
Adopting AOP

A measured adoption process
proven steps to follow
incremental investment
constant payback
risk minimization

Adopting AOP

A measured adoption process
proven steps to follow
incremental investment
constant payback
risk minimization

share our best material

get feedback so we all
leave with a better story

AspectMentor AOP Course - Adoption

Adopting AOP

reward

time & confidence

AspectMentor AOP Course - Adoption

Adopting AOP

reward

time & confidence

Risky Space

AspectMentor AOP Course - Adoption

Adopting AOP

time & confidence

exploration
enforcement

auxiliary /
infrastructure

core /
business

reward

AspectMentor AOP Course - Adoption

Within The Phases

local

individual

project

team

product

spread

team

library

company

platform

AspectMentor AOP Course - Adoption

Adopting AOP

time & confidence

exploration
enforcement

auxiliary /
infrastructure

core /
business

reward

AO analysis, design
strategic implications

AspectMentor AOP Course - Adoption

Exploration & Enforcement

• Aspects
– that monitor, analyze, debug system

• can use individually or share with team
– that ensure design integrity

• can run privately, as part of nightly build, or shared w/ team

• Sharing with team can be supported by
– integration in IDE or including in ant script

• No runtime dependency on AspectJ
– production code has not been touched by AspectJ

• Lets you learn AOP and AspectJ in situ

• Can “use it without telling your boss”

AspectMentor AOP Course - Adoption

Watching Finder Methods

/**
* Track queries and how many results they return...
*/
public aspect TrackFinders {
private static Logger logger =
Logger.getLogger(TrackFinders.class);

pointcut findPolicies(String criteria):
execution(Set SimpleInsurance.findPoliciesBy*(..))
&& args(criteria);

after(String criteria) returning(Set found):
findPolicies(criteria) {

if (logger.isInfoEnabled()) {
logger.info("Finding policies by " + criteria

+ "-> " + found.size() + " matches");
}

}
}

DEMO…

http://images-jp.amazon.com/images/P/0321245873.01.LZZZZZZZ.jpg

AspectMentor AOP Course - Adoption

Example: Problem Diagnosis

• WebSphere service team have created a
set of aspects that capture diagnostics
related to common sources of problems
in WebSphere applications
– eg. session size, releasing connections, use of

threads,…
• An engineer from the WebSphere service

team says:
– “it can cut in half the time required to gather the

right diagnostics”
– “time taken for subsequent analysis is reduced by

more than half”

AspectMentor AOP Course - Adoption

Restrict Standard Streams

public aspect SystemOutputStreamsEnforcement {
pointcut syserrAccess(): get(* System.err);
pointcut sysoutAccess(): get(* System.out);
declare warning : syserrAccess() || sysoutAccess() :

"Please don’t write messages to System out or err.";
}

AspectMentor AOP Course - Adoption

Architecture Enforcement

insurance.model.listeners insurance.model.

insurance.model.impl

insurance.dao

insurance.dao.inmemoryinsurance.dao.hibernate

insurance.ui

insurance.model.validation

persistence

http://images-jp.amazon.com/images/P/0321245873.01.LZZZZZZZ.jpg

AspectMentor AOP Course - Adoption

Architecture Enforcement – Modules

public aspect ArchitectureEnforcement {

public pointcut uiCall():
(call(* insurance.ui..*(..))
|| call(insurance.ui..new(..))

&& !call(* java.lang.Object.*(..));

public pointcut modelCall():
<similar>;

public pointcut modelImplCall() :
<similar>;

...one per module...

AspectMentor AOP Course - Adoption

Architecture Enforcement – Modules

...
public pointcut inUI():

within(insurance.ui..*);

public pointcut inModel():
within(insurance.model.*);

public pointcut inModelImpl():
within(insurance.model.impl..*);

...one per module...

AspectMentor AOP Course - Adoption

Architecture Enforcement – Rules

...

declare warning: uiCall() && !inUI():
"No calls into the user interface";

declare warning: modelImplCall() && !inModelImpl():
"Please use interfaces in insurance.model instead";

declare warning: daoCall() && !(inModelImpl() || inAnyDAO()):
"Only model and DAO implementers should use DAO interface";

• this mechanism is programmable
• so it is very flexible
• not a one-architecture fits all tool

AspectMentor AOP Course - Adoption

Architecture Enforcement At Work

AspectMentor AOP Course - Adoption

Example: API Scanner

• A set of aspects deployed within IBM SWG
– used by almost 30 projects / products now

• Uses declare warning to find unwanted cases
– where one project / product uses APIs of another project /

product
– for example, calling public methods that are not considered

part of the external interface
• Wrapped up in a simple easy-to-deploy script
• They have found over 50,000 such places

– respecting design modularity increases flexibility
– potentially big impact on future time-to-market

AspectMentor AOP Course - Adoption

Introducing E&E Aspects in a Team

• Can use standard Java 5 compiler…
• Can use linked source folders in AJDT…

– main project does not need AspectJ nature
• Can use binary weaving in build script

– an additional stage after main project has built
– no need to switch to iajc for whole project build

AspectMentor AOP Course - Adoption

Auxiliary/Infrastructure

• Whole team awareness
– developers know aspects are there
– runtime dependency on aspectjrt.jar

• But only some developers
– change working practices
– change day-to-day tools

• Easily understood business case

AspectMentor AOP Course - Adoption

Examples…

• Tracing, logging
• Error and exception handling
• Monitoring and statistics gathering
• Transactions
• Session management (for e.g. persistence)
• Threading
• Synchronization
• Caching
• Remote access
• Asynchronous invocation
• …

AspectMentor AOP Course - Adoption

Typical Process

• One or two developers write aspects
• Package into aspect library
• Build process has an additional step

– link application jars with aspect library

• Remember:
– a developer can use an operating system without

being able to implement it
– a developer can use infrastructure aspects without

being able to implement them

AspectMentor AOP Course - Adoption

Building the Case

• Factors:
– Number of source files in project
– Average time spent per file over a release

• (e.g. on tracing code)

100 files x 15 minutes = 25 person hours

500 files x 15 minutes = 3.5 person weeks

1000 files x 15 minutes = 7 person weeks

AspectMentor AOP Course - Adoption

Building the Case

• You can certainly
– write and test a simple tracing aspect in < 25 hours
– write and test a good tracing aspect in < 50 hours
– and save a lot of time

100 files x 15 minutes = 25 person hours

500 files x 15 minutes = 3.5 person weeks

1000 files x 15 minutes = 7 person weeks

AspectMentor AOP Course - Adoption

Example: Exception Management

insurance.model

SIException

RuntimeException

SIPersistenceException

throws…

insurance.dao
throws…

insurance.dao.hibernate HibernateException

AspectMentor AOP Course - Adoption

Example: Exception Management

insurance.model

SIException

RuntimeException

SIPersistenceException

throws…

insurance.dao
throws…

insurance.ui

AspectMentor AOP Course - Adoption

Example: Preliminary Exception Management

package insurance.ui;
import ...;

public aspect ExceptionHandling {
private static final String title =
"Simple Insurance Exception";

Object around() : SystemArchitecture.modelCall()
&& SystemArchitecture.inUI()
&& !within(ExceptionHandling) {

Object ret = null;
try {
ret = proceed();

} catch (SIException ex) {
MessageDialog.openError(SimpleInsuranceApp.getShell(),

title,
"Call to "+ thisJoinPoint +" threw exception\n\n" +
ex.getMessage());

}
return ret;

}
}

AspectMentor AOP Course - Adoption

Example: Per-customer solutions

“Yes, [we’re using AspectJ for] the ubiquitous
logging. But in our case not just because its
easier to weave in the logging at (almost)
arbitrary points but also, because different
customers have VERY different requirements
re. logging. [AOP] allows us to maintain a single
source code version while still being able to
deliver different code variants to different
deployers.”

AspectMentor AOP Course - Adoption

Example: Management

• The simplest form of JMX management
– Define MBean interface
– Implement the interface on managed classes
– Register managed objects with an MBean server

DEMO…

AspectMentor AOP Course - Adoption

Example: WebSphere policies

• Tracing
• First-Failure Data Capture
• Monitoring and Statistics

– “The value that I see aspects providing there is to
enable SWG products to implement a recommended
platform practice consistently and with less effort
required than with other more traditional approaches.”

AspectMentor AOP Course - Adoption

WSIF Demo

org.apache.WSIF
open source

WSIF

WebSphere
FFDC

WebSphere
RAS

WebSphere
PMI

ajc
WSIF for

WebSphere

AspectMentor AOP Course - Adoption

Implementing Persistence

• Extended example…
– in the Eclipse AspectJ book

• We've only got time for the bottom line

AspectMentor AOP Course - Adoption

Data Access Design

<<façade interface>>
SimpleInsurance

<<interface>>
PolicyDAO

<<interface>>
CustomerDAO

<<interface>>
ClaimDAO

insurance.dao

CustomerDAO
Impl

…
insurance.dao.inmemory

CustomerDAO
Impl

…
insurance.dao.hibernate

AspectMentor AOP Course - Adoption

Solution Uses…

• Dependency injection to provide DAOs to
SimpleInsurance implementers

• After() throwing advice and declare soft to provide
an exception mapping solution

• Around advice to encapsulate the common
protocol for interacting with Hibernate

• Dependency injection on a per-request basis to
provide the session objects to the DAOs

• Inter-type declarations to extend the domain
model for Hibernate

• declare warning to preserve the modularity

DEMO…

AspectMentor AOP Course - Adoption

Business / Core Aspects

• Using aspects when implementing
application’s core functionality

• Requires full team buy-in to AspectJ
• Changes to tool set (e.g. JDT -> AJDT)
• Will be ready if you follow staged approach

– enough developers will understand technology
– enough developers will be aware of value
– management will be aware of value

AspectMentor AOP Course - Adoption

Example: Event-Driven Architecture

• @RaisesEvent(“price-update”) …
• @OnEvent(“price-update”) …

DEMO…

AspectMentor AOP Course - Adoption

Example: Business Rules Validation

<<interface>>
Validator

validate(Object)
getValidationErrors()
getValidatedTypes()

<<business domain>>
ABusinessClass

validates
0..n

<<interface>>
RequiresValidation<<aspect>>

BusinessRulesValidation
validate()
getValidationErrors()

registered with

provides validators for

AspectMentor AOP Course - Adoption

Example: Untrusted Interface

public interface IXReferenceProvider {

public Class[] getClasses();

public Collection getXReferences(Object o);

public String getProviderDescription();

}

• Eclipse has mechanism for handling untrusted calls
• but you have to remember to use it everywhere

AspectMentor AOP Course - Adoption

Example: Untrusted Interface

around advice

proceed with
computation at
join point

...

static aspect SafeExecution {

pointcut untrustedCall():
call(* IXReferenceProvider+.*(..));

Object around() : untrustedCall() {
ISafeRunnableWithReturn safeRunnable =

new ISafeRunnableWithReturn() {
public void run() throws Exception {
result = proceed();

}
}

Platform.run(safeRunnable);
return safeRunnable.getResult();

}
}

AspectMentor AOP Course - Adoption

Example: Product-line Variability

• Several projects using aspects to manage points of
variability across different execution environments,
and to increase modularity in a product-line
– “They [aspects] enable components to be optional, for instance the

security component is not shipped in the first release of XXX”
another project:
– “as we look to create these components within the scope of WAS

and other SWG products, we need to also look at solving the ability
to execute relevant components in not only a J2SE environment,
but also a J2ME environment. We’re using AspectJ to manage
platform differences…”

– “I would estimate that it saved about 2 PMs of code development
for these 2 components. Furthermore, this means that we can
retain our ability to have 100% common code for the J2SE and the
J2ME solutions.”

AspectMentor AOP Course - Adoption

Use Only When Necessary

• What makes a good aspect?
– Do the parts all belong together?
– Does the aspect reduce coupling amongst the

modules in the design?
– Will the code be easier to maintain or evolve with or

without it?
– Does the aspect clarify component interactions? Or

obscure them?
– Is the program easier to understand?

AspectMentor AOP Course - Adoption

Thinking about strategy

• Start early
• While developers are learning technology
• Dialogue with developers on capabilities

AspectMentor AOP Course - Adoption

Modularity and value

• It’s a modularity technology
• It modularizes different kinds of capabilities
• What can AOP help you modularize?

• Will figure into platform plays
– Baldwin and Clark, “Design Rules vol 1: The Power

of Modularity”

AspectMentor AOP Course - Adoption

Modularizing quality of service

• logging, persistence, caching, scalability…

• for product lines
– a server with a range of

• scalability, serviceability…

• for other vendor’s tools?
• for Open Source tools?

AspectMentor AOP Course - Adoption

Clean Room System Extension?

• Uses AOP to extend code
• Without looking at sources
• To what extent can this work?

AspectMentor AOP Course - Adoption

AOA, AOD, AORA…

Summary

AspectMentor AOP Course - Adoption

Phased Adoption Strategy

• Risk and reward in line with expertise
• Three broad phases

– Exploration & Enforcement
– Auxiliary / Infrastructure
– Core / Business

• Emergent crosscutting skills
– AO analysis and design
– Strategic use of aspects

AspectMentor AOP Course - Adoption

Some issues

• all the examples are IBM

• how fast can you move between the phases?

• metadata
– where does @AspectJ style fit?
– will annotations be 'easy adoption' strategy?

• what role will aspect libraries play in adoption?

• testing
– best practices during coding?
– best practices for product lines?

• how do we get beyond the "coding phase"?
– what about the rest of the lifecycle...

• scaling the training
– need more experts who can do the speaking, training, and consulting

	Adopting AOP
	Adopting AOP
	Adopting AOP
	Adopting AOP
	Adopting AOP
	Within The Phases
	Adopting AOP
	Exploration & Enforcement
	Watching Finder Methods
	Example: Problem Diagnosis
	Restrict Standard Streams
	Architecture Enforcement
	Architecture Enforcement – Modules
	Architecture Enforcement – Modules
	Architecture Enforcement – Rules
	Architecture Enforcement At Work
	Example: API Scanner
	Introducing E&E Aspects in a Team
	Auxiliary/Infrastructure
	Examples…
	Typical Process
	Building the Case
	Building the Case
	Example: Exception Management
	Example: Exception Management
	Example: Preliminary Exception Management
	Example: Per-customer solutions
	Example: Management
	Example: WebSphere policies
	WSIF Demo
	Implementing Persistence
	Data Access Design
	Solution Uses…
	Business / Core Aspects
	Example: Event-Driven Architecture
	Example: Business Rules Validation
	Example: Untrusted Interface
	Example: Untrusted Interface
	Example: Product-line Variability
	Use Only When Necessary
	Thinking about strategy
	Modularity and value
	Modularizing quality of service
	Clean Room System Extension?
	AOA, AOD, AORA…
	Summary
	Phased Adoption Strategy
	Some issues

