
© 2005 Olaf Spinczyk 1AOP with C++University of Erlangen-Nuremberg
Computer Science 4

Aspect-Oriented Programming Aspect-Oriented Programming
with C++with C++

Olaf SpinczykOlaf Spinczyk

The AspectC++ Project

© 2005 Olaf Spinczyk 2AOP with C++

This talk is about ...

➢ the importance of C++ for the success of AOP

➢ different AOP approaches for C++

– language independent vs. pure C++ vs. extension

➢ the AspectC++ project

– history, language, implementation

➢ the future

© 2005 Olaf Spinczyk 3AOP with C++

Observations: AOP Products

➢ IBM: AspectJ and AJDT

➢ BEA: AspectWerkz

➢ JBoss: JBoss AOP

© 2005 Olaf Spinczyk 4AOP with C++

Observations: AOP Products

➢ IBM: AspectJ and AJDT

➢ BEA: AspectWerkz

➢ JBoss: JBoss AOP

© 2005 Olaf Spinczyk 5AOP with C++

Observations: AOP Products

... for C++ developers:

➢ Semantic Designs: DMS

➢ P&P Software: XWeaver

➢ pure-systems: AspectC++ Add-In

© 2005 Olaf Spinczyk 6AOP with C++

Observations: AOP Products

... for C++ developers:

➢ Semantic Designs: DMS

➢ P&P Software: XWeaver

➢ pure-systems: AspectC++ Add-In

these teams play in a different league

© 2005 Olaf Spinczyk 7AOP with C++

Observations: AOP Research

2003 2004 2005
0

2,5

5

7,5

10
Java vs. C++ at AOSD

other

Java

C/C++

C++ is almost invisible!

© 2005 Olaf Spinczyk 8AOP with C++

Java vs. C++ in the Real World

2004/09/09 (source-
forge)

0

10000

20000

30000

40000

27,38%

37,71%

34,91%

open source projects

Java

C/C++

C only

© 2005 Olaf Spinczyk 9AOP with C++

Java vs. C++ in the Real World

2003 2004
0,00%

25,00%

50,00%

75,00%

100,00%

26 21

41 41

35 38

requested skills

Java

C++

C

© 2005 Olaf Spinczyk 10AOP with C++

Java vs. C++ in the Real World

2003 2004
0,00%

25,00%

50,00%

75,00%

100,00%

26 21

41 41

35 38

requested skills

Java

C++

C

C and C++ are still dominating!

© 2005 Olaf Spinczyk 11AOP with C++

Java vs. C++ in the Real World

 AOP research & products don't
reflect the real world.

Why?

© 2005 Olaf Spinczyk 12AOP with C++

Reasons

C++ is one of the most complex languages today

 developing tools and extensions is painfully hard

C++ is not common in academic research

 no transfer from academia to industry

© 2005 Olaf Spinczyk 13AOP with C++

The Problem

AOP research & products don't reflect the real world.

➢ the unwanted message is:

AOP is Java.

➢ the unwanted consequences are:

– no large scale adoption by the IT industry

– billions lines of C/C++ code don't benefit from AOP

© 2005 Olaf Spinczyk 14AOP with C++

* WANTED *
DEAD OR ALIVE

AspectC++

© 2005 Olaf Spinczyk 15AOP with C++

Requirements

an AOP solution for C++ has to ...
➢ support full obliviousness and quantification

– no preparation of the component code
– rich pointcut language

➢ be strong were C++ is strong
– no runtime system
– support for procedural, object-oriented, and generic code
– exploit and support the powerful static type system
– efficient code

➢ be usable
– simple
– easy integration

© 2005 Olaf Spinczyk 16AOP with C++

Technical Approaches

process

idea

source
code

(virtual)
machine code

coding

compilation

execution

source code
transformation

binary code
transformation

© 2005 Olaf Spinczyk 17AOP with C++

Technical Approaches

process

idea

source
code

(virtual)
machine code

coding

compilation

execution

source code
transformation

binary code
transformation

AOP with pure C++
• patterns
• templates, macros

© 2005 Olaf Spinczyk 18AOP with C++

AOP with pure C++ (1)

C. Czarnecki, U. Eisenecker, L. Dominick:

// generic wrapper (aspect) that adds counting to
// any queue class Q, as long as it implements the
// proper interface

template <class Q>
class Counting_Aspect : public Q {
 int counter; // introduction
public:
 void enqueue(Item* item) { // after advice
 Q::enqueue(item); counter++;
 }
};

© 2005 Olaf Spinczyk 19AOP with C++

AOP with pure C++ (2)

aspect weaving by template instantiation

// component code
class Queue { ... }

// wrappers (aspects)
template <class Q>
class Counting_Aspect : public Q { ... }
template <class Q>
class Tracing_Aspect : public Q { ... }

// template instantiation (weaving)
typedef Counting_Aspect<Queue> CountingQueue;
typedef Trace_Aspect<Counting_Queue> TraceCountingQueue;

© 2005 Olaf Spinczyk 20AOP with C++

AOP with pure C++ (3)

obliviousness for the client code

namespace components {
 class Queue { ... };
}
namespace aspects {
 template <class Q> class Counting_Aspect : public Q { ... };
}
namespace configuration { // select counting queue
 typedef aspects::Counting_Aspect<components::Queue> Queue;
}

using namespace configuration;
void client_code () {
 Queue queue; // Queue with all configured aspects
 queue.enqueue (new MyItem);
}

© 2005 Olaf Spinczyk 21AOP with C++

AOP with pure C++ (4)

C. Diggins: macros hide the template “magic”

// the CountingAspect as before
struct CountingAspect {
 // Inc and Dec is advice
 struct Inc { template<...> virtual void OnAfter (...) { ... } };
};

// the DEF_POINTCUT macro describes sets of member functions
DEF_POINTCUT(EnqueuePointcut)
 SET_PROCJOINPOINT1(enqueue, Item*, item)
END_POINTCUT

// the CROSSCUT macro combines a class, a pointcut, and an aspect
typedef CROSSCUT(Queue,EnqueuePointcut,
 CountingAspect::Inc) CountingQueue;

© 2005 Olaf Spinczyk 22AOP with C++

AOP with pure C++ - Review

obliviousness: not given
– component code has to be “prepared”

quantification: not given
– aspects have to be applied manually

strong: not really
– basically supports weaving in

public (virtual) class member functions

usable: not often

+ no special tool support required

– code is hard to develop, understand, and maintain

© 2005 Olaf Spinczyk 23AOP with C++

AOP with pure C++ - Review

obliviousness: not given
– component code has to be “prepared”

quantification: not given
– aspects have to be applied manually

strong: not really
– basically supports weaving in

public (virtual) class member functions

usable: not often

+ no special tool support required

– code is hard to develop, understand, and maintain

no tool needed, but too many restrictions

© 2005 Olaf Spinczyk 24AOP with C++

Technical Approaches

process

idea

(virtual)
machine code

coding

compilation

execution

binary code
transformation

Code Transformers
• AspectC++
• XWeaver
• DMS

source
code

source code
transformation

© 2005 Olaf Spinczyk 25AOP with C++

XWeaver (1)

.xml.xml
.xml

.xml.xml
.xml

XWeaver

.xml

XML Model
of Base Code

XML Model
of Modified
Code

AspectX
Program

© 2005 Olaf Spinczyk 26AOP with C++

.xml.xml
.xml

.xml.xml
.xml

XWeaver

.xml

XML Model
of Base Code

XML Model
of Modified
Code

AspectX
Program

 * a piece of code in XML *
<?xml version="1.0" encoding="ISO-8859-1"?>
...
<function>
 <type><name>int</name></type>
 <name>main</name>
 <parameter_list>()</parameter_list>
 <block>{}</block>
</function>
... a concrete syntax tree

XWeaver (1)

© 2005 Olaf Spinczyk 27AOP with C++

➢ the language-dependent part

.xml.xml
.xml

XWeaver

.xml

XML Model
of Base Code

XML Model
of Modified
Code

AspectX
Program

.xml.xml
.xml

.cpp

.h
.cpp
.h

.cpp

.h

.cpp

.h
.cpp
.h

.cpp

.h

C++
Base Code

Modified
Code

srcML

XWeaver (2)

© 2005 Olaf Spinczyk 28AOP with C++

current limitations:

➢ only supports “embedded C++”

➢ strongly limited join point model
– function/constructor/destructor execution only

reason: srcML parser problems

➢ no semantic analysis, no function call resolution
no call advice!

➢ E.g. “int (*f())(long) {}” yields nonsense

XWeaver (3)

© 2005 Olaf Spinczyk 29AOP with C++

current limitations:

➢ only supports “embedded C++”

➢ strongly limited join point model
– function/constructor/destructor execution only

reason: srcML parser problems

➢ no semantic analysis, no function call resolution
no call advice!

➢ E.g. “int (*f())(long) {}” yields nonsense

XWeaver (3)

The transformation approach is only viable
with a fully-fledged C++ parser/analyzer.

© 2005 Olaf Spinczyk 30AOP with C++

Code Transformation - Review

obliviousness: possible

+ weaver has full control

quantification: possible

+ only a matter of aspect language features

strong: definitely

+ generated code can be as efficient as tangled code

usable: yes

+ AspectJ-like programming model possible

+ easy integration into existing tool chains

+ platform-independent

© 2005 Olaf Spinczyk 31AOP with C++

Technical Approaches

process

idea

source
code

(virtual)
machine code

coding

compilation

execution

source code
transformation

binary code
transformation

Compiler Integration

© 2005 Olaf Spinczyk 32AOP with C++

Compiler Integration

Could an AOP extension for C++ make it into...

– commercial compilers?

– the C++ standardization?

ISO/IEC JTC1/SC22/WG21

– very busy with problems like “A<B<C>>”

– Detlef Vollmann summarizes “Aspects of Reflection in C++”

– Daveed Vandevoorde presents a “Metaprogramming
Extension” at the ACCU conference

– besides that: no revolutions

© 2005 Olaf Spinczyk 33AOP with C++

Compiler Integration

Could an AOP extension for C++ make it into...

– commercial compilers?

– the C++ standardization?

ISO/IEC JTC1/SC22/WG21

– very busy with problems like “A<B<C>>”

– Detlef Vollmann summarizes “Aspects of Reflection in C++”

– Daveed Vandevoorde presents a “Metaprogramming
Extension” at ACCU

– besides that: no revolutions

The transition from C to C++ took many years.

We should not expect this process to be
faster in the case of AOP.

© 2005 Olaf Spinczyk 34AOP with C++

Technical Approaches

process

idea

source
code

(virtual)
machine code

coding

compilation

execution

source code
transformation

binary code
transformation

Language-independent
AOP

Runtime Weaving
• Arachne

© 2005 Olaf Spinczyk 35AOP with C++

completely decouples the weaver from the parser, but ...

➢ aspect weaving in machine code ...

– strictly limits available AOP features

– has to be implemented for numerous platforms

➢ aspect weaving in virtual machine code ...

– is not feasible in most C++ dominated domains

– compromizes the strengths of C++

Weaving in Byte/Machine Code

© 2005 Olaf Spinczyk 36AOP with C++

Runtime Aspect Weaving

➢ same restrictions as static binary code weaving

➢ advantage:

– dynamicity – needed in some application scenarios

➢ disadvantage

– additional runtime system required

© 2005 Olaf Spinczyk 37AOP with C++

Runtime Aspect Weaving

➢ same restrictions as static binary code weaving

➢ advantage:

– dynamicity – needed in some application scenarios

➢ disadvantage

– additional runtime system required

Many C++ projects have problems
with crosscutting concerns.

Dynamic weaving is nice to have, but we should come
up with a viable static AOP solution first.

© 2005 Olaf Spinczyk 38AOP with C++

Binary Code Weaving - Review

obliviousness: given

quantification: limited
– restricted set of join point types and possible transformations

– introductions are a huge problem

strong: not really
– binary code weaving conflicts with code optimization

– potential loss of static type information

usable: specific cases
– highly platform dependent

– aspect program expressivenes depends on machine model

© 2005 Olaf Spinczyk 39AOP with C++

Summary

pure C++ source level binary level
obliviousness - + +
quantification - + o
strong - + -
usable o + -

© 2005 Olaf Spinczyk 40AOP with C++

pure C++ source level binary level
obliviousness - + +
quantification - + o
strong - + -
usable o + -

Summary

Sustained success of AOP in the C++ world requires:
– a source level weaving approach
– a convincing freely available implementation

© 2005 Olaf Spinczyk 41AOP with C++

The AspectC++ Project

“We are definitely not targeting C++ for our work.”
(Gregor Kiczales, July 2001)

➢ Language Level Goals:

– AspectJ-like syntax and semantic

– AspectC++ should fit well into the C++ philosophy

➢ Implementation Level Goals
– support for various hardware platforms and C++ dialects

– IDE integrations

© 2005 Olaf Spinczyk 42AOP with C++

AspectC++ vs. AspectJ

aspect SimpleTracing {
 pointcut tracedCall() :
 call(void FigureElement.draw(GraphicsContext));
 before() : tracedCall() {
 System.out.println("Entering: " + thisJoinPoint);
} }

aspect SimpleTracing {
 pointcut tracedCall() =
 call(“void FigureElement::draw(GraphicsContext&)”);
 advice tracedCall() : before () {
 cout << "Entering: " << JoinPoint::signature ());
} };

AspectJ

AspectC++

© 2005 Olaf Spinczyk 43AOP with C++

The C++ Philosophy

➢ C compatibility
– re-use of billions lines of code
– but: untyped pointers, preprocessor, ...

➢ strong focus on static typing
– generic programming
– function and operator overloading

➢ multi-paradigm development
– object-oriented, procedural, generic

➢ generative programming
➢ efficiency in time and space

© 2005 Olaf Spinczyk 44AOP with C++

Consequences for AspectC++

AspectC++ has to cope with the C++ philosophy
➢ weaving in C-style code
➢ statically typed aspect implementations

– “generic advice”

➢ multi-paradigm AOP
– advice for C-style functions
– advice for classes and objects
– advice for generic code and template instances
– advice for operator functions and conversion functions
– ...

➢ generation of efficient code

© 2005 Olaf Spinczyk 45AOP with C++

Compile-Time Joinpoint API
JoinPoint::That Type of affected class (call/execution)
JoinPoint::Target Type of the target class (call)

JoinPoint::Result Type of the function result
JoinPoint::Arg< i >::Type Type of the i

th function argument
JoinPoint::Arg< i >::ReferredType (with 0 ≤ i < ARGS)
JoinPoint::ARGS Number of arguments

JoinPoint::JPID Unique identifier for this joinpoint
JoinPoint::JPTYPE Type of the joinpoint (call/execution)

Runtime Joinpoint API
That* that() current object instance
Target* target() target object instance (call)

Result* result() result value
Arg< i >::ReferredType* arg< i >() value of i

th argument

...

AspectC++ – Joinpoint API

© 2005 Olaf Spinczyk 46AOP with C++

Compile-Time Joinpoint API
JoinPoint::That Type of affected class (call/execution)
JoinPoint::Target Type of the target class (call)

JoinPoint::Result Type of the function result
JoinPoint::Arg< i >::Type Type of the i

th function argument
JoinPoint::Arg< i >::ReferredType (with 0 ≤ i < ARGS)
JoinPoint::ARGS Number of arguments

JoinPoint::JPID Unique identifier for this joinpoint
JoinPoint::JPTYPE Type of the joinpoint (call/execution)

Runtime Joinpoint API
That* that() current object instance
Target* target() target object instance (call)

Result* result() result value
Arg< i >::ReferredType* arg< i >() value of i

th argument

...

AspectC++ – Joinpoint API

Complete signature of
the affected function
is available

© 2005 Olaf Spinczyk 47AOP with C++

Compile-Time Joinpoint API
JoinPoint::That Type of affected class (call/execution)
JoinPoint::Target Type of the target class (call)

JoinPoint::Result Type of the function result
JoinPoint::Arg< i >::Type Type of the i

th function argument
JoinPoint::Arg< i >::ReferredType (with 0 ≤ i < ARGS)
JoinPoint::ARGS Number of arguments

JoinPoint::JPID Unique identifier for this joinpoint
JoinPoint::JPTYPE Type of the joinpoint (call/execution)

Runtime Joinpoint API
That* that() current object instance
Target* target() target object instance (call)

Result* result() result value
Arg< i >::ReferredType* arg< i >() value of i

th argument

...

AspectC++ – Joinpoint API

Type-safe access to actual
values at runtime

© 2005 Olaf Spinczyk 48AOP with C++

Generic Advice

A compile-time switch with overloaded functions

aspect TraceService {
 advice call(...) : after() {
 ...
 cout << *tjp->result();
 }
};

... operator <<(..., int)

... operator <<(..., bool)

... operator <<(..., long)

... operator <<(..., Foo)

© 2005 Olaf Spinczyk 49AOP with C++

Generic Advice

A compile-time switch with overloaded functions

aspect TraceService {
 advice call(...) : after() {
 ...
 cout << *tjp->result();
 }
};

... operator <<(..., int)

... operator <<(..., bool)

... operator <<(..., long)

... operator <<(..., Foo)

▪ no runtime type checks are needed
▪ unhandled types are detected at compile-time
▪ functions can be inlined

© 2005 Olaf Spinczyk 50AOP with C++

Generic Advice
Instantiation of template metaprograms

template<class TJP, int i> struct ArgPrinter {
 static void work(TJP* tjp) {
 ArgPrinter<TJP, i-1>::work(tjp);
 cout << ", " << *tjp->arg<i>();
 }
};
template<class TJP, 0> struct ArgPrinter {...};

aspect TraceService {
 advice call(...) : after() {
 ...
 ArgPrinter<JoinPoint, JoinPoint::ARGS>::work(tjp);
 }
};

© 2005 Olaf Spinczyk 51AOP with C++

Generic Advice
Instantiation of template metaprograms

template<class TJP, int i> struct ArgPrinter {
 static void work(TJP* tjp) {
 ArgPrinter<TJP, i-1>::work(tjp);
 cout << ", " << *tjp->arg<i>();
 }
};
template<class TJP, 0> struct ArgPrinter {...};

aspect TraceService {
 advice call(...) : after() {
 ...
 ArgPrinter<JoinPoint, JoinPoint::ARGS>::work(tjp);
 }
};

full power of template metaprogramming
is available for aspects

© 2005 Olaf Spinczyk 52AOP with C++

AspectC++ Implementation

2 kg of syntax and semantics

© 2005 Olaf Spinczyk 53AOP with C++

Dealing with Real-World C++ Code

➢ a standard compliant C++ parser is HUGE
– currently 70.000 lines of AspecC++ code

➢ even commercial compilers are not fully compliant
– EDG announced to have the first fully standard compliant

parser a few years ago!

➢ compiler-specific language extensions
➢ the standard is interpreted differently

© 2005 Olaf Spinczyk 54AOP with C++

State of the Implementation

➢ works
– parser handles real-world code
– rich aspect language

➢ does not work yet
– weaving in template instances

➢ should be improved
– performance
– dependency management
– weaving in C code

© 2005 Olaf Spinczyk 55AOP with C++

AspectC++ IDEs

➢ AspectC++ Add-In for Visual Studio .NET
– commercial Visual Studio extension by pure-systems GmbH

➢ AspectC++ Development Tools for Eclipse (ACDT)
– open source Eclipse plugin (demo!)

© 2005 Olaf Spinczyk 56AOP with C++

User Community

➢ 150 subscribed AspectC++ users

– most of them from ...com

➢ 500 downloads of AspectC++ 0.9.1 (binary version)
since published at february, 10th

➢ application areas

– mobile phones and PDAs: Nokia, Siemens

– telecommunications: Samsung

– real-time databases: Linkøping University

– operating systems: Unversity of Erlangen (CiAO, ECOS, L4)

© 2005 Olaf Spinczyk 57AOP with C++

AspectC++ in the Future

➢ documentation
– language
– resource consumption
– application class coverage

➢ integration into Linux distributions
– Debian is on the way

➢ C support
– extension of the join point model

➢ more partners
– who wants to support the AspectC++ project?

© 2005 Olaf Spinczyk 58AOP with C++

K. Czarnecki, U.W. Eisenecker et. al.: "Aspektorientierte Programmierung
in C++", iX – Magazin für professionelle Informationstechnik, 08/09/10, 2001

 A comprehensive analysis of doing AOP with pure C++: what's possible and what not
 http://www.heise.de/ix/artikel/2001/08/143

C. Diggins: “Aspect-oriented Programming in C++”, Dr. Dobb's Journal,
August, 2004.

Semantic Designs, Inc.: "Aspect-oriented Programming with DMS"
 http://www.semdesigns.com/Products/DMS/AspectOrientedProgramming.html

pure-systems GmbH: AspectC++ Add-In for Visual Studio .NET
 http://www.pure-systems.com

P&P Software GmbH: “The XWeaver Project”
 http:://www.pnp-software.com/XWeaver

References

© 2005 Olaf Spinczyk 59AOP with C++

Thank you for your attention!

