Aspect-Oriented Programming
with C++

Olaf Spinczyk

This talk 1s about ... =Tspect

> the importance of C++ for the success of AOP

> different AOP approaches for C++

- language independent vs. pure C++ vs. extension
> the AspectC++ project

- history, language, implementation

> the future

AOP with C++

© 2005 Olaf Spinczyk 2

Observations: AOP Products é%éect

> |IBM: AspectdJ and AJDT

> BEA: AspectWerkz

> JBoss: JBoss AOP

AOP with C++

© 2005 Olaf Spinczyk 3

Observations: AOP Products é%éect

> |IBM: AspectdJ and AJDT

> BEA: AspectWerkz

> JBoss: JBoss AOP

(;‘ JavaTechnology
=34 GET IT FREE

——

j.j{ra” from java.com

AOP with C++

© 2005 Olaf Spinczyk 4

Observations: AOP Products

... for C++ developers:
> Semantic Designs: DMS
> P&P Software: XWeaver

> pure-systems: AspectC++ Add-In

AOP with C++

© 2005 Olaf Spinczyk

&;ect

Observations: AOP Products é%éect

... for C++ developers:
> Semantic Designs: DMS
> P&P Software: XWeaver

> pure-systems: AspectC++ Add-In

these teams play in a different league

AOP with C++

© 2005 Olaf Spinczyk

Observations: AOP Research = pect

Java vs. C++ at AOSD

B other
| Java
C/C++

2003 2004 2005

C++ is almost invisible!

AOP with C++

© 2005 Olaf Spinczyk 7

Java vs. C++ in the Real World

open source projects

40000

30000

20000

10000

27,38%

| | Java
. | C/C++
C only

AOP with C++

2004/09/09 (source-

forge)

© 2005 Olaf Spinczyk

a'spect

Java vs. C++ in the Real World €&%pcc:

requested skKills

100,00% -

75,00% | Java

50.00% | | CH+

C
25,00%
26 21
0,00% w
2003 2004

AOP with C++

© 2005 Olaf Spinczyk 9

Java vs. C++ In the Real World =Tspect

requested skKills

100,00%
50,00% | 41 |Gt
41 c
25,00% —
26 21
0,00% x
2003 2004

C and C++ are still dominating!

AOP with C++

© 2005 Olaf Spinczyk 1 0

' Java vs. C++ in the Real World €Z...

AOP research & products don't
reflect the real world.

Why?

AOP with C++

© 2005 Olaf Spinczyk 1 1

Reasons =Tspect

C++ is one of the most complex languages today
% developing tools and extensions is painfully hard
L C++ is not common in academic research

Y no transfer from academia to industry

AOP Wlth C++ © 2005 Olaf Spinczyk 12

The Problem =Tspect

AORP research & products don't reflect the real world.

> the unwanted message is:

AOP js Java.

> the unwanted consequences are:

- no large scale adoption by the IT industry

- billions lines of C/C++ code don't benefit from AOP

13

AOP with C++

© 2005 Olaf Spinczyk

' 2'spect
*

WANTED ~*
DEMPOR ALIVE

a'spect

AspectCH

AOP with C++

14

Requirements é%éect

an AOP solution for C++ has to ...

> support full obliviousness and quantification
- no preparation of the component code
- rich pointcut language
> be strong were C++ is strong
- no runtime system
- support for procedural, object-oriented, and generic code
- exploit and support the powerful static type system
- efficient code

> be usable
- simple
- easy integration

AOP with C++

15

© 2005 Olaf Spinczyk

Technical Approaches =pect

idea
coding
[source source code
code transformation

‘ compilation
[(virtual) binary code
machine code transformation
‘ execution

Gwocess)

© 2005 Olaf Spinczyk 1 6

Technical Approaches =pect

Idea AOP with pure C++
coding e patterns

source » templates, macros
code

((virtual))
\machine code J

GI’OCGSS)

AOP with C++

© 2005 Olaf Spinczyk 1 7

AOP with pure C++ (1) =Tspect

C. Czarnecki, U. Eisenecker, L. Dominick:

// generic wrapper (aspect) that adds counting to
// any queue class Q, as long as 1t implements the
// proper interface

template <class Q>
class Counting_Aspect : public Q {
int counter; // introduction
public:
void enqueue(Item* item) { // after advice
Q::enqueue(item); counter++;
}
s

AOP Wlth C++ © 2005 Olaf Spinczyk 1 8

AOP with pure C++ (2) =Tspect

aspect weaving by template instantiation

// component code
class Queue { ... }

// wrappers (aspects)
template <class Q>

class Counting_Aspect : public Q { ... }
template <class Q>
class Tracing_Aspect : public Q { ... }

// template instantiation (weaving)
typedef Counting_Aspect<Queue> CountingQueue;
typedef Trace_Aspect<Counting_Queue> TraceCountingQueue;

AOP with C++

© 2005 Olaf Spinczyk 1 9

AOP with pure C++ (3) =Tspect

obliviousness for the client code

namespace components {

class Queue { ... };
¥
namespace aspects {
template <class Q> class Counting_Aspect : public Q { ... };
}

namespace configuration { // select counting queue
typedef aspects::Counting_Aspect<components: :Queue> Queue;

}

using namespace configuration;

void client_code () {
Queue queue; // Queue with all configured aspects
queue.enqueue (new MyItem);

}

AOP with C++

© 2005 Olaf Spinczyk 20

AOP with pure C++ (4) =Tspect

C. Diggins: macros hide the template “magic”

// the CountingAspect as before
struct CountingAspect {
// Inc and Dec is advice
struct Inc { template<...> virtual void OnAfter (...) { ... } };

}s;

// the DEF_POINTCUT macro describes sets of member functions
DEF_POINTCUT(EnqueuePointcut)

SET_PROCJOINPOINT1(enqueue, Item*, 1tem)
END_POINTCUT

// the CROSSCUT macro combines a class, a pointcut, and an aspect
typedef CROSSCUT(Queue,EnqueuePointcut,

CountingAspect::Inc) CountingQueue;
AOP with C++

© 2005 Olaf Spinczyk 21

AOP with pure C++ - Review

obliviousness: not given

- component code has to be “prepared”
quantification: not given

- aspects have to be applied manually

strong: not really

- basically supports weaving in
public (virtual) class member functions

usable: not often
+ no special tool support required

- code is hard to develop, understand, and maintain

AOP with C++

© 2005 Olaf Spinczyk

2'spect

22

AOP with pure C++ - Review =Tspect

obliviousness: not given

- component code has to be “prepared”

quantification: not given

public (virtual) class member functions

usable: not often
+ no special tool support required

- code is hard to develop, understand, and maintain

AOP with C++

© 2005 Olaf Spinczyk 23

Technical Approaches =pect

idea >
[source
code
(virtual)
machine code

QI’OCGSS)

AOP with C++

source code
transformation

ICode Transformers
» AspectC++

« XWeaver

« DMS

© 2005 Olaf Spinczyk 24

¥ XML Model
.Xm of Base Code

XM

AOP with C++

XWeaver (1) =Tspect

xml

XML Model
1™ of Modified
Code

>4

AspectX
Program

© 2005 Olaf Spinczyk

25

XWeaver (1) =Tspect

* a piece of code in XML *
<?xml version="1.0" encoding="IS0-8859-1"7>

| XN <functions>
xml of | <type><name>int</name></type>

<name>main</name>
\ <parameter_list>()</parameter_list>

<bTock>{}</block>

</function>

' Ca concrete syntax tree >
AspectX
Program

XM

AOP with C++

© 2005 Olaf Spinczyk 26

XWeaver (2)

> the language-dependent part

XM

l

XM

AOP with C++

P C++
.ﬁpp Base Code

N

XML Model
of Base Code

AspectX
Program

o
o

N
- =]

D Modified
-ﬁpp Code

xmli

XML Model
" of Modified
Code

© 2005 Olaf Spinczyk

2'spect

27

XWeaver (3) =Tspect

current limitations:
> only supports “embedded C++”
> strongly limited join point model
- function/constructor/destructor execution only
reason: srcML parser problems

> no semantic analysis, no function call resolution
no call advice!

> E.g.“1nt (*f()) (long) {}” yields nonsense

AOP with C++

© 2005 Olaf Spinczyk 28

XWeaver (3) =Tspect

current limitations:
> only supports “embedded C++”
> strongly limited join point model

The transformation approach is only viable
no call advice!
> E.g.“1nt (*f()) (long) {}” yields nonsense

AOP with C++

© 2005 Olaf Spinczyk 29

Code Transformation - Review

obliviousness: possible

+ weaver has full control
quantification: possible

+ only a matter of aspect language features
strong: definitely

+ generated code can be as efficient as tangled code
usable: yes

+ AspectJ-like programming model possible
+ easy integration into existing tool chains

+ platform-independent

AOP Wlth C++ © 2005 Olaf Spinczyk

2'spect

30

Technical Approaches =pect

o >

[source J
code
‘ compilation Compiler Integration

(virtual)
machir:e code

GFOCGSS)

AOP with C++

© 2005 Olaf Spinczyk 31

Compiler Integration fepect

Could an AOP extension for C++ make it into...
- commercial compilers?

- the C++ standardization?

ISO/IEC JTC1/SC22/WG21
- very busy with problems like “A<B<C>>"
- Detlef Vollmann summarizes “Aspects of Reflection in C++”

- Daveed Vandevoorde presents a “Metaprogramming
Extension” at the ACCU conference

- besides that: no revolutions

AOP with C++

© 2005 Olaf Spinczyk 32

Compiler Integration fepect

Could an AOP extension for C++ make it into...

- commercial compilers?

The transition from C to C++ took many years.

We should not expect this process to be
faster in the case of AOP.

- Daveed Vandevoorde presents a “Metaprogramming
Extension™ at ACCU

- besides that: no revolutions

AOP with C++

© 2005 Olaf Spinczyk 33

Technical Approaches =pect

< idea >
[code J Language-independent
AOP
[(virtual) binary code
machine code transformation
‘executlon Runtime Weaving

process > . Arachne
AOP with C++

© 2005 Olaf Spinczyk 34

Weaving in Byte/Machine Code €&*pec:

completely decouples the weaver from the parser, but ...

> aspect weaving in machine code ...

- strictly limits available AOP features

- has to be implemented for numerous platforms

> aspect weaving in virtual machine code ...
- is not feasible in most C++ dominated domains

- compromizes the strengths of C++

35

AOP with C++

© 2005 Olaf Spinczyk

Runtime Aspect Weaving fpect

> same restrictions as static binary code weaving

> advantage:

- dynamicity — needed in some application scenarios

> disadvantage

- additional runtime system required

36

AOP with C++

© 2005 Olaf Spinczyk

Runtime Aspect Weaving fpect

> same restrictions as static binary code weaving

> advantage:

Many C++ projects have problems
with crosscutting concerns.

Dynamic weaving is nice to have, but we should come
up with a viable static AOP solution first.

AOP with C++

© 2005 Olaf Spinczyk 37

Binary Code Weaving - Review &%pect

obliviousness: given

quantification: limited
- restricted set of join point types and possible transformations
- introductions are a huge problem
strong: not really
- binary code weaving conflicts with code optimization
- potential loss of static type information
usable: specific cases
- highly platform dependent

- aspect program expressivenes depends on machine model

AOP with C++

© 2005 Olaf Spinczyk 38

Summary

2'spect
pure C++ source level binary level
obliviousness - + +
quantification - + 0
strong - + _
usable 0 + _
AOP with C++ 39

© 2005 Olaf Spinczyk

Summary =Tspect

source level § binary level

obliviousness
quantification
strong
usable

+ +

+
<+
<+

Sustained success of AOP in the C++ world requires:

- a source level weaving approach
- a convincing freely available implementation

AOP with C++

© 2005 Olaf Spinczyk 40

The AspectC++ Project fepect

“We are definitely not targeting C++ for our work.”
(Gregor Kiczales, July 2001)

> Language Level Goals:

- AspectJ-like syntax and semantic
- AspectC++ should fit well into the C++ philosophy

> Implementation Level Goals

- support for various hardware platforms and C++ dialects

- IDE integrations

AOP Wlth C++ © 2005 Olaf Spinczyk 41

AspectC++ vs. AspectJ Fepect

aspect SimpleTracing { AspectJ
pointcut tracedCall() :

call(void FigureElement.draw(GraphicsContext));
before() : tracedCall() {
System.out.printin("Entering:

+ thisJoinPoint);

ool

aspect SimpleTracing { AspectCHt
pointcut tracedCall() = P

call(“void FigureElement: :draw(GraphicsContext&)”);

advice tracedCall() : before () {
cout << "Entering: " << JoinPoint::signature ());

[

AOP with C++

© 2005 Olaf Spinczyk 42

The C++ Philosophy

> C compatibility

- re-use of billions lines of code

- but: untyped pointers, preprocessor, ...

> strong focus on static typing

- generic programming

- function and operator overloading

> multi-paradigm development

- object-oriented, procedural, generic

> generative programming
> efficiency in time and space

AOP with C++

© 2005 Olaf Spinczyk

2'spect

43

AOP with C++

Consequences for AspectC++ €%pec

AspectC++ has to cope with the C++ philosophy
> weaving in C-style code
> statically typed aspect implementations

- “generic advice”

> multi-paradigm AOP
- advice for C-style functions
- advice for classes and objects
- advice for generic code and template instances
- advice for operator functions and conversion functions

> generation of efficient code

© 2005 Olaf Spinczyk 44

AspectC++ — Joinpoint API

Compile-Time Joinpoint API
JoinPoint:: That
JoinPoint::Target

JoinPoint::Result

JoinPoint::Arg< i >::Type
JoinPoint::Arg< i >::ReferredType
JoinPoint::ARGS

JoinPoint::JPID
JoinPoint::JPTYPE

Runtime Joinpoint API
That* that()
Target™ target()

Result* result()
Arg< i >::ReferredType* arg< i >()

AOP with C++

Type of affected class (call/execution)
Type of the target class (call)

Type of the function result

Type of the i function argument
(with 0 =i < ARGS)

Number of arguments

Unique identifier for this joinpoint
Type of the joinpoint (call/execution)

current object instance
target object instance (call)

result value
value of i" argument

© 2005 Olaf Spinczyk 45

2'spect

AOP with C++

AspectC++ — Joinpoint API >spect

Compile-Time Joinpoint API

JoinPoint::That Type of affected class (call/execution)

JoinPoint::Target Type of the target class (call)

JoinPoint::Result Type of the function result

JoinPoint::Arg< i >::Type Type of the i function argument

JoinPoint::Arg< i >::ReferredType (with 0 =i < ARGS)

JoinPoint::ARGS Numbexk of arguments

JoinPoint::JPID Unique identifigr for this joinpoint

JoinPoint::JPTYPE Type of the joinpojnt (call/execution)
Runtime Joinpoint API Complete signature of

That” that() the affected function

Target* target()] ;

is available
Result* result()
Arg< i >::ReferredType* arg< i >() value of i" argument
46

© 2005 Olaf Spinczyk

AspectC++ — Joinpoint AP 2spect

Compile-Time Joinpoint API
JoinPoint:: That
JoinPoint:: Target

JoinPoint::Result
JoinPoint::Arg< i >.:Type

Type of affected class (call/execution)
Type of the target class (call)

Type of the function result
Type of the i* function argument

JoinPoint::Arg< i >::ReferredType (with 0 =i < ARGS)

JoinPoint::ARGS

JoinPoint::JPID
JoinPoint::JPTYPE

Runtime Joinpoint API
That* that()
Target* target()

Result* result()

Number of arguments

Unigue identifier for this ioinpoint

Type-safe access to actual
values at runtime

target object instance (call)

result value

Arg< i >::ReferredType* arg<i>() value of i argument

AOP with C++

© 2005 Olaf Spinczyk 47

Generic Advice e pect

A compile-time switch with overloaded functions

... operator <<(..., int)

aspect TraceService {

advice call(...) : after() { ... operator <<(..., long)

cout << *tjp->result(); =-@
}
}s

... operator <<(..., bool)

PN

... operator <<(..., Foo)

AOP with C++

© 2005 Olaf Spinczyk 48

Generic Advice e pect

A compile-time switch with overloaded functions

... operator <<(..., int)

aspect TraceService {
advice call(...) : after() { / ... operator <<(..., long)

”~

I.} a .\ anacatac<ce ~ bool)
}1 « no runtime type checks are needed

= unhandled types are detected at compile-time
* functions can be inlined .., Foo)

cout << *tjp->result(); =-@

AOP with C++

© 2005 Olaf Spinczyk 49

Generic Advice e pect

Instantiation of template metaprograms

template<class TIP, int 1> struct ArgPrinter {
static void work(TIP* tjp) {
ArgPrinter<TJP, 1-1>::work(tjp);
cout << ", " << *tjp->arg<i>();
}
s
template<class TJP, 0> struct ArgPrinter {...};

aspect TraceService {
advice call(...) : after({

ArgPrinter<JoinPoint, JoinPoint::ARGS>::work(tjp);
}
3

AOP with C++

50

© 2005 Olaf Spinczyk

Generic Advice e pect

Instantiation of template metaprograms

template<class TIP, int 1> struct ArgPrinter {
static void work(TIP* tjp) {
ArgPrinter<T]P, 1-1>::work(tjp);

cout << ", << *tjp->arg<i>Q);

b
tel full power of template metaprogramming

aS! is available for aspects
ArgPrinter<JoinPoint, JoinPoint::ARGS>::work(tjp);
}
3

AOP with C++

© 2005 Olaf Spinczyk 51

AspectC++ Implementation

AOP Wlth C++ © 2005 Olaf Spinczyk

Dealing with Real-World C++ Code €.

> a standard compliant C++ parser is HUGE
- currently 70.000 lines of AspecC++ code

> even commercial compilers are not fully compliant
- EDG announced to have the first fully standard compliant

parser a few years ago!

> compiler-specific language extensions
> the standard is interpreted differently

AOP with C++

© 2005 Olaf Spinczyk

53

State of the Implementation

> WOrks
- parser handles real-world code
- rich aspect language

> does not work yet
- weaving in template instances

> should be improved
- performance
- dependency management
- weaving in C code

AOP with C++

© 2005 Olaf Spinczyk

2'spect

54

ASp@CtC"“" IDES =Tspect

> AspectC++ Add-In for Visual Studio .NET

- commercial Visual Studio extension by pure-systems GmbH

> AspectC++ Development Tools for Eclipse (ACDT)

- open source Eclipse plugin (demo!)

AOP with C++

© 2005 Olaf Spinczyk 55

User Community =Tspect

> 150 subscribed AspectC++ users

- most of them from ...com

> 500 downloads of AspectC++ 0.9.1 (binary version)
since published at february, 10th

> application areas
- mobile phones and PDAs: Nokia, Siemens
- telecommunications: Samsung
- real-time databases: Linkgping University

- operating systems: Unversity of Erlangen (CiAO, ECOS, L4)

AOP Wlth C++ © 2005 Olaf Spinczyk 56

AspectC++ in the Future

» documentation
- language

- resource consumption
- application class coverage

> Integration into Linux distributions

- Debian is on the way

> C support

- extension of the join point model

> more partners

- who wants to support the AspectC++ project?

AOP with C++

© 2005 Olaf Spinczyk

2'spect

57

References epect

K. Czarnecki, U.W. Eisenecker et. al.: "Aspektorientierte Programmierung
in C++", iX — Magazin fur professionelle Informationstechnik, 08/09/10, 2001
= A comprehensive analysis of doing AOP with pure C++: what's possible and what not
= http://www.heise.de/ix/artikel/2001/08/143

C. Diggins: “Aspect-oriented Programming in C++”, Dr. Dobb's Journal,
August, 2004.

Semantic Designs, Inc.: "Aspect-oriented Programming with DMS"
= http://www.semdesigns.com/Products/DMS/AspectOrientedProgramming.html

pure-systems GmbH: AspectC++ Add-In for Visual Studio .NET

= hitp://www.pure-systems.com

P&P Software GmbH: “The XWeaver Project”

= http:://www.pnp-software.com/XWeaver

AOP with C++

© 2005 Olaf Spinczyk 58

2'spect

Thank you for your attention!

AOP with C++

© 2005 Olaf Spinczyk 59

