basket
dirty after each state change:

private boolean ShoppingBasket.isDirty = false;
after(ShoppingBasket basket) returning :
basketChange (basket)

basket.isDirty = true;

Next, it selects operations that represent reads of the basket’s
pricing state:

pointcut chargeableReads() :
(execution(
public * Chargeable+.getCharges(..))
|| execution(
public * Chargeable+.getTotalCharge (..))
| |execution(
public * Chargeable+.hasCharges(..))

) && !cflow(execution(public * Pricer.*(..)));

Each of the components of the cart that can receive charges
implements the Chargeable interface. (Chargeable is actually
what we term an “Aspect] Interface,” an interface with concrete
behavior supplied by inter-type declarations.) This interface
makes it easy to pick out reads across three different classes.
Note that the pointcut excludes reads that happen during the
flow of execution of methods in the Pricer object. This
prevents a recursive call to the advice during repricing.

Finally, the aspect uses this pointcut with before advice to
reprice the whole basket before each read operation:

before(ShoppingBasket basket)
chargeableReads () && this(basket)

priceAndClean (basket);

private void priceAndClean(ShoppingBasket
basket) {

if (basket.isDirty){
pricer.price(basket);

basket.isDirty = false;

}

We validated the aspect’s effects with an integration test that
modified the ShoppingBasket and its contents, and then
checked that prices arrived at expected amounts after each
change. This test gave us the confidence to refine and refactor
the aspect to arrive at the optimal design.

2.2.2 Analysis of Impact

I would list this aspect as one of the clearest successes of
application-specific aspects in Adbase. Because of it, and the
aspect that implements Chargeable, ShoppingBasket and its
associated items contain almost no code related to pricing.
This allows them to better represent their primary role (a
structured collection of items for purchase). It also allows
developers to reason about and evolve the pricing/repricing
behavior in isolation, without having to inspect and/or
modify the various price-triggering events.

By separating pricing logic, the aspect solution added
extensibility and composability to the basket package.
(Alternative pricing strategies could be swapped in with fewer
changes to the code.) Further, we could tell that the codebase’s
agility had increased. Because price refresh strategies that
touched a dozen or more operations could be implemented
easily in a single location, we felt free to experiment with
alternative designs.

Another benefit of using aspects for repricing logic became
apparent on inspection of the code in preparation for
publication. The sophistication of the cflow pointcut allows
the expression of complex conditions for the execution of
code. Excluding reads that happen during pricing would have
been an awkward task without the use of
Icflow(execution(public * Pricer.*(..))).

2.2.3 Thoughts on Obliviousness and Evolution
Reduction in tangling represents a key value proposition for
AOP. By removing non-core behavior from a class to an aspect,
one can free developers using the class from having to think
about the removed, non-core behavior. However some
problems qualify this promise of obliviousness. We
encountered a few while developing the ShoppingBasket.

First, as developers added new operations that required
repricing, they had to modify the aspect to cover these new
join points. In an ideal world, as a module evolved, all aspects
that affected it would display robustness: their pointcuts
would match new operations automatically and track
refactorings to existing operations. However, Aspect] is not
currently ideal, and it may never be completely ideal in this
sense. (See section 5.4 for thoughts on refactoring support in
existing tools.)

We could have gained some ground in this area without
changing the tools or the language. Some simple refactorings,

such as using execution(void ShoppingBasket+.remove*(..))
instead of enumerating specific methods, could have increased
the robustness of the aspect if they had been applied sooner.
Best practices for writing robust pointcuts are evolving [3]
and it’s clear that robust pointcut authorship will represent a
core competency for aspect-oriented developers.

Also, it became clear that, although not everyone on the team
needed to know how, say, the pricing aspect worked, they did
need enough tool support (and awareness) to quickly
investigate whether and how an aspect might be affect a given
piece of code.

Both of these concerns promise to be ameliorated by the
addition of metadata support in Aspect] 5.0. The ability of
pointcuts to match on annotations would have allowed
pointcuts like:

pointcut pricingChange():

(execution(@AffectsPricing *

*(-2)));

Annotations such as @AffectsPricing could be useful
when there is no inherent common property of the affected
operations for a pointcut to use. Furthermore, the presence of
the annotation on some methods in a class could cue
programmers to add the same annotation to new methods that
changed pricing information. However, annotations do not
represent a silver bullet. Ramnivas Laddad’s article on AOP
and metadata [7] explores this space more thoroughly than is
possible here.

2.3 Reusable aspect libraries (Relationship

management)

The most advanced set of aspects developed by the Adbase
team came in response to a widespread crosscutting concern.
At the time we wrote the aspects, we were transitioning to a new
persistence solution. We had abandoned EJB’s Container
Managed Persistence in favor of the lighter-weight Hibernate.
Unfortunately, during the changeover, we discovered that
Hibernate lacked the container-managed relationships that we
had begun to take for granted with CMP. The thought of
having to refactor our code to manually implement this
concern made us willing to invest some time in an aspect-
oriented solution.

The feature that was missing from Hibernate is what we termed
“bidirectional relationship propagation.” Figure 1 shows a
model of two persistent objects in a typical relationship.

If the model in Figure 1 were implemented in pure Java code,
calling ‘child.setParent(someParent)’ on the child would not
have any particular effect on someParent’s children collection.
In an EJB container, if the container managed the relationship,
calling ‘child.setParent(someParent)’ would result in the
equivalent of a call to ‘someParent.getChildren().add(child)’.
The container would propagate the link to the other side of the
relationship. This would make the relationship navigable in
both directions. While Hibernate does this as it reads the
objects from or writes them to the database, it does not
propagate the relationship during the object’s general use by
an application.

The core of our solution was simple, but a complete
implementation that adequately addressed all of the
dimensions of the problem required several iterations of
development. During the implementation of the solution, we
relied on our suite of integration tests (developed while we

Parent

Child

+getChildren () : Set gt

+setParent (Parent)
+getParent () : Parent

Figure 1. Model of persistent objects in a relationship

were relying on Weblogic’s relationship management) to
assure us that we had replicated the parts of the behavior that
our application depended on.

2.3.1 Alternatives

Using aspects to address a weakness in or to extend an
existing application or framework raises questions: Is there
another way of using the framework that provides the same
result? Would it be a better idea to modify the framework
directly? In our case, we discerned from Hibernate’s
documentation that the preferred solution to our problem was
to write code in each relationship setter to traverse and
propagate the relationship. This was exactly what we hoped to
avoid. Second, extending or patching Hibernate presented
problems. It was our persistent objects whose behavior needed
modification (Hibernate already “did the right thing” when
loading the objects). A future version of Hibernate or an
alternate persistence framework might have held out hope, but
had already invested in Hibernate. We decided that if the
aspect solution could be tested and deployed in under two
weeks, we would stick with it.

2.3.2 Updating Parent’s Children

We began our implementation with one half of the desired
behavior. In order to automatically add a child object to a
parent’s collection after a call to ‘setParent()’, we first had to
identify the “setParent” join points. To do so, we wrote the
pointcut in Figure 2. The pointcut explicitly assumes that a
method call signifies the start of a relationship if it meets
these three criteria: 1) it begins with the letters “set” 2) the
target of the method call implements our application’s

public aspect RelationshipManagement ({

/...

Persistent interface 3) the sole argument is also a Persistent.
The pointcut exposes both the target and the argument object
for use within the advice. Because the pointcut relies on an
identifier pattern, we accepted the risk that the pointcut might
match join points incorrectly (e.g. Account.settle(Account)).
We judged this risk to be acceptably low because of the
limiting effect of the other join point criteria.

The advice in Figure 2 extracts the name of the setter method
using the implicit thisJoinPointStaticPart object. The advice
then delegates to a static helper class that navigates the
metadata provided by Hibernate. The helper class retrieves the
“children” collection and adds the child object (referenced in
Figure 2 by self) to that collection. The logic was localized in a
helper class because it seemed beneficial to split the definition
of the crosscutting structure into one module (the aspect)
while allowing the details of Hibernate metadata traversal to
reside in another. This allowed for easier testing of the corner
cases of metadata traversal since the helper class could easily
be fed the appropriate arguments. This decision reduced
compilation time. Because a change to an aspect requires a full
build (see section 5.3), splitting the implementation allowed
us to change the traversal logic without giving up incremental
compilation.

2.3.3 Updating Child’s Parent

Of course, this aspect only solved half of the core issue. We
also needed to detect and propagate relationships that
occurred through modification of a parent’s children
collection. In order to detect these join points, we needed some
way of identifying a children collection returned by a parent.

pointcut setToOne (Persistent self, Persistent other)
call (void set* (Persistent+)) && target(self) && args(other) &&

managedRelationshipAccess(); //restricts scope of pointcut

before (Persistent self, Persistent other)

String methodName =

setToOne (self, other) {

thisJoinPointStaticPart.getSignature () .getName () ;

BidirectionalRelationHelper.reciprocateToOne (

StringUtil.methodNameToPropertyName (methodName) , self, other);

Figure 2. A pointcut and advice that implement part of the bidirectional relationship behavior

We chose to do this by wrapping the returned collection in a
decorator that delegated its methods to the original collection.
This gave us a convenient way of writing pointcuts that
detected modifying operations on the returned set. Again, we
select relationship getters with a pointcut based on a
combination of name and type information. The aspect then
uses around advice to modify the return value of the affected
join points (the original collection is obtained through a call
to proceed()). The after returning advice shown in Figure 3
typifies the decoration logic. The advice inspects the return
value of add(). If the addition was successful, it uses the helper
class to propagate the relationship.

2.3.4 Severing Relationships After Deletion

After we implemented the aspects described in the previous
two paragraphs, we encountered a set of test failures. If the
application deleted a child object, Hibernate expected the
application to remove it from the parent’s collection. So we
added another dimension to our solution. To detect deletion
events, we wrote a pointcut that made use of a marker interface
supplied by Hibernate. By writing the pointcut in terms of the
Lifecycle.onDelete() method, we leveraged Hibernate’s
definition of a deletion event. After each such event, our aspect
delegated to the helper class to iterate over all of the doomed
object’s persistent relationships and remove the dying object
from them.

This simple solution hit upon a snag, however. Hibernate, like
other ORM frameworks, manages cascade deletions. If our
severing aspect affected a relationship in the middle of a
cascade deletion, Hibernate would detect the condition and
throw an exception. In order to exclude cascade deletions, we
used a percflow aspect to retain state for the entire control flow
of an object deletion. The aspect stored a set of already-deleted
objects and passed this set to the helper class. The helper
would then decline to sever a relationship to an object that had
already been deleted. The code for this aspect appears in Figure
4.

2.3.5 Analysis of Impact

To gauge the impact of this aspect on the Adbase project, |
gathered some metrics with the help of the crosscutting
structure viewer. Hibernate persists sixty-three classes in the
project. Those classes contain 42 methods of the form
child.setParent() and 39 of the form parent.getChildren(). In
addition, there are 11 relationships managed through primary
key components (another dimension to our solution not
covered here). These metrics give a sense of the impact of the
aspects. Implementing the solution by manually inserting a
call to the relationship helper would have involved
modifications to 92 disparate sites. It’s not hard to imagine
the team missing 5 or 10 sites and stumbling across a bug later
on. Thus the aspects could thus be said to improve the
maintainability of the system.

Without the tangled calls to the bidirectional relationship
helper, the persistent objects are easier to read and understand.
(Thus the aspects add understandability.) 1t’s possible for a
developer to program Hibernate-enabled objects that
participate in bidirectional, automatically severed
relationships with no special effort. Of course, this benefit is
most useful when programmers are sufficiently aware of the
aspect to be unsurprised by the additional behavior. Because
these (and other Hibernate aspects) are so pervasive, they are
frequent causes of the “aspects as a red herring” situation
described in section 3.2.

2.3.6 Reusable Aspect Libraries

Because the Hibernate relationship management aspects apply
to objects that implement the Persistent interface, it would be
easy for VMS to turn the aspects into a reusable library. This
step has been planned for internal use, and VMS has also
considered donating the aspects to open source.

2.4 Overall Analysis of Impact
VMS does not use a formal code review process. Instead we
rely on as-needed flagging and review as pairs encounter code

pointcut persistentSetAccess (Persistent self)

call(java.util.Set Persistent+.get*())

&& target(self) && managedRelationshipAccess() ;

java.util.Set around(Persistent self)

persistentSetAccess (self) ({

String methodName = thisJoinPointStaticPart.getSignature () .getName () ;

String propertyName = StringUtil.methodNameToPropertyName (methodName) ;

return new RelationshipAwareSet (propertyName, self, proceed(self));

//pointcut relationshipAdd() not shown

after (RelationshipCollectionDecorator self, Object o)

returning (boolean added)

relationshipAdd (self, o) {

//'source’ is a reference to the originating object (stored by the decorator)

if (added) {

BidirectionalRelationshipHelper

.reciprocateToMany (self.propertyName,

self.source,

(Persistent)o, true);

public aspect RelationshipSevering percflow(call (* Session+.delete(..))) {

private Set otherObjectsBeingDeleted = new HashSet();

pointcut onDelete (Persistent objectBeingDeleted)

execution (public boolean Lifecycle+.onDelete (Session+))

&& this (objectBeingDeleted) ;

after (Persistent objectBeingDeleted)

BidirectionalRelationHelper.

onDelete (objectBeingDeleted) {

severRelationships (otherObjectsBeingDeleted, objectBeingDeleted) ;
otherObjectsBeingDeleted.add (objectBeingDeleted) ;

Figure 4. Severing relationships on object deletion

that needs improvement. A more formal process could help
publicize the successes of AOP to other teams in the company.
It could also invite challenges to given use scenarios. Any new
technology risks becoming a “golden hammer” if overused.
Although I do not feel that VMS has succumbed to this
temptation, skeptical review could provide an important
safeguard.

Despite the lack of a detailed review, section two has attempted
to provide for each example the results of our informal
evaluations. In general we have found that aspects have
improved various ilities such as understandability,
maintainability, reusability, agility, composability, and
extensibility.

3. TEAM REACTIONS TO AOP

3.1 Positive

Just to be clear, as the author of this practitioner report, I am
biased. I had been working with Aspect] and AOP for a year
and a half before joining the Adbase team, and had co-authored
the second book on the language [1]. I could be considered an
extremely early adopter. With that in mind, I was pleasantly
surprised by the reaction of other, more mainstream, members
of the Adbase team.

As a whole, the team’s reaction to AOP and Aspect] was
positive. Even programmers inexperienced with OOP were able
to grasp the basic concepts quickly. Like learning any new
language, mastering the nuances of Aspect] took time.
However, I found that other programmers moved quickly from
being passive observers to participants in or initiators of
pairing sessions that involved Aspect]. About 6 months
elapsed between the VMS’s initial investigation of AOP and
the development of the Hibernate aspects described in this
report. This was calendar time, not effort time, as we spent (and
still spend) only about 5 to 10% of our development effort on
AOP. Because of our incremental approach to adoption
(described in section 4) we were able to both learn AOP and
realize value from it without significant schedule impacts.

As familiarity with the technology has grown, the team has
become more excited about the potential for further
applications. It’s not uncommon to hear “we could use an

aspect to do that” floating through the development area.
Some members of the team have become champions of the
technology. One programmer is investigating adding Aspect]
to another Java project, and our manager acquired a custom
license plate reading “Aspect].”

For programmers less invested in AOP, its non-invasive nature
has been a blessing. Developers can craft components that
participate in aspect-oriented behavior without needing to
make numerous design concessions to do so. It’s possible to
work on the Adbase project without significant Aspect]
experience—indeed some programmers have yet to write a
single pointcut. Compared to invasive frameworks such as EJB
or JSP, Aspect] has weighed lightly on the design and
development of the project.

3.2 Negative/Challenging

Despite the generally positive reaction, AOP has received some
challenges at VMS. First, I would observe that developers (and
perhaps humans in general) regard new technologies and ideas
with suspicion. The more radically an idea departs from
accepted norms, the more a population will resist it. Because
AOP demands a new way of thinking about software
construction and a new language to express that thinking in, it
necessarily meets a fair amount of this resistance. My team has
been no exception. During initial presentations, it was clear
that the audience saw the potential of the technology, but was
apprehensive about the learning required to leverage it. As
time passed, the apprehension dissipated. However, I found it
present again in new team members who were approaching the
technology for the first time. This points to a difficulty with
adopting any non-mainstream technology. The less widely
known it is, the more a project can expect to invest in training
as staff changes.

Though our familiarity with Aspect] and AOP has grown, we
are still in the process of altering our mental models to
accommodate aspect-orientation. The Adbase team manager,
Scott Segal put it like this: “The most difficult part of
adopting AOP was making the mental shift from thinking of
AOP as a technique to solve a narrow set of problems to
embracing AOP as part of our standard approach to solving all
problems. When looking at a problem now we try to see how
the problem naturally separates into concerns and implement

the crosscutting concerns with aspects. “ OO enjoys a wealth of
material from practitioners, gurus, and evangelists that helps
programmers to adopt an OO mindset. As the AOP community
is still in its childhood, embracing AOP requires a more
conscious effort on the part of adopters.

3.2.1 Effects on System Comprehension

Although we have found that it is possible for programmers to
remain mostly oblivious to aspects (especially very
orthogonal ones), to work effectively on an aspect-oriented
project, they must be aware of the potential that an aspect is
affecting code they are modifying. Without this awareness
(and knowledge of how Aspect] works in general) it’s possible
for programmers to become confused or surprised by aspectual
effects. The less orthogonal the concern, the more programmers
must be aware of it.

A particular flavor of this problem might be termed “aspects as
a red herring.” This situation has arisen for us when
programmers uninvolved with the development of an aspect
encounter a problem in that aspect’s domain. Suspicious that
the aspect may be involved, but lacking knowledge of its
details, they feel overwhelmed by having to understand the
aspect before solving the problem. The aspect may not actually
be involved, but its possible presence can seem like a
confounding factor.

In order to reduce the possibility of aspect confusion, one
must build sufficient familiarity with both AOP mechanisms
in general and the application’s aspects specifically.
Developers working on an EJB project would be expected to at
least be familiar with declarative transactions. Aspects, it
would appear, are no different.

Awareness of aspectual effects can be enhanced by appropriate
tool support. Section 5 discusses how specific tools can
increase the visibility of aspects.

4. ADOPTION PROCESS

We knew at the outset that adopting a technology as
conceptually challenging as Aspect] would require more effort
and care than simply picking up a new library. This section
details the specific steps we took to minimize risk, and which
of our existing processes supported the adoption.

4.1 Background

At the time VMS’s investigation into AOP began (February
2004), none of the Adbase team (other than myself) had any
significant exposure to AOP. Although the industry buzz
around AOP grew steadily throughout the year, at that time it
had not reached critical mass. Other AOP implementations were
available, but two of the main AOP technologies today
(AspectWerkz and JBoss AOP) had not emerged from beta.
Aspect] was both the most proven project. We also had an in-
house expert. Accordingly, VMS decided to focus its efforts on
Aspect].

4.2 Incremental Adoption

In order to minimize the impact of adoption, we decided to
approach in phases. We undertook two significant
experiments: the error-logging aspect described in section 1.1
of this report, and then the application-specific aspect
described in section 1.2. The second experiment necessitated
the integration of Aspect] with the existing Adbase build,
which ultimately required us to restructure our build process.

The experiments exposed the team to the technology in a low
risk way. This increased familiarity and confidence. We also
retained the assurance that we could easily revert to a pure Java
version of the system with minimal effort should we need to.

After the experiments, we began to look for other application-
level concerns that we could implement with aspects. Because
these new aspects tended to be limited in scope, we were able
to learn concepts, best practices, places where aspects made
sense, and places where they didn’t. (We have replaced more
than one aspect with a non-aspect solution upon review of the
resulting design.) With these experiences under our belt, we
were finally able to approach the relationship management
aspects—the most challenging and general set of aspects
developed yet. This incremental approach both diffused
adoption cost over several months and also allowed concepts
and ideas to soak into the team consciousness.

4.3 Unit and Integration Tests

One of the practices of Extreme Programming that eased our
adoption of Aspect] was automated testing. At the time we
began adoption, we had amassed a suite of several hundred
unit and integration tests. Automated testing helped us in two
ways: 1) it allowed us to verify an aspect’s implementation
during development of that aspect 2) it allowed us to quickly
detect side-effects or to notice when a refactoring had broken
an aspect.

Programmer testing has many benefits whose merits have been
explored elsewhere. We found most of those benefits to apply
straightforwardly to aspect-oriented code. For instance, testing
advocates assert that writing tests can improve object-oriented
design. One design benefit arises from creating classes that can
be easily invoked outside of their original context. Writing
such classes helps to ensure loose coupling. We found this
benefit to have a parallel in aspect-oriented code. Writing
pointcuts that can match join points outside of the ones
originally intended (i.e. ones artificially reached by a test)
ensures that pointcuts are loosely coupled to the code they
query. For instance, defining a pointcut in terms of a marker
interface allows a test class to implement that marker interface
and be affected by the aspect. Outside of the test, such a
pointcut also allows new domain classes to implement the
marker interface and subscribe to the aspect’s effects.

4.4 Pair Programming

Another practice we found valuable was pair programming.
There is still debate in the larger programming community
about the merits of pairing as a general practice. However,
speaking from personal experience, I find that it’s an
invaluable way to transfer knowledge. Transferring
AOP/Aspect] skills was no exception. A typical early pair
session would place me with a less-experienced developer as
we tried to write an aspect to address a specific concern. As we
came to new language features or a new aspect-oriented
concept, I would explain the concept and continue with the
implementation.

As team experience grew, aspect-oriented pairing sessions
began between other team members. We used our shared
workspace to take advantage of the “Expert in Earshot” [4]
effect. Team members struggling with the nuances of a
pointcut could easily get my attention for a quick resolution.
Also, if 1 overheard discussion that indicated a
misunderstanding, 1 could intervene to correct.

The combination of testing and pairing gave us the confidence
to use our application as a learning environment. We were able
to try out different ideas, and easily see their realization within
a familiar context. This helped us learn AOP more rapidly and
confidently than we otherwise might have.

4.5 Refactoring

In our XP environment, we refactor often, and aspects are no
exception. Just as object-oriented code can vary in its
readability and expressiveness, aspect-oriented code can be
clear or confusing. Accordingly, we revisit our aspects (e.g.
when we modify them to add a new feature) and attempt to
express their intent more clearly. Many of the habits, practices,
and guidelines for refactoring object-oriented code translate
well to aspect-oriented code. One clear carryover from other
programming paradigms is the principle of meaningful names.
The name of an aspect or a pointcut can be an invaluable clue
to the intended effect of the code.

In addition to refactoring aspects, we also refactor our code to
add aspects where warranted, and to remove aspects when the
intent of the program is better expressed without them. As an
example, one refactoring of the repricing behavior that we
experimented with dispensed with the aspect entirely.

One corner case that seems to have no clear solution is the case
of an aspect that affects the implementation of a single class.
If, for instance, an aspect affects five methods on a class, is it
better to manually insert calls to code that would otherwise be
advice, or to remove the (small amount of) duplication and
place the behavior in an aspect? Static inner aspects offer an
elegant compromise, but are fraught with difficulty because of
tool issues.

The AOP community is beginning to put together material on
aspect-oriented refactoring. [8] We look forward to applying
some of these techniques to our development practice in the
future.

4.6 Best Practices

With aspect-oriented programming having only a few years of
production use under its belt, best practices for aspect-
oriented development are still evolving. The Adbase team has
developed few best practices outside of those already
enumerated elsewhere. Most of our design experience at this
point has taken the form of implicit knowledge shared
informally or through pairing.

4.7 Management Reaction/Business Impact

A team adopting a new technology always incurs some risk.
The technology’s cost (expressed in time, productivity, and/or
capital) may outweigh its benefits, or the cost may be
prohibitively high despite a correspondingly large reward.
Although learning AOP and Aspect] took time and effort, the
cost has been lower and/or more diffuse than other technology
adoptions during the life of the project. Accordingly
management reaction to AOP has been largely neutral. The
Adbase team could do more to evangelize the technology
choice and highlight its benefits, but it faces no significant
pressure to justify continued investment at this time.

4.8 Risk of Over/Misuse

As 1 suggested earlier, any new technology faces the risk of
overadoption. An overeager team can apply a technology
outside its area of strength or apply it so widely that
weaknesses begin to manifest. Our XP process encourages

developers to constantly question complexity, to “do the
simplest thing that could possibly work.” It also suggests to
put off to tomorrow any implementation effort that does not
address a need of today: “You ain’t gonna need it.” This
philosophy encouraged a healthy skepticism that balanced the
team’s enthusiasm for the new technology. Although we did
not follow any formal guidelines to limit the spread of aspects,
discussions during pairing sessions offered developers the
chance to vet proposed applications and suggest alternatives.

5. TOOL SUPPORT

A dramatic, if little noticed change in the mainstream
programming community over the last five years has been the
emergence of automated tools as central to the practice of
development. An increasing number of programmers (the VMS
team included) use an IDE for day-to-day coding. As time
passes, it becomes increasingly difficult to disentangle a
programming language from its supporting toolset. This
contention applies especially to Aspect]. This section
examines our experiences with the current Aspect]
development tools. Our experience has centered on AJDT—the
Aspect] plugin for Eclipse, though we have also used the Ant
and Maven integrations.

Our experience has been mixed. While the debugging support
and crosscutting views are essential to effective Aspect]
development, there are significant practical concerns still to be
addressed. Before further consideration of the tools, it’s worth
noting that they are improving rapidly. IBM and BEA continue
to invest significant resources in Aspect] and AJDT’s
development. Over the course of our adoption (and even the
writing of this report) the AJDT environment evolved to
address concerns that would otherwise appear in this section
as significant barriers to adoption. I hope that as of
publication, further advances will have arrived.

5.1 Crosscutting Views

As I’ve stated before, depending on the degree of
orthogonality, a programmer can be more or less oblivious to a
crosscutting concern. When working on a module, a
programmer must be somewhat aware of crosscutting aspects
(or at least be able to transition quickly from oblivious to
aware). This is especially true when the concern is tied closely
to the core functionality of the module (for example, repricing
a basket). Similarly, in the “aspects as a red herring” situation,
it’s critical that a programmer be able to rule out (or find)
potentially troublesome aspects with confidence.

To assist in making the crosscutting structure of a program
understandable, AJDT provides both an outline of the
crosscutting structure and also gutter annotations that flag the
application of advice to a given element in the editor.

5.1.1 The Crosscutting Structure/Outline View

Our experience with the crosscutting outline view has been
excellent. It allows developers to view all of the join points
affected by a given piece of advice. This functionality permits
programmers to easily analyze the potential effect of an aspect.
When writing a new pointcut, for instance, it alerts you if an
error prevents a pointcut from matching any join points.
Similarly, a quick scan has tells you if the pointcut matches
unintended points. Unfortunately, as of the current stable
release of AJDT (1.1.12) the outline view is only present after a
full rebuild. Aside from the time cost, this issue does not
hamper development, because it’s readily apparent that the

project needs to be rebuilt to see the view. Milestone releases
of AJDT (1.2M2 and beyond) dispense with this limitation.

5.1.2 Gutter Annotations

When a programmer views a class (or indeed an aspect) in
Eclipse’s editor, gutter annotations indicate the application of
advice to a given program element. This feature does much to
assuage the fears of AOP neophytes. By providing a clear
indication of aspect-impact and an easy means to navigate
back to the aspect, AJDT’s gutter annotations have helped us
diagnose aspect-related problems on more than one occasion.
They also serve as unobtrusive reminders that aspects
contribute to the total behavior of the code in the current
editor.

As of AJDT 1.12, the gutter annotations exhibit some of the
same problems as the outline view. They require a full rebuild
of an affected file before becoming visible. In the case of the
gutter annotations, this is a more severe problem since there is
no way of knowing that a rebuild might be needed to see them.
The latest builds in the AJDT 1.2 stream have addressed these
issues.

5.2 Debugging support

Although the debugging support in Aspect] exhibits a few
problems (occasional inability to set breakpoints without a
rebuild, some confusing stack frames to step through on cflow
advice) the current implementation operates as desired. In
other words, you can set breakpoints in classes and step into
advice that applies to them. You can also set breakpoints in
advice. As we developed the relationship management aspects,
we frequently used the debugger to help us understand the
dynamic behavior of the code. Once the minor deficiencies in
the debugger are resolved, working with aspect-oriented code
in the debugger should be as painless as working with object-
oriented code.

5.3 Compilation Speed

The biggest challenge to further adoption of Aspect] at VMS is
the significant increase in compilation times when using
Aspect]. From experience and the literature [5], it seems that
Aspect] provides batch compilation performance that is
comparable to, if slower than, that of pure java compilers. For
instance, it takes approximately 35 seconds to compile 700
classes and 70 or so aspects. Importantly, however, most
builds using an unaugmented Java compiler are incremental.
The compiler only compiles classes that have changed since
the last compilation, or which depend on classes that have
changed. Aspect] offers a similar incremental mode, but with
two important restrictions. The first is that incremental
compilations using AJDT (in the Adbase project) invariably
take a couple of seconds longer than the near-instant times
enjoyed by pure Java builds. The second problem is that
changes to an aspect require a full rebuild (performed
automatically by AJDT even if you are using incremental
mode). Batch compilations can also be necessary when certain
modifications to source files leave the incremental compiler in
an inconsistent state.

These two types of slowdown have a noticeable impact on
development velocity. Our XP-based development process
makes heavy use of unit tests and incremental development. In
an ideal world, we would modify code, compile it, and execute
the relevant unit tests several times per minute. Indeed, that’s
how it works on our pure Java projects. Adding even a few
seconds of delay to the cycle slows development on two

fronts. First, time is taken by the compilation itself. Second,
during the wait interval, human attention can wander and it can
take time to re-contextualize after the compilation. This
problem is particularly pronounced for the full builds, which
tempt the programmer to switch to another task entirely (e.g.
email, Slashdot headlines). One of VMS’s most talented
programmers, despite having positive experiences on the
Adbase project and having designed an aspect-oriented testing
framework, resists using Aspect] in his other projects because
of these delays. He puts it this way: “The benefits realized by
AOP over pure OO approaches do not outweigh the drawbacks
of productivity loss and impediments to a Test-Driven
Development approach, at least in a fairly small application.”

The good news for performance is that the Aspect] and AJDT
teams have made compilation speed improvements a goal for
the next version of the Aspect] tools. Batch build time was cut
by 50%, and incremental build time by 25% between the first
and final draft of this report. Further planned enhancements
aim at reducing the need for full compilations when an aspect
changes.

5.4 Refactoring and Java Editing: Eclipse sets

the bar high

Although AJDT brings most of the functionality of a good
Java editor to the Aspect] language (code completion, syntax
highlighting) there are important missing areas. These feature-
holes have tripped up developers used to Eclipse’s rich
functionality. Code completion works only in certain
contexts, for instance. Another example: the shortcut for
“Open Type” does not apply to aspects.

More importantly, refactorings initiated from Java do not
affect aspects. So, for instance, changing ‘Foo.bar()’ to
‘Foo.baz()’ using ‘rename method’ would not alter a pointcut
like execution(public void Foo.bar()). Furthermore, orphaned
pointcuts such as this only trigger warnings in Aspect] 5 and
only if they prevent the entire pointcut from matching. This
lack of refactoring support made wide-ranging refactoring a
more delicate and manual process. The AJDT team has
announced future support of both Java based and aspect-
specific refactorings. VMS looks forward to it.

5.4.1 Miscellaneous Problems

It’s important to note that the feature-holes described only
affect aspects. In general, the experience when using AJDT with
Java code is unchanged. One significant exception was that the
Eclipse Java parser does not understand inter-type
declarations. If you add a method foo() to your Cart object
using an ITD, Eclipse will flag a call like someCart.foo() as an
error even though an AJDT build will bless it as correct. As of
this writing, AJDT users are left with the choice of disabling
eager parsing (and eliminating helpful auto-corrects that come
with it) or to tolerate these ersatz problem indicators.

5.5 Incompatibilities

For the most part, the Aspect] compiler has played well with
other tools used at VMS. However, we have found some
incompatibilities. Most of these can be explained with the
following quote from a practitioner report at AOSD 2004:
“Whilst the Aspect] compiler (ajc) produces 100% legal Java
bytecodes, some tools that work at the bytecode level (for
example, disassemblers) can get confused by the bytecodes
that ajc emits. In general this is because the tools rely on
recognizing bytecode patterns emitted by javac.” [6] This

section describes two of the incompatibilities we encountered
while using Aspectl.

The first, and more serious, of the two issues occurred with the
JRockit 8.1sp2 JVM and Aspect] 1.2. A bytecode pattern in an
Aspect] classfile (that also confused one decompiler we tried)
caused JRockit to crash. Happily, both BEA and the Aspect]
team released a fix for this issue shortly after it was reported
(the current versions are Aspect] 1.2.1 and JRockit 8.1sp3).
Note also that BEA’s support of Aspect] 5.0 makes future
problems with their JRockit JVM as unlikely as they are with
IBM’s JVMs.

The second problem occurred while attempting to add an inter-
type method to an EJB deployed to Weblogic. Recall that EJB
components require separately defined interface and
implementation classes, as well as post-processing to generate
interceptors. The post processor for Weblogic 8.1sp2 detected
the ITD as an error and refused to continue with the
deployment of the EJB. We worked around this issue by
implementing a solution that did not require the inter-type
declaration.

Though both of these issues were relatively serious, they did
not stop us from continuing the adoption. Both the Aspect]
team and BEA’s support department were helpful in
investigating the problems.

6. Conclusions

VMS considers its adoption of AOP successful. The key
barriers to further adoption within the company remain in the
area of tool support rather than in training or conceptual
understanding. In particular, compilation times incur a
productivity penalty that offsets the general benefits of
aspect-oriented development. The capabilities of the AJDT
environment also lag behind the seamless experience of pure
Java development in Eclipse. Luckily, both these areas are
currently receiving significant attention.

Despite these barriers, aspects have noticeably improved the
ilities of the Adbase application. The application exhibits
improved resilience to change and ease of understanding in
areas where we have successfully applied aspects. AOP has also
reduced the amount needless duplication and busywork
necessary when adding functionality to key areas (for example,
adding a new persistent relationship).

The Adbase team has learned that its agile development
approach handles the challenges of aspect-oriented
development well. Our methodology limited risk, encouraged
beneficial skepticism, and maximized knowledge transfer. In
retrospect, an increase in the formal evaluation of the impact of
AOP could also have yielded benefits.

6.1 Future Plans

VMS plans to increase its investment in AOP and Aspect] by
encouraging new aspect-oriented development on the Adbase
project and considering adoption on other projects. VMS
eagerly anticipates future work in the area of aspect mining
and aspect refactoring, in the hopes of more easily improving
the quality of existing code.

The imminent arrival of Aspect] 5.0 also presents an exciting
opportunity. The @Aspect] syntax and load-time weaving
capabilities offer a low cost point of entry for AOP. In addition
the support for annotation-based pointcuts promises to open
up significant new areas of functionality.

7. ACKNOWLEDGMENTS

My thanks to Scott Segal, Angus McIntyre, Chad Woolley, and
the other members of the Adbase team for their reviews and
advice.

8. REFERENCES

[1] Gradecki, Joseph and Lesiecki, Nicholas. Mastering
Aspect]: Aspect-Oriented Programming in Java. John
Wiley and Sons. 2003.

[2] The Aspect] Team. The Aspect] Programming Guide.
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~
/aspectj-home/doc/progguide/index.html. 2004

[3] Colyer, Adrian. “I don’t want to know that... (writing
robust pointcut expressions)”. [Blog Entry]. The Aspects
Blog.
http://www.aspectprogrammer.org/blogs/adrian/2004/08/
i_dont want to.html. August, 2004.

[4] Cockburn, Alistair. “Expert In Earshot”. [Wiki Entry].
Portland Pattern Repository Wiki.
http://c2.com/cgi/wiki?ExpertInEarshot. June 2004.

[5] Hilsdale, Erik and Hugunin, Jim. Advice Weaving in
Aspect]. AOSD 2004 Technical Paper. March 2004.

[6] Colyer, Adrian, et. al. Using Aspect] for Component
Integration in Middleware. OOPSLA 2003 Practitioner
Report. October 2003.

[7] Laddad, Ramnivas. Metadata and AOP: A perfect match.
IBM developerWorks. [Website]. March 2005
(prepublication review copy).

[8] Laddad, Ramnivas, Aspect-Oriented Refactoring Series.
TheServerSide.com. [Website]
http://www.theserverside.com/articles/article.tss?I=Aspec
tOrientedRefactoringPartl. December 2003.

