
© 2005 by IBM and BEA

What's new in
AspectJ 5 ?

Adrian Colyer

AspectJ Lead

IBM STSM

Jonas Bonér

AspectJ Committer

BEA

2
What’s new in AspectJ5?

© 2005 by IBM and BEA

Agenda

� In the headlines: AspectJ and AspectWerkz

� Java 5 support in AspectJ

� Plain Java AOP with @AspectJ aspects

� Enhanced load-time weaving

� User experience with AspectJ 5 and AJDT

3
What’s new in AspectJ5?

© 2005 by IBM and BEA

AspectJ 5: AspectJ and AspectWerkz join forces

� Announced January 2005

� Complementary skills and technology

� Growing AOP is more important than competing

� Tools, Java 5, weaving, aspect libraries

� AspectJ 5 v1.5.0

� Initial release 2Q05

� Roadmap to bring more of the AW features into AJ5

� Backed by IBM and BEA, hosted on Eclipse

4
What’s new in AspectJ5?

© 2005 by IBM and BEA

Agenda

� In the headlines: AspectJ and AspectWerkz

� Java 5 support in AspectJ

� Plain Java AOP with @AspectJ aspects

� Enhanced load time weaving

� User experience with AspectJ 5 and AJDT

5
What’s new in AspectJ5?

© 2005 by IBM and BEA

Java 5

� Annotations

� Metadata that can be attached to many of the Java constructs

� Autoboxing

� Automatic conversion between primitive types and their OO equivalents (e.g. int and

Integer)

� Varargs

� Support for methods that take variable numbers of arguments, remember printf() in C?

� Covariance

� When overriding methods, you can choose to narrow the return type

� Generics

� Improves type checking, most useful for Collections

� Enums

� Allows for a fixed set of values to be defined for a type

6
What’s new in AspectJ5?

© 2005 by IBM and BEA

Annotations: simple matching

set(@SensitiveData * *)

get((@SensitiveData *) org.xyz..*.*)

execution(@Oneway * *.*(..))

within(@Secure *)

handler(!@Catastrophic *)

staticinitialization(@Persistent *)

call(* *.*(@Immutable *,..))

AspectJ 5 M2 ����

7
What’s new in AspectJ5?

© 2005 by IBM and BEA

Annotations: runtime type, context exposure

� Variations on this, target, args

@this(Foo)

@target(Foo)

@args(Foo,*,Goo)

� Exposing annotations as context
@this, @target, @args, @within

@withincode, @annotation

pointcut withinCriticalMethod(Critical c) :

@withincode(c);

AspectJ 5 M2 ����

9
What’s new in AspectJ5?

© 2005 by IBM and BEA

Annotations: declare annotation

declare @field: * *DAO+.*: @Persisted;

declare @method:

public * BankAccount+.*(..) :

@Secured(role=“supervisor”);

declare @type:

org.xyz.model..* : @BusinessDomain;

AspectJ 5 M2 ����

10
What’s new in AspectJ5?

© 2005 by IBM and BEA

Covariance

� How do covariant signatures affect join

point matching ?

� The signatures of B.whoAmI() are:

B B.whoAmI()

A A.whoAmI()

call(A whoAmI())

� matches

call(B A.whoAmI())

� does NOT match

class A {
A whoAmI() {

return this;
}

}

class B extends A {
B whoAmI() {

return this;
}

}

B b = new B();
b.whoAmI();

AspectJ 5 M2 ����

11
What’s new in AspectJ5?

© 2005 by IBM and BEA

Generics – the issues

� How to match generic signatures at join points

� Pattern wildcards vs generic wildcards (* == ?)

� How to expose generic types as context

� Generics and inter-type declarations

� Generic aspects ?

AspectJ 5 M3

12
What’s new in AspectJ5?

© 2005 by IBM and BEA

Matching generic signatures

� call, execution, get, set match based on signature

� For each of these signatures, which pointcuts will match?

void foo(List<Number> ns) {...}

execution(* foo(List<Number>))

execution(* foo(List<*>))

execution(* foo(List<?>))

execution(* foo(List<Object+>))

void goo(List<? extends Number> ns) {...}

call(* goo(List<?>))

call(* goo(List<? extends Number>))

call(* goo(List<Number+>))

����
����

����

����
����

����
����

AspectJ 5 M3

13
What’s new in AspectJ5?

© 2005 by IBM and BEA

Runtime types and generic signatures

� this, target, args match based on RTTI

� Do not allow wildcards

� BUT… erasure eliminates RTTI for generic types

� Rules in AspectJ 5:

� If we can determine that a pc will always match based on signature

� Match

� If we can determine that a pc will never match based on signature

� Do not match

� If we determine that a pc could match based on a runtime test

� Match with an “Unchecked” warning

14
What’s new in AspectJ5?

© 2005 by IBM and BEA

Example

Class X { void foo(List<? extends Number> {…} }

List<String> ls = …
List<Double> ld = …
List<? extends Number> ln = …

x.foo(ls) -> does not match
x.foo(ln) -> matches
x.foo(ld) -> matches with unchecked warning

����
����

����

15
What’s new in AspectJ5?

© 2005 by IBM and BEA

Agenda

� In the headlines: AspectJ and AspectWerkz

� Java 5 support in AspectJ

� Plain Java AOP with @AspectJ aspects

� Enhanced load-time weaving

� User experience with AspectJ 5 and AJDT

16
What’s new in AspectJ5?

© 2005 by IBM and BEA

The @AspectJ aspects

� AspectJ has

� ONE language

� ONE semantics

� ONE weaver

� With two different development styles

� Code Style

public aspect MyAspect { }

� Annotation Style

@Aspect public class MyAspect { }

17
What’s new in AspectJ5?

© 2005 by IBM and BEA

The @AspectJ aspects

� Java 5 annotations enable compilation with a standard Java
compiler

@Aspect public class MyAspect { }

org.aspectj.lang.annotation.*

@Aspect

@Pointcut

@Before, @Around, @After, ...

@DeclareParents, ...

� Design goals

� Support compilation of the largest subset of AspectJ
applications possible using a standard Java 5 compiler

� Be able to mix styles in the same application

18
What’s new in AspectJ5?

© 2005 by IBM and BEA

An @AspectJ aspect

@Aspect // defaults to singleton
public class NoOpAspect {

@Pointcut("execution(void Math.add(..))")
void addMethods(){};

@Before("addMethods()")
public void noop() {

System.out.print("in advice");

}

}

Aspect is @Aspect class

@Pointcut defines pointcuts

@Before annotated

methods are before advice

19
What’s new in AspectJ5?

© 2005 by IBM and BEA

thisJoinPoint & parameter binding

� With code style thisJoinPoint is implicitly available

before(Foo foo) : call(* dup(int)) && this(foo) {

println("at " + thisJoinPoint);

}

� With annotation style, JoinPoint must appear in the advice signature

@Before("call(* dup(int)) && this(foo)")

public void callFromFoo(JoinPoint thisJoinPoint, Foo foo) {

println("at " + thisJoinPoint);

}

20
What’s new in AspectJ5?

© 2005 by IBM and BEA

Inter-type declaration

� declare parents ... implements follows a mixin strategy

@Aspect public class MoodIndicator {

public static interface Moody {
Mood getMood();

}

@DeclareParents("org.xyz..*")
static class MoodyImpl implements Moody {

private Mood m_mood;
public Mood getMood() { return m_mood; }

}

...
}

22
What’s new in AspectJ5?

© 2005 by IBM and BEA

Agenda

� In the headlines: AspectJ and AspectWerkz

� Java 5 support in AspectJ

� Plain Java AOP with @AspectJ aspects

� Enhanced load-time weaving

� User experience with AspectJ 5 and AJDT

23
What’s new in AspectJ5?

© 2005 by IBM and BEA

Load-time weaving in AspectJ 5

� Weaving is ClassLoader aware

� Eligible classes are advised by aspects they are visible to

� One or more deployment descriptor(s)

� Enabled through

� Java 5 agents (JVMTI), JRockit agents (Java 1.3)

� Command line script

� Specific integration

� We introduce a deployment descriptor

META-INF/aop.xml

META-INF/aop.properties (J2ME …)

� Similar to AspectWerkz schemes

24
What’s new in AspectJ5?

© 2005 by IBM and BEA

Load-time weaving

� Controls

� Aspects to use

� Weaver configuration

� Eligible classes

<aspectj>
<aspects>

<!-- <aspect name="com.ltw.MyDebugAspect"/> -->
<aspect name="com.ltw.Aspect"/>

</aspect>
<weaver options="-XlazyTjp">

<include within=“com.webapp..*"/>
</weaver>

</aspectj>

25
What’s new in AspectJ5?

© 2005 by IBM and BEA

Deployment-time aspect definition

abstract aspect com.generic.AbstractLogging {

abstract pointcut tracingScope();

...

}

<aspectj>

<aspects>

<concrete-aspect

name="com.ltw.DeploymentTimeAspect"

extends="com.generic.AbstractLogging">

<pointcut name="tracingScope"

expression="within(com.biz.*)"/>

</concrete-aspect>

</aspect>

<weaver options="-XlazyTjp"/>

</aspectj>

27
What’s new in AspectJ5?

© 2005 by IBM and BEA

Agenda

� In the headlines: AspectJ and AspectWerkz

� Java 5 support in AspectJ

� Plain Java AOP with @AspectJ aspects

� Enhanced load-time weaving

� User experience with AspectJ 5 and AJDT

28
What’s new in AspectJ5?

© 2005 by IBM and BEA

AJDT

� Simply understands either style (code or annotation)
� Integrates the enhanced LTW support

� Plus other benefits unrelated to AspectJ 1.5.0

� Visualizer enhancements

� deow, general markers

� Incremental compilation & structure model

� Eager parsing & model update

� Cross-reference view

29
What’s new in AspectJ5?

© 2005 by IBM and BEA

� 1.5.0M1 released December 10th

� Included binary weaving of Java 5 compiled code

� Current dev stream

� Compilation of Java 5 features and full support for annotations,

autoboxing, varargs, covariance

� For release as 1.5.0M2

� Work on enhanced LTW and annotation style going on in a branch

� Generics work to be done, for release as 1.5.0M3

� Possibly a 1.5.0M4 then release candidates and a final release

� 2Q05

� AJDT support available for the new features shortly after each
release

AspectJ 5 Timeline

30
What’s new in AspectJ5?

© 2005 by IBM and BEA

Summary

� AspectJ 5 integrates Java 5 features into the language

� Improved performance

� Annotation style development

� Enhanced Load Time Weaving support

� Much more flexible deployment options

� AJDT will offer a consistent experience for both styles of development

31
What’s new in AspectJ5?

© 2005 by IBM and BEA

Useful resources

� More info

�http://eclipse.org/aspectj

�http://aspectwerkz.codehaus.org

�For new language features, see the

AspectJ developers notebook linked

from the AspectJ homepage

�Buy the book ☺

Adrian Colyer
adrian_colyer@uk.ibm.com

Jonas Bonér
jboner@bea.com

36
What’s new in AspectJ5?

© 2005 by IBM and BEA

Around advice and custom proceed()

@Around("call(int Command.dup(int))

&& target(callee)

&& args(i)")

public int doNothing(MyJoinPoint jp, Command callee, int i) {

return jp.proceed(callee, 2) + 3;

}

public static interface MyJoinPoint
extends ProceedingJoinPoint {

public int proceed(Command callee, int arg);
}

