aA0SD

International Conference on
Aspect-Oriented Software Development

Spring & Aspectd

Rob Harrop Adrian Colyer
Spring AOP Lead Aspectd Lead
Interface21 IBM

© 2005

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Aspect-Oriented Software Development

= What is Spring?

= Spring AOP

= Dependency Injection and Aspects
= Aspects and Dependency Injection

= Futures

() aspect-oriented software development

Spring and Asp;(;:;;

" International Conference on
Aspect-Oriented Software Development

What is Spring?

= Framework for simplifying J2EE
= Uses Plain Old Java Objects (POJO)s
» Eliminates middle-tier glue
» Addresses end-to-end application requirements

» Not just a one tier solution
= Comprehensive feature set

= Highly sophisticated loC container
= Pure Java AOP implementation

» Focuses on solving common J2EE problems
» Data access abstractions for popular tools

= TopLink, Hibernate, JDO etc.
= Much more

= Web MVC, remoting, management, transaction management
= Many more...

() aspect-oriented software development

] Spring and AspectJ
3 -_— e 4 2005

“"J International Conference on
Aspect-Oriented Software Development

What is Spring?

= Fully portable across application servers

= Core container can run in any environment, not just an application
server

= Many applications don’t need an application server: just a web
container

= Runs in J2SE 1.3 and above
= (Can take advantage of 1.4 features automatically

() aspect-oriented software development

] Spring and AspectJ

International Conference on
Aspect-Oriented Software Development

loC Using Setter Injection

public class ServiceImpl implements Service {
private int timeout;
private AccountDao accountDao;

public void setTimeout (int timeout) ({
this.timeout = timeout;

}

public void setAccountDao (AccountDao accountDao) {
this.accountDao = accountDao;

}

// Business methods from Service

<bean id="service" class="com.mycompany.service.ServiceImpl">
<property name="timeout"><value>30</value></property>
<property name="accountDao'"><ref local="accountDao"/></property>
</bean>

() aspect-oriented software development

Spring and AspectJ
5 -_— e 4 2005

A0O0SD.OF

International Conference on
Aspect-Oriented Software Development

loC Using Constructor Injection

public class ServiceImpl implements Service ({
private int timeout;
private AccountDao accountDao;

public ServiceImpl (int timeout, AccountDao accountDao)
{

this.timeout = timeout;

this.accountDao = accountDao;

}

// Business methods from Service

<bean id="service"
class="com.mycompany.service.ServiceImpl">
<constructor—-arg><value>30</value></constructor—-arg>
<constructor—-arg><ref local="accountDao"/></constructor-
arg>

</bean>

() aspect-oriented software development

Spring and AspectJ

“ /' International Conference on
Aspect-Oriented Software Development

‘Traditional approach

= Hard-code use of new

= What if something changes?

= How do we externalize configuration from Java code, important if things change
= Use a custom factory

= More code to write in the application

= Just move the hard-coding or ad-hoc parameterization one step farther away
= ... “Service Locator” approach traditional in J2EE

() aspect-oriented software development s dA |
7 ring and Aspect
7 -— —""""Y P

© 2005

4 International Conference on

/4 aosD

Aspect-Oriented Software Development

‘Benefits of Dependency Injection

Unit testable
Dependencies are explicit
Consistent
Can wire up arbitrarily complicated graphs
You don’t need to write plumbing code
Pluggability
» Reduces cost of programming to interfaces to zero

() aspect-oriented software development

i Spring and AspectJ

EIDSD

" Inter I.Cf
Aspec tD tdetwarD elopment

Sprlng AOP

Designed for usability
Designed with J2EE in mind
Proxy-based

» Uses runtime-generated proxies to add concerns

» Performance is NOT the key driver

Supports a declarative and programmatic configuration model
|deal partner to 10C

= Any Spring bean can be transparently advised

= Advice, pointcuts and introductions can be managed and configured
using loC as well

() aspect-oriented software development

] Spring and AspectJ
9 -_— e 4 2005

“ /' International Conference on
Aspect-Oriented Software Development

' Spring AOP Library

= Comprehensive set of pre-built aspects
= Transaction management
= Security (with Acegi)
= Tracing and debugging
= Remoting proxies

= JAX-RPC
= Hessian
= Burlap
= HTTP Invoker
» Performance monitoring
= Framework Internals
» Lock management
» JMX proxies
= EJB proxies
= Concurrency throttling

() aspect-oriented software development

i Spring and AspectJ

[
4 International Conference on

\

a2)
r A |
' & |

Aspect-Oriented Software Development

Case Study: Transaction Management

= Example of AOP solving a real problem in enterprise middleware
= Consistent abstraction

1

PlatformTransactionManager
Does not reinvent transaction manager

Choose between JTA, JDBC, Hibernate, JDO etc with simple changes
fo configuration not Java code

No more rewriting application to scale up from JDBC, Hibernate or
JDO local transactions to JTA global transactions

Use the simplest transaction infrastructure that can possibly work

() aspect-oriented software development

Spring and AspectJ

2005

“"J International Conference on
Aspect-Oriented Software Development

Programmatic Transaction Management

= Simpler, cleaner API than JTA
= Exception hierarchy as with DAO

= No need to catch multiple exceptions without a common base class

= Unchecked exceptions

» Use the same API for JTA, JDBC, Hibernate etc.
= Write once have transaction management anywhere

() aspect-oriented software development s dA |
; ring and Aspect
12 - "9 P

2005

13

/4 aosD

4 International Conference on

Aspect-Oriented Software Development

Declarative Transaction Management

» Most popular transaction management option

= Built on same abstraction as programmatic transaction management

= Declarative transaction management for any POJO, without EJB:
even without JTA (single database)

= More flexible than EJB CMT

= Declarative rollback rules: roll back on MyCheckedException

= Supports nested transactions and savepoints if the underlying resource
manager does

= Non-invasive: Minimizes dependence on the container
= No more passing around EJBContext

() aspect-oriented software development

i Spring and AspectJ
— e 4 =9 2005

_— T;: 4 International Conference on
Aspect-Oriented Software Development

'AOP in Transaction Management

Uses advised proxies behind the scenes

Users don’t see AOP

Provides the necessary infrastructure to enhance object behaviour
at runtime

Removes the need for a deploy-time code generation

() aspect-oriented software development

i Spring and AspectJ

“"J International Conference on
Aspect-Oriented Software Development

Make Servicelmpl POJO Transactional

public class Servicelmpl implements Service {
private int timeout;
private AccountDao accountDao;

public void setTimeout(int timeout) {
} this.timeout = timeout;

public void setAccountDao(AccountDao accountDao) {
} this.accountDao = accountDao;

Fublic void doSomething() throws ServiceWithdrawnException {

}

<bean id="serviceTarget" class="com.mycompany.service.Servicelmpl">
<property name="timeout"><value>30</timeout></property>
/b<property name="accountDao"><ref local="accountDao"/></property>
</bean>

() aspect-oriented software development

] Spring and AspectJ

A0SD

" International Conference on
Aspect-Oriented Software Development

Make Servicelmpl Transactional

= Create an advised proxy to the service implementation:

<bean id="service"
class=“org.springframework.transaction.interceptor. TransactionProxyFactoryBean"/>
<property name="target">
<ref local="serviceTarget"/>
</property>
<property name="transactionManager">
<ref local="localTransactionManager"/>
</property>
<property name="transactionAttributes">
<props>
<prop key="do*">
PROPAGATION_REQUIRED,-ServiceWithdrawnException
</prop>
</props>
</property>
</bean>

() aspect-oriented software development

16 — 4

Spring and AspectJ

2005

“"J International Conference on
Aspect-Oriented Software Development

Make Servicelmpl Transactional

= Rollback rule means that we don’t need to call
setRollbackOnly ()

= Spring also supports programmatic rollback
= Can run this from a JUnit test case

= Doesn’t depend on a heavyweight container
= Can work with JTA, JDBC, Hibernate, JDO, iBATIS transactions...
= Simply change definition of transaction manager

() aspect-oriented software development

] Spring and AspectJ

A0SD

" International Conference on
Aspect-Oriented Software Development

Make Servicelmpl Transactional

»= Don’t actually need this much XML per transactional object
= Alternative approaches, simpler in large applications:

= Use “auto proxy creator” to apply similar transaction attributes to
multiple beans

» Use a “template” bean definition to capture common properties
(transactionManager, transaction attributes)

» Use metadata (annotations) or another pointcut approach to apply
transactional behaviour to multiple classes

() aspect-oriented software development

Spring and AspectJ
18 - "9 p2005

_— T;: 4 International Conference on
Aspect-Oriented Software Development

:AOP in Spring Summary

= Spring is:
= Framework for simplifying J2EE
= Simple introduction to AOP

= Solving real world problems today
= AOP is integral to Spring
= Many framework internals build on AOP
= Many external features use AOP behind the scenes

() aspect-oriented software development 4
10 . _ Spring and AspectJ

© 2005

w;aosn
.Iﬂtp ttD l-l:‘:l:I; ftwar D elopment

: Spring AOP and AspectJ

= Spring AOP well suited to
= Coarse grained application

= Enterprise services
= Working with Spring beans

= Aspectd well suited to
» Fine grained application
= Aspect-oriented programming

= Why not use them together?

() aspect-oriented software development o dA |
20 . _ pring and Aspect

© 2005

“"J International Conference on
Aspect-Oriented Software Development

Dependency Injection and Aspects

» Aspects are a first class part of your system

= Why wouldn’t you want to configure them just like any other component
in the design?

= This is especially true of infrastructure/auxiliary aspects

= Aspectd aspects can easily be configured by Spring just like any
other Spring bean

() aspect-oriented software development s dA |
; ring and Aspect
21 - "9 P

2005

; International Conference on <<aSpeCt>>

Aspect-Oriented Software Development

:HibernateManager

The Simple Insurance Application \

:SimplelnsuranceApp L—/ H

vali .
alidates simplelnsurance
:Simplelnsurancelmpl
[Y :CustomerDaolmpl
<<aspect>>
:BusinessRules
Validation :ClaimDaolmpl
?]
:CustomerValidator :PolicyDaolmpl
:ClaimValidator
) aspect-oriented software development
29 /] Spring and AspectJ

2005

r | Py
4 A0SD.0O%S
{7&7\ International Conference on

Aspect-Oriented Software Development

)

1] HeloWo... [J] DontUse... [J] TrackFi... [J] Hberna... [J] Hellowo... [J] Logger.... [Custome... [J] Someone... [J] Simple... ‘
- |<bean "hibernateManager"
"insurance.dao.hibernate.HibernateManager"
"aspectOf">
- <property "mappingFiles">
~ <list>

<value>mappings/address.hbm.xml</value>
<value>mappings/policy.hbm.xml</value>
<value>mappings/customer.hbm.xml</value>
<value>mappings/claim.hbm.xml</value>

</list>
</property>
</bean>
- <bean "businessRulesValidation"
"insurance.model.validation.BusinessRulesValidation"
"aspectOf">
v <property "validators">
<list>
<ref "policyValidator"/>
SR
</list>
</property>
</bean>
<
() aspect-oriented software development Spring and AspectJ
23 - 4 ;

© 2005

A0SD

" International Conference on
Aspect-Oriented Software Development

Non-singleton aspects

= Singleton aspects fit well with the Spring bean model

= QOther aspect instantiation models are more complex
=Separate instantiation and configuration

Instantiation model aspectOf() signature
singleton aspectOf()

perthis aspectOf(Object)
pertarget aspectOf(Object)
percflow aspectOf() (in cflow)
percflowbelow aspectOf() (in cflowbelow)
pertypewithin aspectOf(Class)

() aspect-oriented software development

24 e

i .
Spring and AspectJ

2005

_— T;: 4 International Conference on
Aspect-Oriented Software Development

' Non-singleton aspects

» Let Aspectd manage the aspect instantiation
= Let Spring manage the configuration

= Basic strategy...

= after returning... from the initialization of an aspect bean
= ask the Spring BeanFactory to configure it

() aspect-oriented software development

25 e

i .
Spring and AspectJ

© 2005

fﬂaosn

International Confer

4 Aspect-0ri d Software Develnpment
|

@ Retention(RetentionPolicy. RUNTIME)
@interface Bean {

String value default
}

() aspect-oriented software development

_ Spring and AspectJ

7] aosD

“ /' International Conference on
Aspect-Oriented Software Development

@Bean usage

@Bean(“SessionManager’)
public aspect SessionManager percflow(session()) {
private Session session;
private SessionFactory factory;
public void setSessionFactory(SessionFactory factory) {
this.factory = factory;

}

pointcut session() : ...;

before() : session() {
session = factory.beginSession();

}

after() : session() { session.close(); }

() aspect-oriented software development

] Spring and AspectJ

“"J International Conference on
Aspect-Oriented Software Development

Configuration aspect

public abstract aspect BeanConfigurator {

pointcut beanCreation(Bean beanAnnotation,
Object beanlnstance) :
initialization((@Bean *).new(..)) &&
@this(beanAnnotation) &&
this(beanlnstance);

after(Bean beanAnnotation, Object beanlnstance) returning :
beanCreation(beanAnnotation,beaninstance)

{
String beanName = beanAnnotation.value();
if (beanName.equals(*’)) beanName = beanlnstance.getClass().getName();
configureBean(beanlnstance,beanName);

}

protected abstract void configureBean(Object bean,
String beanName);

() aspect-oriented software development o dA |
08 . : pring and Aspect

2005

A0SD

"/ International Conference on
Aspect-Oriented Software Development

Spring Configuration...

public aspect SpringBeanConfigurator extends BeanConfigurator
implements BeanFactoryAware {

private AutowireCapableBeanFactory beanFactory;
public void setBeanFactory(BeanFactory factory) {
this.beanFactory = (AutowireCapableBeanFactory) factory;

}

protected void configureBean(Object bean, String beanName) {
beanFactory.applyBeanPropertyValues(bean,beanName);

}

() aspect-oriented software development

Spring and AspectJ

A0SD

“ /' International Conference on
Aspect-Oriented Software Development

' Spring Configuration...

<?xml version="1.0" encoding="UTF-8"7?>
<IDOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean name="SpringBeanConfigurator"
class="org.aspectj.spring.SpringBeanConfigurator"
factory-method="aspectOf"/>

<bean name="SessionManager” class="org.xyz.SessionManager”>
<property name="sessionFactory”>
<ref bean="SessionFactory”/>
</property>
</bean>

<bean name="SessionFactory” ... />
</beans>

() aspect-oriented software development

Spring and AspectJ
30 - "9 p2005

_— T;: 4 International Conference on
Aspect-Oriented Software Development

Aspects and Dependency Injection

= You can obviously use the @Bean annotation on any type
= Not just aspects

= Can also use aspects to perform dependency injection directly

= Let’s look at two examples:
= Context 1oC

= Per-execution dependency injection

() aspect-oriented software development 4
a1 . _ Spring and AspectJ

© 2005

_— T;: 4 International Conference on
Aspect-Oriented Software Development

' Context loC

public interface INeedInsuranceDAOs {
void setCustomerDAO(CustomerDAO custDAO);
void setClaimDAQO(ClaimDAO claimDAO);
void setPolicyDAO(PolicyDAQO policyDAO);

}

Implemented by any type that needs access to the insurance DAOs...

() aspect-oriented software development

32 —_— e

Spring and AspectJ
=0 2005

“"J International Conference on
Aspect-Oriented Software Development

Context loC

public aspect HibernateManager {

private ClaimDAQ claimDao;
private CustomerDAO custDao;
private PolicyDAO policyDao;

pointcut needsDAOsCreation(INeedinsuranceDAOs inNeed)
. initialization(INeedlnsuranceDAOs+.new(..)) &&
this(inNeed);

after(INeedlnsuranceDAOs inNeed) returning :
needsDAOsCreation(inNeed) {
inNeed.setClaimDAO(claimDao);
inNeed.setCustomerDAO(custDao);
inNeed.setPolicyDAO(policyDao);

}
}

() aspect-oriented software development

Spring and AspectJ
33 - "9 p2005

“"J International Conference on
Aspect-Oriented Software Development

Per-execution DI

class HibernateDao {
private Session session;
public void setSession(Session session) {this.session = session;}
protected Session getSession() { return session; }

}

public class CustomerDao extends HibernateDao{

public void insertCustomer(Customer cust) {
getSession().save(cust);
}

() aspect-oriented software development o dA |
2 . : pring and Aspect

2005

“"J International Conference on
Aspect-Oriented Software Development

Per-execution DI
aspect ... {

pointcut hibernateTransaction(HibernateDao dao) :
execution(* HibernateDao+.%(..)) && this(dao) &&
lwithin(HibernateDao);

before(HibernateDao dao) : hibernateTransaction(dao) {
dao.setSession(session);

() aspect-oriented software development

35 o

Spring and AspectJ
e 4 2005

4 International Conference on

/) aosD

Aspect-Oriented Software Development

Futures for Spring/Aspectd integration

Shared pointcut language

Out-of-the-box support for @Bean

Improvements to Spring XML Schema for aspects

Joint work on aspect libraries

= Make more of the Spring aspect libraries easily accessible to AspectJ
users

= Potentially additional Aspectd-only Spring aspects for finer-grained
scenarios

] Spring and AspectJ

() aspect-oriented software development

" International Conference on
Aspect-Oriented Software Development

Library Example: Aceqgi

» The Spring Acegi security library has Aspectd support built in

<bean id="bankManagerSecurityInterceptor"
class="net.sf.acegisecurity.intercept.method.aspectj.AspectJSecurityInterceptor">

<property name="validateConfigAttributes"><value>true</value></property>
<property name="authenticationManager">
<ref bean="authenticationManager"/>
</property>
<property name="accessDecisionManager">
<ref bean="accessDecisionManager"/>
</property>
<property name="runAsManager">
<ref bean="runAsManager"/>
</property>
<property name="afterlnvocationManager">
<ref bean="afterlnvocationManager"/>
</property>
<property name="objectDefinitionSource">
<value>
net.sf.acegisecurity.context.BankManager.delete*=ROLE_SUPERVISOR,RUN_AS SE
RVER
net.sf.acegisecurity.context.BankManager.getBalance=ROLE_TELLER,
ROLE_SUPERVISOR,BANKSECURITY_CUSTOMER,RUN_AS_SERVER

</value>
</property>
</bean>) aspect-oriented software development ‘
37 / — _Sprlng and AspectJ

2005

A0SD

"/ International Conference on
Aspect-Oriented Software Development

Library Example: Aceqgi

public aspect BankingSecurityManager extends
AcegiSecurityManager {

protected pointcut securedOperations() :
execution(* BankManager+.%(..));

}

<bean id="bankingSecurityManager"
class="BankingSecurityManager"
factory-method="aspectOf">
<property name="securitylnterceptor">
<ref bean="bankManagerSecuritylnterceptor"/>
</property>
</bean>

() aspect-oriented software development

Spring and AspectJ
38 - "9 p2005

" International Conference on
Aspect-Oriented Software Development

Summary

= Spring has a coarse-grained AOP framework
» Used for enterprise services

= And also extensively in the construction of Spring itself

= Aspectd and Spring are complementary
= DI of aspects, aspects for DI

= Ongoing collaboration to increase integration between Spring and
AspectJ

= Pointcut language, configuration, libraries

() aspect-oriented software development

39 — 4

Spring and AspectJ

2005

