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This talk is about ...

➢ the importance of C++ for the success of AOP

➢ different AOP approaches for C++

– language independent vs. pure C++ vs. extension

➢ the AspectC++ project

– history, language, implementation

➢ the future
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Observations: AOP Products

➢ IBM: AspectJ and AJDT

➢ BEA: AspectWerkz

➢ JBoss: JBoss AOP
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Observations: AOP Products

... for C++ developers:

➢ Semantic Designs: DMS

➢ P&P Software: XWeaver

➢ pure-systems: AspectC++ Add-In
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Observations: AOP Products

... for C++ developers:

➢ Semantic Designs: DMS

➢ P&P Software: XWeaver

➢ pure-systems: AspectC++ Add-In

these teams play in a different league
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Observations: AOP Research
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Java vs. C++ in the Real World
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Java vs. C++ in the Real World
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Java vs. C++ in the Real World
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C and C++ are still dominating!
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Java vs. C++ in the Real World

   AOP research & products don't 
reflect the real world.

Why?
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Reasons

C++ is one of the most complex languages today

 developing tools and extensions is painfully hard

C++ is not common in academic research

 no transfer from academia to industry
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The Problem

AOP research & products don't reflect the real world.

➢ the unwanted message is:

AOP is Java.

➢ the unwanted consequences are:

– no large scale adoption by the IT industry

– billions lines of C/C++ code don't benefit from AOP
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* WANTED *
DEAD OR ALIVE

AspectC++
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Requirements

an AOP solution for C++ has to ...
➢ support full obliviousness and quantification

– no preparation of the component code
– rich pointcut language

➢ be strong were C++ is strong
– no runtime system
– support for procedural, object-oriented, and generic code
– exploit and support the powerful static type system
– efficient code

➢ be usable
– simple
– easy integration
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Technical Approaches

process
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Technical Approaches

process

idea

source
code

(virtual)
machine code

coding

compilation

execution

source code
transformation

binary code
transformation

AOP with pure C++
• patterns
• templates, macros
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AOP with pure C++ (1)

C. Czarnecki, U. Eisenecker, L. Dominick:

// generic wrapper (aspect) that adds counting to
// any queue class Q, as long as it implements the
// proper interface

template <class Q>
class Counting_Aspect : public Q {
  int counter; // introduction
public:
  void enqueue(Item* item) { // after advice
    Q::enqueue(item); counter++;
  }
};
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AOP with pure C++ (2)

aspect weaving by template instantiation

// component code
class Queue { ... }

// wrappers (aspects)
template <class Q>
class Counting_Aspect : public Q { ... }
template <class Q>
class Tracing_Aspect : public Q { ... }

// template instantiation (weaving)
typedef Counting_Aspect<Queue> CountingQueue;
typedef Trace_Aspect<Counting_Queue> TraceCountingQueue;
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AOP with pure C++ (3)

obliviousness for the client code

namespace components {
   class Queue { ... };
}
namespace aspects {
  template <class Q> class Counting_Aspect : public Q { ... };
}
namespace configuration { // select counting queue
   typedef aspects::Counting_Aspect<components::Queue> Queue;
}

using namespace configuration;
void client_code () {
  Queue queue; // Queue with all configured aspects
  queue.enqueue (new MyItem);
}
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AOP with pure C++ (4)

C. Diggins: macros hide the template “magic”

// the CountingAspect as before
struct CountingAspect {
  // Inc and Dec is advice
  struct Inc { template<...> virtual void OnAfter (...) { ... } };
};
  
// the DEF_POINTCUT macro describes sets of member functions
DEF_POINTCUT(EnqueuePointcut)
  SET_PROCJOINPOINT1(enqueue, Item*, item)
END_POINTCUT

// the CROSSCUT macro combines a class, a pointcut, and an aspect
typedef CROSSCUT(Queue,EnqueuePointcut,
                 CountingAspect::Inc) CountingQueue;
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AOP with pure C++ - Review

obliviousness: not given
– component code has to be “prepared”

quantification: not given
– aspects have to be applied manually

strong: not really
– basically supports weaving in

public (virtual) class member functions

usable: not often

+ no special tool support required

– code is hard to develop, understand, and maintain
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AOP with pure C++ - Review

obliviousness: not given
– component code has to be “prepared”

quantification: not given
– aspects have to be applied manually

strong: not really
– basically supports weaving in

public (virtual) class member functions

usable: not often

+ no special tool support required

– code is hard to develop, understand, and maintain

no tool needed, but too many restrictions
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Technical Approaches

process

idea
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transformation

Code Transformers 
• AspectC++
• XWeaver
• DMS

source
code

source code
transformation
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XWeaver (1)
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.xml.xml
.xml

.xml.xml
.xml

XWeaver

.xml

XML Model
of Base Code

XML Model
of Modified
Code

AspectX
Program

         * a piece of code in XML *
<?xml version="1.0" encoding="ISO-8859-1"?>
...
<function>
  <type><name>int</name></type>
  <name>main</name>
  <parameter_list>()</parameter_list>
  <block>{}</block>
</function>
... a concrete syntax tree

XWeaver (1)
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➢ the language-dependent part

.xml.xml
.xml

XWeaver

.xml

XML Model
of Base Code
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of Modified
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AspectX
Program

.xml.xml
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.cpp

.h
.cpp
.h

.cpp

.h

.cpp

.h
.cpp
.h

.cpp

.h

C++
Base Code

Modified
Code

srcML

XWeaver (2)



© 2005 Olaf Spinczyk 28AOP with C++

current limitations:

➢ only supports “embedded C++”

➢ strongly limited join point model
– function/constructor/destructor execution only

reason: srcML parser problems

➢ no semantic analysis, no function call resolution
no call advice!

➢ E.g. “int (*f())(long) {}” yields nonsense

XWeaver (3)
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current limitations:

➢ only supports “embedded C++”

➢ strongly limited join point model
– function/constructor/destructor execution only

reason: srcML parser problems

➢ no semantic analysis, no function call resolution
no call advice!

➢ E.g. “int (*f())(long) {}” yields nonsense

XWeaver (3)

The transformation approach is only viable
with a fully-fledged C++ parser/analyzer.
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Code Transformation - Review

obliviousness: possible

+ weaver has full control

quantification: possible

+ only a matter of aspect language features

strong: definitely

+ generated code can be as efficient as tangled code

usable: yes

+ AspectJ-like programming model possible

+ easy integration into existing tool chains

+ platform-independent
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Technical Approaches
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Compiler Integration
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Compiler Integration

Could an AOP extension for C++ make it into...

– commercial compilers?

– the C++ standardization?

ISO/IEC JTC1/SC22/WG21

– very busy with problems like “A<B<C>>”

– Detlef Vollmann summarizes “Aspects of Reflection in C++”

– Daveed Vandevoorde presents a “Metaprogramming 
Extension” at the ACCU conference

– besides that: no revolutions
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Compiler Integration

Could an AOP extension for C++ make it into...

– commercial compilers?

– the C++ standardization?

ISO/IEC JTC1/SC22/WG21

– very busy with problems like “A<B<C>>”

– Detlef Vollmann summarizes “Aspects of Reflection in C++”

– Daveed Vandevoorde presents a “Metaprogramming 
Extension” at ACCU

– besides that: no revolutions

The transition from C to C++ took many years.

We should not expect this process to be
faster in the case of AOP.
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Technical Approaches

process

idea

source
code

(virtual)
machine code

coding

compilation

execution

source code
transformation

binary code
transformation

Language-independent
AOP

Runtime Weaving
• Arachne
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completely decouples the weaver from the parser, but ...

➢ aspect weaving in machine code ...

– strictly limits available AOP features

– has to be implemented for numerous platforms

➢ aspect weaving in virtual machine code ...

– is not feasible in most C++ dominated domains

– compromizes the strengths of C++

Weaving in Byte/Machine Code
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Runtime Aspect Weaving

➢ same restrictions as static binary code weaving

➢ advantage:

– dynamicity – needed in some application scenarios

➢ disadvantage

– additional runtime system required
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Runtime Aspect Weaving

➢ same restrictions as static binary code weaving

➢ advantage:

– dynamicity – needed in some application scenarios

➢ disadvantage

– additional runtime system required

Many C++ projects have problems
with crosscutting concerns.

Dynamic weaving is nice to have, but we should come
up with a viable static AOP solution first.
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Binary Code Weaving - Review

obliviousness: given

quantification: limited
– restricted set of join point types and possible transformations

– introductions are a huge problem

strong: not really
– binary code weaving conflicts with code optimization

– potential loss of static type information

usable: specific cases
– highly platform dependent

– aspect program expressivenes depends on machine model
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Summary

pure C++ source level binary level
obliviousness - + +
quantification - + o
strong - + -
usable o + -
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pure C++ source level binary level
obliviousness - + +
quantification - + o
strong - + -
usable o + -

Summary

Sustained success of AOP in the C++ world requires:
– a source level weaving approach
– a convincing freely available implementation
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The AspectC++ Project

“We are definitely not targeting C++ for our work.”
(Gregor Kiczales, July 2001)   

➢ Language Level Goals:

– AspectJ-like syntax and semantic

– AspectC++ should fit well into the C++ philosophy

➢ Implementation Level Goals
– support for various hardware platforms and C++ dialects

– IDE integrations
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AspectC++ vs. AspectJ

aspect SimpleTracing {
    pointcut tracedCall() :
        call(void FigureElement.draw(GraphicsContext));
    before() : tracedCall() {
        System.out.println("Entering: " + thisJoinPoint);
}   }

aspect SimpleTracing {
    pointcut tracedCall() =
        call(“void FigureElement::draw(GraphicsContext&)”);
    advice tracedCall() : before () {
        cout << "Entering: " << JoinPoint::signature ());
}   };

AspectJ

AspectC++
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The C++ Philosophy

➢ C compatibility
– re-use of billions lines of code
– but: untyped pointers, preprocessor, ...

➢ strong focus on static typing
– generic programming
– function and operator overloading

➢ multi-paradigm development
– object-oriented, procedural, generic

➢ generative programming
➢ efficiency in time and space
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Consequences for AspectC++

AspectC++ has to cope with the C++ philosophy
➢ weaving in C-style code
➢ statically typed aspect implementations

– “generic advice”

➢ multi-paradigm AOP
– advice for C-style functions
– advice for classes and objects
– advice for generic code and template instances
– advice for operator functions and conversion functions
– ...

➢ generation of efficient code
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Compile-Time Joinpoint API
JoinPoint::That Type of affected class (call/execution)
JoinPoint::Target Type of the target class (call)

JoinPoint::Result Type of the function result
JoinPoint::Arg< i >::Type Type of the i 

th function argument 
JoinPoint::Arg< i >::ReferredType                      (with 0 ≤ i < ARGS)
JoinPoint::ARGS Number of arguments

JoinPoint::JPID Unique identifier for this joinpoint
JoinPoint::JPTYPE Type of the joinpoint (call/execution)

Runtime Joinpoint API
That* that() current object instance
Target* target() target object instance (call)

Result* result() result value
Arg< i >::ReferredType* arg< i >() value of i 

th argument

...

AspectC++ – Joinpoint API
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Compile-Time Joinpoint API
JoinPoint::That Type of affected class (call/execution)
JoinPoint::Target Type of the target class (call)

JoinPoint::Result Type of the function result
JoinPoint::Arg< i >::Type Type of the i 

th function argument 
JoinPoint::Arg< i >::ReferredType                      (with 0 ≤ i < ARGS)
JoinPoint::ARGS Number of arguments

JoinPoint::JPID Unique identifier for this joinpoint
JoinPoint::JPTYPE Type of the joinpoint (call/execution)

Runtime Joinpoint API
That* that() current object instance
Target* target() target object instance (call)

Result* result() result value
Arg< i >::ReferredType* arg< i >() value of i 

th argument

...

AspectC++ – Joinpoint API

Complete signature of 
the affected function 
is available
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Compile-Time Joinpoint API
JoinPoint::That Type of affected class (call/execution)
JoinPoint::Target Type of the target class (call)

JoinPoint::Result Type of the function result
JoinPoint::Arg< i >::Type Type of the i 

th function argument 
JoinPoint::Arg< i >::ReferredType                      (with 0 ≤ i < ARGS)
JoinPoint::ARGS Number of arguments

JoinPoint::JPID Unique identifier for this joinpoint
JoinPoint::JPTYPE Type of the joinpoint (call/execution)

Runtime Joinpoint API
That* that() current object instance
Target* target() target object instance (call)

Result* result() result value
Arg< i >::ReferredType* arg< i >() value of i 

th argument

...

AspectC++ – Joinpoint API

Type-safe access to actual 
values at runtime
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Generic Advice

A compile-time switch with overloaded functions

aspect TraceService {
  advice call(...) : after() {
    ...
    cout << *tjp->result();
  }
};

... operator <<(..., int)

... operator <<(..., bool)

... operator <<(..., long)

... operator <<(..., Foo)
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Generic Advice

A compile-time switch with overloaded functions

aspect TraceService {
  advice call(...) : after() {
    ...
    cout << *tjp->result();
  }
};

... operator <<(..., int)

... operator <<(..., bool)

... operator <<(..., long)

... operator <<(..., Foo)

▪ no runtime type checks are needed
▪ unhandled types are detected at compile-time
▪ functions can be inlined
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Generic Advice
Instantiation of template metaprograms

template<class TJP, int i> struct ArgPrinter {
  static void work( TJP* tjp ) {
    ArgPrinter<TJP, i-1>::work(tjp);
    cout << ", " << *tjp->arg<i>();
  }
};
template<class TJP, 0> struct ArgPrinter {...};

aspect TraceService {
  advice call(...) : after() {
    ...
    ArgPrinter<JoinPoint, JoinPoint::ARGS>::work(tjp);
  }
};
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Generic Advice
Instantiation of template metaprograms

template<class TJP, int i> struct ArgPrinter {
  static void work( TJP* tjp ) {
    ArgPrinter<TJP, i-1>::work(tjp);
    cout << ", " << *tjp->arg<i>();
  }
};
template<class TJP, 0> struct ArgPrinter {...};

aspect TraceService {
  advice call(...) : after() {
    ...
    ArgPrinter<JoinPoint, JoinPoint::ARGS>::work(tjp);
  }
};

full power of template metaprogramming 
is available for aspects
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AspectC++ Implementation

2 kg of syntax and semantics
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Dealing with Real-World C++ Code

➢ a standard compliant C++ parser is HUGE
– currently 70.000 lines of AspecC++ code

➢ even commercial compilers are not fully compliant
– EDG announced to have the first fully standard compliant 

parser a few years ago!

➢ compiler-specific language extensions
➢ the standard is interpreted differently
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State of the Implementation

➢ works
– parser handles real-world code
– rich aspect language

➢ does not work yet
– weaving in template instances

➢ should be improved
– performance
– dependency management
– weaving in C code
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AspectC++ IDEs

➢ AspectC++ Add-In for Visual Studio .NET
– commercial Visual Studio extension by pure-systems GmbH

➢ AspectC++ Development Tools for Eclipse (ACDT)
– open source Eclipse plugin (demo!)
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User Community

➢ 150 subscribed AspectC++ users

– most of them from ...com

➢ 500 downloads of AspectC++ 0.9.1 (binary version) 
since published at february, 10th

➢ application areas

– mobile phones and PDAs: Nokia, Siemens

– telecommunications: Samsung

– real-time databases: Linkøping University

– operating systems: Unversity of Erlangen (CiAO, ECOS, L4)
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AspectC++ in the Future

➢ documentation
– language
– resource consumption
– application class coverage

➢ integration into Linux distributions
– Debian is on the way

➢ C support
– extension of the join point model

➢ more partners
– who wants to support the AspectC++ project?
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Thank you for your attention!


