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ABSTRACT

Current implementations of software providing dynamic as-
pect functionality in operating system (OS) kernels are quite
restricted in the possible joinpoint types for native code they
are able to support. Most of the projects implementing ad-
vice for native code use basic technologies adopted from in-
strumentation methods which allow to provide before, after
and around joinpoints for functions. More elaborate join-
points, however, are not available since support for monitor-
ing native code execution in current CPUs is very restricted
without extensive extensions of the compiler toolchain. To
realize improved ways of aspect activation in OS kernels, we
present an architecture that provides an efficient low-level
virtual machine running on top of a microkernel system in
cooperation with an aspect deployment service to provide
novel ways of aspect activation in kernel environments.

1. INTRODUCTION

Current implementations providing dynamic aspect func-
tionality today typically are based on either modifications of
a high-level virtual machine (VM) like the JVM or modifica-
tions of the instruction stream that is executed on demand
on the machine code level. Systems based on high-level
VMs, like e.g. Steamloom [2], provide a rich set of func-
tionality and are able to supply rather complex joinpoint
models since they have the ability to intercept the execu-
tion of virtual machine instructions. Due to general char-
acteristics of these VMs — no pointers are available in Java,
languages running on top of the VM (Java, C#) are not
widely used as system implementation languages — provid-
ing aspect support for an operating system kernel running
on top of the VM is not feasible!. In contrast, aspect activa-
tion directly on the machine instruction level, provided by

!There are, however, operating systems written in Java.
These have never become mainstream, though.
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systems like TOSKANA [10] and Arachne [17], is restricted
to the amount of interaction that is possible by dynamically
rewriting the instruction stream using the available symbolic
information in the executable code.

In this paper, TOSKANA-VM, a novel way to provide aspect
support for legacy operating systems is presented. Based
on experiences with the NetBSD-based implementation of
TOSKANA using native code manipulation [10], an interme-
diate approach between direct control of the native instruc-
tion execution and employing a high-level virtual machine
is chosen. Since the abstraction level of a virtual machine
is required in order to gain improved control over the exe-
cution of instructions, an existing low-level machine, LLVM
[14], was chosen as the basis for TOSKANA-VM. In addition
to the virtual machine itself, LLVM consists of a complete
compiler toolchain providing support for compiling C and
C++ programs that use GNU extensions. This is the basis
for running a kernel on top of LLVM with only a moderate
amount of modifications.

LLVM, however, is not well suited to run as a virtualiza-
tion layer on top of the bare hardware. Thus, TOSKANA-
VM uses the L4 microkernel as basis for executing LLVM
instances. Here, L4 provides only minimal kernel function-
ality like memory management, task and thread abstractions
and a fast implementation of inter-process communication.
On top of L4, a mix of LLVM instances with their associated
programs in LLVM bytecodes and native code can run con-
currently. One of the native programs running on top of 14
is the weaver, which is responsible for activating and deac-
tivating joinpoint shadows in the particular LLVM instance
using IPC notifications.

This paper is organized as follows. Section 2 describes
the overall structure of a system based on the L4 micro-
kernel and an operating system personality, followed by an
overview of low-level virtual machines in section 3. Section
4 describes ways to implement aspect-oriented functionality
in a virtual machine. An overview of the L4- and LLVM-
based system structure is contained in section 5. Section
6 summarizes related work. Section 7 concludes the paper
and outlines areas for further research.

2. MICROKERNEL-BASED SYSTEMS

Compared to traditional monolithic operating system ker-
nels, a microkernel-based system divides the functionality it
provides into several system components that are cleanly
separated from each other. At the base of the system, the



microkernel itself provides only the absolute minimum func-
tionality of a kernel — in the case of .4 used in this paper,
this is restricted to memory management, task management
and interprocess communication primitives. All other func-
tionality usually contained in a monolithic kernel is dele-
gated to so-called kernel personalities, which are essentially
user-mode tasks running as microkernel applications.

2.1 L4 System Structure

The basis for all interaction with the hardware in a LL4-
based system [15] is the microkernel itself. L4 has complete
control over the hardware and is the only process in the
system running in privileged (“kernel” or supervisor) CPU
mode. All other parts of the system run under control of the
microkernel in non-privileged user mode. This includes all
operating system personalities described in the next para-
graph.

L4 is optimized for fast inter-process communication, which
is extensively used throughout the system. IPC messages
can be sent and received by any task in the system; messag-
ing in L4 is synchronous, so the delivery of IPC information
is guaranteed by L4 as soon as the IPC call returns to the
caller. In addition, L4 supports a method to share address
spaces between different tasks running on top of L4. Using
the flexpages system, one task can share parts of its virtual
address space with another task with page-sized granularity.

In order to support virtualization of OS instances, L4 pro-
vides abstractions for timers and interrupts as well as vir-
tual memory management and encapsulates these as IPC
messages.

2.2 OS Instances

Since L4 only provides basic kernel functionality, an addi-
tional layer of software is required to implement the features
required by application programs that L4 is lacking. This is
realized in the form of an operating system personality that
provides the standard interfaces of a traditional monolithic
OS kernel to applications running on top of it. In the case
of L4, a port of Linux as a personality is available, called
L4Linuz [11]. L4Linux is a modified version of Linux 2.6 in
which all critical hardware accesses (interrupt control, page
table handling, timer control) are removed and replaced by
IPC calls to the underlying L4 microkernel that performs
these operations on behalf of the Linux personality (if per-
mitted by the security guidelines).

L4Linux runs as an ordinary user mode process, thus sev-
eral L4Linux instances are unable to interfere with each
other. As a consequence, a virtualization on the level of
L4Linux instances running in parallel is feasible and already
used in several applications [19, 9].

3. THE LOW-LEVEL VIRTUAL MACHINE

LLVM is a virtual machine infrastructure consisting of a
RISC-like virtual instruction set, a compilation strategy de-
signed to enable effective program optimization during the
lifetime of a program, a compiler infrastructure that pro-
vides C and C++ compilers based on the GNU compiler
collection and a just-in-time compiler for several CPU archi-
tectures. LLVM does not implement things that one would
expect from a high-level virtual machine. It does not require
garbage collection or run-time code generation. Optional
LLVM components can be used to build high-level virtual
machines and other systems that need these services.

3.1 LLVM Instruction Set

The LLVM code representation is designed to be used in
three different forms: as an in-memory compiler (providing
the intermediate representation IR), as an on-disk bytecode
representation (suitable for fast loading by a Just-In-Time
compiler), and as a human readable assembly language rep-
resentation. This allows LLVM to provide a powerful inter-
mediate representation for efficient compiler transformations
and analysis, while providing a natural means to debug and
visualize the transformations. All three different forms of
LLVM code representation are equivalent.

The LLVM representation aims to be as light-weight and
low-level as possible while being expressive, typed, and ex-
tensible at the same time. It aims to be a “universal IR”,
by being at a low enough level that high-level ideas may
be cleanly mapped to it (similar to how microprocessors
are “universal IRs”, allowing many source languages to be
mapped to them). By providing type information, LLVM
can be used as the target of optimizations: for example,
through pointer analysis, it can be proven that a C auto-
matic variable is never accessed outside of the current func-
tion.

3.2 The LLVM Infrastructure

As fig. 1 illustrates, the LLVM compilation strategy ex-
actly matches the standard compile-link-execute model of
program development, with the addition of a runtime and
offline optimizer. Unlike a traditional compiler, however, the
.o files generated by an LLVM static compiler do not contain
any machine code, but rather LLVM code in a compressed
format.
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Figure 1: LLVM Compilation Infrastructure

The LLVM optimizing linker combines LLVM object files,
applies interprocedural optimizations, generates native code,
and links in libraries provided in native code form.

Once the executable has been produced, the developers
(or end-users) of the application begin executing the pro-



gram. Tracing and profiling information generated by its
execution can be optionally used by the runtime optimizer
to transparently tune the generated executable.

The system heavily depends on having a code representa-
tion with the following qualities:

The bytecode is high-level and expressive enough to per-
mit high-level analyses and transformations at linktime and
in the offline optimizer when profiling information is avail-
able. Without the ability to perform high-level transforma-
tions, the representation does not provide any advantages
over optimizing machine code directly.

Also, the code has a dense representation, to avoid in-
flating native executables. Additionally, it is useful if the
representation allows for random access to portions of the
application code, allowing the runtime optimizer to avoid
reading the entire application code into memory to do local
transformations.

Finally, the code is low-level enough to perform lightweight
transformations at runtime without too much overhead. If
the code is sufficiently low-level, runtime code generation has
low overhead in a broad variety of situations. A low-level
representation is also useful because it allows many tradi-
tional optimizations to be implemented without difficulty.

4. ASPECT ACTIVATION IN AVM

When handling aspect activation in native code, the inter-
ception of the execution of arbitrary machine instructions is
usually not supported extensively by standard CPUs. Con-
sequently, the joinpoint model is quite restricted and dy-
namically inserting joinpoint shadows is an intricate task,
since self-modifying code is used in the process.

Using a virtual machine instead of executing code directly
on the CPU provides improved methods of detecting possi-
ble joinpoints, since all instructions are now either directly
interpreted by the VM or translated into short native code
segments by the just-in-time (JIT) compiler.

The following subsection describes the restricted “tradi-
tional” approach using code splicing, followed by a descrip-
tion of the advantages of the instruction-manipulating VM-
based approach.

4.1 Code Splicing in Native Code

When directly working with native code, like in the TOS-
KANA project on NetBSD, the basic method for inserting
dynamic joinpoint shadows into native code is code splicing.
Code splicing is a technology that replaces the bit patterns
of instructions in native code with a branch to a location
outside of the predefined code flow, where additional instruc-
tions followed by the originally replaced instruction and a
jump back to the instruction after the splicing location are
inserted.

TOSKANA uses fine-grained code splicing, which is able
to insert instrumentation code with the granularity of a sin-
gle machine instruction. As shown in fig. 2, splicing replaces
one or more machine instructions at a joinpoint with a jump
instruction to the advice code with the effect that the advice
code is executed before the replaced instruction.

This method has some significant drawbacks. When mod-
ifying native code, some complications show up that have to
be taken care of in order to avoid corrupting activities cur-
rently running in kernel mode.

Since the execution of kernel functions may usually be
interrupted at any time, it is desirable to make the splicing
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Figure 2: Code Splicing

operation atomic.

Another problem may be that more than one instruction
has to be replaced by the jump instruction in the splicing
process and the second of these replaced instructions is a
branch target. A branch to that address would then end
up trying to execute the bit pattern that is part of the tar-
get address as operation code with unpredictable results. In
this case, either a workaround has to be activated — e.g. by
rewriting an instruction before the joinpoint itself, thereby
reducing the precision of the joinpoint location — or the re-
placement of an instruction must be avoided here, leading
to a slightly restricted amount of available joinpoints.

The biggest problem with code splicing is that it only pro-
vides a very restricted joinpoint model. Since no information
on register contents and values of pointers is available to the
weaver, any operations involving dynamically calculated or
loaded values are not eligible as possible joinpoint types.

Thus, essentially, only support for before, after, and around
joinpoints is available by splicing in jumps to advice code at
the beginning and return points of the respective function.
A wider variety of joinpoint types is desirable, but can not
be achieved using splicing.

4.2 Manipulation of Instruction Execution

Using LLVM gives the aspect weaver enhanced control
over the execution of (VM bytecode) instructions. Instead
of having to rely on self-modifying code at program run-
time, the infrastructure executing the (byte-)code itself can
now be instructed to intercept instruction execution, thereby
providing much more detailed information about the current
state of the machine.

Based on LLVM, TOSKANA-VM is able to supply a broa-
der range of joinpoint types. The types currently imple-
mented are described in the following paragraphs, accom-
panied with an explanation of the basic VM functionality
executed to support them.

Execution and Call

LLVM provides two function call instructions, which ab-
stract the calling conventions of the underlying machine,
simplify program analysis, and provide support for excep-
tion handling. The simple call instruction takes a pointer
to a function to call, as well as the arguments to pass (by
value). Although all call instructions take a function pointer



to invoke (and are thus seemingly indirect calls), for direct
calls, the argument is a global constant (the address of a
function). This common case can easily be identified simply
by checking if the pointer is a global constant. The second
function call instruction provided by LLVM is the invoke
instruction, which is used for languages with exception han-
dling.

When using code splicing, no clean distinction can be
made between execution and call joinpoints, as the only
point at which the weaver can be certain that the function
in question was actually executed is within the code of the
function itself.

Joinpoint Registry

Executed
Bytecode

LLVM 0x1000: advice_a

exec_bytecode() { 0x1200: advice_x

if“(bytecode ==call) {

call onzoo<ﬂ- a=get target_addr(); advice

code
if(lookup_joinpoint(a)) {
call_advice(a);

}

advice_x() {

Figure 3: A Call Joinpoint

Implementing call joinpoints, as depicted in fig. 3, re-
quires an interception of the call instruction described above.
The target of the call instruction has to be compared against
a list of active joinpoints and the related advice code is called
appropriately.

Ezecution joinpoints — illustrated in fig. 4 — however, have
a different semantics, since they exist at a point when the
body of code for an actual method is executed. Thus, in-
terception of the call is not sufficient; rather, the bytecode
instruction pointer of the currently executing instruction has
to be monitored. As soon as program execution enters (or
leaves) the range of addresses defined by the function in
question, advice code can be called. While monitoring the
instruction pointer seems expensive at first look, the current
implementation uses a fast hash-table mechanism to speed
up the lookups. In future versions, annotated bytecodes
could accelerate this functionality even further, requiring
enhanced tool support.

Variable Assignment and Access

Capturing variable assignment and access was not possible
using splicing, since accesses to variables in native code not
only occur using a direct address reference (which could be
detected), but more commonly using pointers to variables
contained in registers or calculated target addresses that
were not available to the splicing process.

In LLVM, however, the final address of every read or write
instruction executed by the VM is well-known. Hence, in-
terception of read accesses (i.e., variable read) and write
accesses (i.e., variable assignment) can be intercepted and
corresponding advice code can be executed as the address
of the variable is well-known from the symbol table.

A problem with joinpoints triggering on variable accesses
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0x1200: advice_y
exec_bytecode() {]| ...
call 0x1200
ip++;
0x1200: p:fetch,lby?ecode(ip); advice
mov. if (exec_jp(ip)) { code
call_advice(a);
} advice_y() {
ret exec_bytecode(b);
}

Figure 4: An Ezecution Joinpoint

lies in variables that are stored in registers for the sake of
faster access times. Here, the VM provides a mapping from
memory addresses to register contents; however, a track-
ing of variables in registers in the VM is necessary which is
time-consuming. Thus, currently only wvolatile variables and
variables to which an address operator (&) has been applied
can be used as variable access joinpoints.

5. SYSTEM STRUCTURE: L4+LLVM

An overview of the system is given in figure 5. On top of
the microkernel, the infrastructure consists of one or more
instances of LLVM running in their own address spaces and
the weaver as a separate process that handles communica-
tion with the VM instances.

Running on top of L4, one or more instances of LLVM
execute, these in turn can run L4Linux instances compiled
to bytecode or other L4-based applications compiled with
LLVM as their target.
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Figure 5: L4/LLVM-based TOSKANA-VM System

The dynamic aspect weaver is a separate component run-
ning on top of L4. It receives joinpoint description and weav-
ing/unweaving requests from other tasks in the system and
instructs a LLVM instance to add or remove the joinpoint
description to respectively from its table of active joinpoints.
Then, the weaver inserts the specified advice code in the ad-
dress space of the LLVM instance in question using shared
memory obtained via L4 flexpages.

In this L4-based system, tasks compiled to native code
can execute in parallel to the LLVM instances. Of course,
these tasks provide no support for dynamic aspects.



6. RELATED WORK

6.1 Steamloom

The Steamloom virtual machine [2] is an extension to
an existing Java virtual machine. It follows the approach
to tightly integrate support for AOP with the VM imple-
mentation itself instead of relying on a set of Java classes.
Steamloom comprises changes to the underlying VM’s ob-
ject model and just-in-time compiler architecture. Its ap-
proach to dynamic weaving is to dynamically modify method
bytecodes and to schedule those methods for JIT recompi-
lation afterwards.

Steamloom was built to evaluate the benefits that can
be gained by implementing AOP support in the execution
layer instead of at application level. Various measurements
[12] have shown that both flexibility and performance sig-
nificantly benefit from such an integrative approach.

6.2 Arachne

Arachne [17] is a dynamic weaver for C programs. It uses
the pDyner AOP infrastructure for writing and dynamically
deploying aspects into running user mode C applications
without disturbing their service. The implementation of
joinpoints, however, requires source instrumentation of the
program to reduce the cost of dynamic weaving. uDiner pro-
vides a special hookable source-level annotation with which
the developer of the base program annotates points in the
program at which dynamic adaptation is permitted. Here,
only functions and global variables can be declared to be
hookable. The aspect code is written using a special ex-
tension of C that provides the syntax for specification of
joinpoints and advice types.

6.3 a-kernel

Research in AOP in OS kernels was initiated by [7], where
problems crosscutting a common layered operating system
structure were identified using FreeBSD as an example. Based
on AspectC, an AOP extension of C, the a-kernel project
tries to evaluate the usability of aspects to improve OS mod-
ularity and reduce the complexity and fragility associated
with the implementation of an operating system.

In [5], [8], [6], and [4], various cross-cutting concerns are
implemented as static aspects using AspectC. In addition,
an analysis of code evolution implementing cross-cutting
concerns between different versions of FreeBSD is under-
taken and the evolution is remodelled using static aspects.

Further development resulted in the RADAR [18], a low-
level infrastructure using dynamic aspects in OS code. Cur-
rently, no experience with implementing the system seems
to exist.

6.4 Singularity

Singularity [13] is a new research operating system devel-
oped by Microsoft focussing on the construction of depend-
able systems through innovation in the areas of systems,
languages, and tools. Based on executing operating system
code using a VM (MSIL) running on top of a microkernel,
this system shows similarities to the approach presented in
this paper. However, support for AOP is not mentioned in
the related publications — a combination of dynamic AOP
approaches for .NET and Singularity might be an interesting
alternative to TOSKANA-VM.

6.5 DTrace

DTrace [3] is a toolkit developed by Sun Microsystems to
dynamically insert instrumentation code into an unmodified,
running Solaris OS kernel. Unlike other solutions for dy-
namic instrumentation that execute native instrumentation
code, DTrace implements a simple virtual machine in kernel
space that interprets byte code generated by a compiler for
the “D” language, which is an extension of C specifically
developed for writing instrumentation code.

D provides safe instrumentation of the kernel. To avoid
endless loops in instrumentation code, only forward branches
are permitted by the VM. Thus, the functionality of D pro-
grams is relatively restricted. While this provides a lot of
security when dynamically inserting code into random spots
in the kernel, the execution model provided by DTrace is
too restricted to implement general advice code.

6.6 Xen

Xen [1] is a virtual machine monitor for x86 that sup-
ports execution of multiple guest operating systems with
high levels of performance and resource isolation using par-
avirtualization technology. On top of Xen, different operat-
ing systems are able to run concurrently.

Xen requires modifications to kernels running on top of it,
but applications run unmodified. Due to the paravirtualiza-
tion, which only virtualizes and intercepts certain privileged
instructions, Xen is not capable of interception instruction
flow at arbitrary points in the code, so deploying advice code
is not possible using this virtualization approach.

6.7 VVM

Instead of designing and implementing a new virtual ma-
chine for each application domain, the goal of VVM is to vir-
tualize the virtual machine itself. VVM supports so-called
“VMlets” that contain a specification of a virtual machine
implemented using VVM.

No large-scale operating system has been developed to run
on top of either of these virtual machines, however, so the
feasibility of this approach still has to be determined.

6.8 z/VM

Another low level virtual machine that is explicitly used to
virtualize a single physical machine into distinct partitions
each running its own operating system instance is IBM’s
z/VM]16], used on z-Series mainframe systems. z/VM sup-
ports a large number of operating systems running in par-
allel on top of the virtual machine? and would be an ideal
target for implementing dynamic aspect support in the ex-
ecution layer.

7. CONCLUSIONS

This paper presented a novel approach to providing en-
hanced aspect-oriented programming technology in the con-
text of an operating system kernel. First results show that
using a low-level virtual machine as a thin layer above the
hardware while relegating basic system functionality to a
microkernel directly executing in native code on the CPU
provides a reasonable architecture to provide and experi-
ment with joinpoint models that implement novel concepts

2A test has shown that 40,000 parallel Linux instances are
possible



or operate on a more fine-grained level than the joinpoints
available through code splicing.

The current implementation of an aspect-enhanced LLVM
and the weaver task on top of L4 is capable of running test
programs written in C compiled as LLVM bytecodes. The
next step is the port of a complete kernel personality (e.g.
L4Linux) to run in bytecode on top of L4 and LLVM. This
should be feasible, since L4Linux already provides a separate
architecture component for .4, which subsequently has to
be augmented with the necessary low-level adaptations and
compile infrastructure changes for a LLVM target.

The performance of a complex system like a kernel per-
sonality running in bytecode instead of native code will be
an interesting focus of optimization. The currently available
simple test cases give the impression that running a kernel in
bytecode will be feasible performance-wise, though no exact
data is available at this time.

Future work also includes the provision of an improved
security model. The method currently available in L4 to re-
strict communication between processes — “clans and chiefs”
— does not provide sufficient control over which processes are
permitted to communicate. This model will be replaced by a
new security infrastructure of an upcoming L4 release which
will be the basis for future TOSKANA-VM releases.
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