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Abstract

The Linux operating system is undergoing contin-
ual evolution. Evolution in the kernel and generic
driver modules often triggers the need for correspond-
ing evolutions in specific device drivers. Such col-
lateral evolutions are tedious, because of the large
number of device drivers, and error-prone, because
of the complexity of the code modifications involved.
We propose an automatic tool, Tarantula, to aid in
this process. In this paper, we examine some recent
evolutions in Linux and the collateral evolutions they
trigger, and assess the corresponding requirements on
Tarantula.

1 Introduction

The Linux operating system (OS) is undergoing con-
tinual evolution to improve performance, meet new
hardware requirements, and improve the software ar-
chitecture. When evolution in one OS kernel mod-
ule causes the interface of the module to change, the
need for evolution percolates out into other OS ser-
vices. This collateral evolution can become quite te-
dious when many modules depend on the interface
and the modifications required are complex. It is
also error-prone, because of the difficulty of under-
standing both the evolution and its impact on the
dependent modules. As a result, some collateral evo-
lutions happen very slowly and bugs are introduced.
The problems are compounded for modules outside
the kernel source tree, which are maintained by de-
velopers different from those performing the original
evolution and who may not have access to complete
information about evolution requirements.

Device drivers are particularly vulnerable to the
need for collateral evolution. As illustrated in Figure
1, drivers depend on services provided by the kernel
and by modules generic to various families of devices.
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Due to the rapid proliferation of new devices, there
are many drivers. Indeed, an evolution in a generic
function defined by the kernel can require modifica-
tion of over a hundred driver files. Drivers are also a
high priority for users, who, in an open system such
as Linux, can submit patches to update the drivers
for their machines, despite not having a complete un-
derstanding of the implications of the evolution.

A particularly striking example of the difficulty of
driver evolution is the case of the function check -
region used in driver initialization. In Linux 2.4.1,
this function was called 322 times in 197 driver files.
Starting in Linux 2.4.2 (Feb. 2001), the use of this
function began to be eliminated, because changes in
the driver initialization process implied that its use
could cause race conditions. Eliminating check_-
region requires both replacing it with a call to
request_region and introducing some cleanup code
at any subsequent code point that indicates failure of
the driver initialization process. Identifying the latter
code points entails a non-trivial control-flow analysis
possibly across multiple functions. Accordingly, bugs
have appeared in the process of eliminating check_-
region and the evolution is not complete as of Linux
2.6.10 (Dec. 2004), even though the function has been
deprecated since Linux 2.5.54 (Jan. 2003).

To reduce the difficulty of performing collateral
evolution of device drivers, we propose to develop
an automatic tool, Tarantula, to aid in the evolu-
tion process. Using Tarantula, a collateral evolution
is described as a set of rewrite rules, referred to as
a semantic patch, that specify the affected code pat-
terns and associated changes. Given a driver and a
semantic patch, Tarantula identifies driver code that
matches the code patterns and interactively proposes
the associated changes. If the user accepts a change,
Tarantula transforms the code automatically. We en-
vision that a developer who modifies the interface of
a generic module also writes a corresponding seman-
tic patch. This developer then applies the semantic
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Figure 1: Some kernel dependencies in Linux 2.4.27 (device drivers are shown in italics)

patch to drivers in the kernel source tree, profiting
from the interactivity of Tarantula to identify over-
looked code patterns and code fragments that are
matched inappropriately. When a semantic patch has
been validated on the kernel sources, the developer
makes it publicly available for use by the maintainers
of drivers outside the kernel source tree.

In this paper, we present preliminary work in the
development of Tarantula. Based on a study of evo-
lution in driver code across versions of Linux 2.4
through 2.6, we present examples that illustrate the
kinds of code modification that collateral evolution
entails. In each case, we assess the corresponding re-
quirements on the expressiveness of semantic patches
and on the power of the underlying rewriting en-
gine. In terms of expressiveness, we find the need
for rewrite rules that describe control-flow paths, for
which we propose to use temporal logic (CTL) [10].
To support such rules, we find the need for a rewrit-
ing engine that includes inter-procedural control-flow
analysis, alias analysis, and constant propagation.

The rest of this paper is organized as follows. Sec-
tion 2 presents some examples of evolution in Linux.
Section 3 assesses these examples in terms of the re-
quirements that they pose on Tarantula. Finally, Sec-
tion 4 presents related work and Section 5 concludes.

2 Examples

In this section, we present some representative ex-
amples of evolution in Linux and the difficulties that

have arisen in the collateral evolutions in driver code.

2.1 Elimination of check region

The function check _region is used in the initializa-
tion of device drivers, in determining whether a given
device is installed. In early versions of Linux, the ker-
nel initializes device drivers sequentially [18]. In this
case, a driver determines whether its device is at-
tached to a given port as follows: (i) calling check_-
region to find out whether the memory region as-
sociated with the port is already allocated to an-
other driver, (ii) if not, then performing some driver-
specific tests to identify the device attached to the
port, and (iii) if the desired device is found, then call-
ing request_region to reserve the memory region for
the current driver. In more recent versions of Linux,
the kernel initializes device drivers concurrently [5].
In this case, between the call to check region and
the call to request_region some other driver may
claim the same memory region and initialize the de-
vice. Starting with Linux 2.4.2, device drivers began
to be rewritten to replace the call to check _region
in step (i) with a call to request_region, to actually
reserve the memory region. Given this change, if in
step (ii) the expected device is not found, then re-
lease_region is used to release the memory region.

Eliminating a call to check_region requires replac-
ing it by the associated call to request_region and
inserting calls to release_region along error paths.
In the first step, it is necessary to find the call to re-
quest_region that is associated with the given call
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Figure 2: check_region elimination in Linux 2.4-2.6

to check._region. In Linux 2.4.1, the call to re-
quest_region is in the same function for only 56% of
the calls to check region.! In the remaining cases,
an interprocedural analysis is needed. In the second
step, it is necessary to identify code points at which
it is known that the expected device has not been
found and thus release_region is required. Such
points include returning an error value, as found in
75% of the functions calling check region, and go-
ing around a loop that checks successive ports until
finding one with the desired device, as found in 23%
of these functions. At such code points, it may be the
case that only a subset of the incoming paths contain
a call to check_region, as occurs in 31% of the func-
tions calling check_region. In this case, the call to
release_region must be placed under a conditional.

Both steps in eliminating check region are diffi-
cult and time-consuming. This difficulty has lead to
the slow pace of the evolution, as shown in Figure 2.
The evolution is still not complete as of Linux 2.6.10.

2.2 An extra argument for
usb_submit_urb

The function usb_submit_urb, defined until Linux
2.5.7 in the generic module usb/urb.c, until Linux
2.5.20 in the generic module usb/core/usb.c, and
subsequently in the generic module usb/core/

1This analysis and the other analyses reported for the elim-
ination of check_region were carried out using CIL [17], which
requires parsing each file. Due to problems obtaining appropri-
ate compilation arguments and incompatibilities between the
Linux 2.4.1 code and the gcc 3.3.3 compiler, we were only able
to parse 78% of the driver files successfully. The percentages
reported here are as compared to this set of parsable files.

urb.c, implements the passing of a message, im-
plemented as USB Request Block (urb), by a USB
driver.  This function uses the kernel memory-
allocation function, kmalloc, which must be passed a
flag indicating the circumstances in which blocking is
allowed. Up through Linux 2.5.3, the flag was chosen
in the implementation of usb_submit_urb as follows:

in_interrupt () ? GFP_ATOMIC : GFP_KERNEL

Comments in the file usb/hcd.c, however, indicate
that this solution is unsatisfactory:

// FIXME paging/swapping requests over USB should not
// use GFP_KERNEL and might even need to use GFP_NOIO ...
// that flag actually needs to be passed from the higher level.

Starting in Linux 2.5.4, usb_submit_urb takes one of
the following as an extra argument: GFP_KERNEL (no
constraints), GFP_ATOMIC (blocking not allowed), or
GFP_NOIO (blocking allowed but not I/O). The driver
programmer selects one of these constants according
to the context of the call to usb_submit_urb.

Choosing the extra argument of usb_submit_urb
requires a careful analysis of the surrounding code as
well as an understanding of how this code is used by
more generic modules. The only relevant documen-
tation in the Linux code is the comments preceeding
the definition of usb_submit_urb starting in Linux
2.5.4. These comments state that GFP_ATOMIC is re-
quired in a completion handler, in code related to
handling an interrupt, when a lock is held (including
the lock taken when turning off interrupts), when the
state of the running process indicates that the process
may block, in certain kinds of network driver func-
tions, and in SCSI driver queuecommand functions.
Many of these situations, however, are not explicitly
indicated by the code surrounding the call to usb_-
submit_urb. Instead, they require an understanding
of the contexts in which the function containing the
call to usb_submit_urb may be applied.

The difficulty in understanding the conditions in
which GFP_ATOMIC is required and identifying these
conditions in driver code is illustrated by the many
calls to usb_submit_urb that were initially trans-
formed incorrectly. Figure 3 lists the versions in
Linux 2.5 in which corrections in the use of usb_-
submit_urb occur and the reason for each correction.
In each case, the error was introduced in Linux 2.5.4
or when the driver entered the kernel source tree,
whichever came later. A major source of errors is
the case where the function containing the call to
usb_submit_urb is stored in a structure or passed to
a function, as these cases require extra knowledge
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Figure 3: Linux 2.5 versions in which GFP_ATOMIC
replaces GFP_KERNEL in a call to usb_submit_urb

about how the structure is used or how the function
uses its arguments. Indeed, in the serial subdirec-
tory, all of the calls requiring GFP_ATOMIC fit this pat-
tern and all were initially modified incorrectly (and
corrected in Linux 2.5.7). Surprisingly, in 17 out of
the 71 errors, the reason for using GFP_ATOMIC is lo-
cally apparent, reflecting either carelessness or insuffi-
cient understanding of the conditions in which GFP_-
ATOMIC is required. Indeed, in Linux 2.6.10, in the
file usb/class/audio.c, GFP_KERNEL is still used in
one function where interrupts are turned off.

2.3 Introduction of video_usercopy

A Linux ioctl function allows user-level interaction
with a device driver. Copying arguments to and from
user space is a tedious but essential part of the imple-
mentation of such a function. In Linux 2.5.7, in the
generic module media/video/videodev.c, a wrap-
per function was introduced to encapsulate this ar-
gument copying. This function was refined in Linux
2.5.8 and named video_usercopy. As of Linux 2.6.9,
video_usercopy was used in 29 media files.
Introducing the use of video_usercopy requires
primarily (i) identifying the ioctl function and (ii)
rewriting its code to eliminate copying between user
and kernel space. An ioctl function does not have a
fixed name, but can be recognized as the value stored
in the ioctl field of the structure implementing the
driver interface. Copying between user and kernel
space is typically implemented by using the functions
copy_from_user and copy_to_user to copy informa-

tion to and from a local structure specific to each ioctl
command. Video_usercopy provides the ioctl code
with a generic-typed kernel pointer to this informa-
tion. The ioctl code must thus be modified to cast
this pointer to the structure type used by each com-
mand and to replace references to the local structure
by pointer dereferences. The latter transformation
can be quite invasive. For example, in the ioctl func-
tion of media/radio/radio-typhoon.c, 61% of the
lines of code changes between Linux 2.5.6 and 2.5.8.

The function video_usercopy is not specific to me-
dia drivers, and thus there has been interest in mak-
ing the function more generally available [9]. Some
evidence of the difficulties this may cause are pro-
vided by the case of i2c/other/teab75x-tuner.c
in which video_usercopy was introduced in Linux
2.6.3. In this file, the calls to copy_from_ user and
copy_-to_user were not removed. The bug was never
fixed. Instead, the use of video_usercopy was re-
moved from this file in Linux 2.6.8.

3 Requirements

The semantic patches of Tarantula must (i) identify
the code to modify, (ii) describe how to construct the
new code, and (iii) describe the impact on the existing
context. We review the above examples in terms of
these issues, and identify the requirements they place
on Tarantula. Required features are shown in italics.

In the check_region example, the code to mod-
ify is indicated by a use of the function name. The
new code that replaces a call to check_region is de-
termined by the call to request_region that would
subsequently be executed at run time. To specify
the connection between these calls, the rewrite rules
must be able to describe a control-flow path. For this,
we propose to use temporal logic [10], a logic that
describes relationships between successive events, in-
stantiated here as successive program constructs. So
that the rewriting engine can identify such paths in
the source program, it must include a control-flow
analysis. Because the calls to check region and
request_region are not always in the same function,
the control-flow analysis must be inter-procedural. Fi-
nally, replacement of check region by request_-—
region implies that calls to release_region must be
inserted in the context. This again requires rewrite
rules that describe paths, and temporal logic and
control-flow analysis are useful here. Some of the
paths requiring release_region are interprocedural
error paths. Constant propagation of error return val-



ues is thus needed to restrict the analysis to mean-
ingful control-flow paths.

In the usb_submit_urb example, the code to trans-
form is again indicated by a use of the function name.
The new argument is determined by properties of the
enclosing calling context. Again, these properties are
interprocedural and depend on control flow, and thus
temporal logic and control-flow analysis are useful.
In a few cases, functions containing calls to usb_-
submit_urb are stored in structures or variables local
to the driver are subsequently invoked through these
entities. These cases require alias analysis.

In the video_usercopy example, identifying the
code to transform requires finding the ioctl function,
which entails reasoning about global structure decla-
rations. The introduction of video_usercopy has a
significant effect on the context: calls to copy_from_-
user and copy-to_user disappear, and the types of
the variables manipulated by these functions change.
To express these modifications, the rewrite rules must
be able to express properties of local-variable decla-
rations and uses.

We have previously used rewrite rules including
temporal logic to describe the modifications needed
to reengineer the source code of a legacy OS to sup-
port the Bossa process scheduling framework [1, 16].
Those rules were implemented using the CIL infras-
tructure for C program analysis and transformation
[17]. For Tarantula, we will generalize this work
by extending the rewrite rule language to describe a
more general set of transformations, and by improv-
ing the rewriting engine to include more complex vari-
ants of the analyses, such as inter-procedural analy-
ses exploiting constant values. Of the required anal-
yses, CIL already provides intra-procedural control-
flow analysis, inter-procedural constant propagation,
and inter-procedural alias analysis.

4 Related Work

Our work involves the description of code patterns
requiring evolution and the transformation of code
matching these patterns using rewrite rules. This
work is related to pattern-based approaches to bug
finding and to techniques that allow the description
of code modifications such as Aspect-Oriented Pro-
gramming (AOP).

Recent years have seen a surge of interest in auto-
matic approaches to detecting bugs in large pieces
of software, including the Linux operating system
[6, 7, 8, 14]. These approaches rely on identifying re-

quired code patterns and then detect code fragments
that are inconsistent with these patterns. In the con-
text of Linux, most of the bugs found using these ap-
proaches are in device driver code. We believe that
the patterns used by these approaches derive largely
from the interface provided by the kernel and generic
modules. In the context of evolution of this interface,
existing approaches detect bugs after they appear,
while our approach prevents bugs by providing assis-
tance in the evolution process. Our work can also be
viewed as introducing a new source of code patterns
into consideration. While previous work has focused
on patterns identified within a single version of Linux,
we consider patterns derived from evolution.

AOP is a programming paradigm that isolates the
implementation of a modular crosscutting concern in
a single unit, known as an aspect [12]. An aspect
includes both code implementing the concern and di-
rectives indicating how to integrate this code with an
existing base program. Coady et al. have investigated
the use of aspects in OS code to improve modular-
ity, and have considered the impact of OS evolution
on these aspects [2, 3, 4]. Semantic patches can be
viewed as a form of aspects, as they specify code and a
means of determining where this code should be intro-
duced. Nevertheless, the goals of our approach, and
hence the mechanisms employed, are different. AOP
is directed towards the complete implementation of a
functionality that is somewhat orthogonal to the base
program. Thus, for example, the widely-used aspect
system, Aspect]J [11], does not permit fine-grained
modification of the base program, such as changing
the type of a local variable. Our approach is directed
towards specifying modifications to a portion of an in-
tegral functionality, specifically the interaction with
the interface of a more generic module. Accordingly,
our approach allows describing much more invasive,
finer-grained transformations and requires more com-
plex supporting analyses.

The Splice aspect system allows an aspect to use
program analysis to specify where a base program
should be transformed [15]. The specification is de-
scribed in terms of logic programming rules com-
bined with operators expressing temporal properties.
Based on our previous experience in describing tem-
poral properties in the reengineering of Bossa, we
plan to use temporal logic directly, rather than via
logic programming. The precision of the analyses
used by Splice has been restricted to ensure scala-
bility to large programs. Because we have observed
that device drivers typically have shallow call graphs,



we plan to favor analysis precision over efficiency. Fi-
nally, Splice has only been used to implement lock
insertion and a loop transformation, whereas we tar-
get a much wider range of transformations.

Our use of temporal logic was originally inspired by
that of Lacey et al. on using temporal logic to specify
program transformations [13].

5 Conclusion

Keeping drivers up to date is known to be difficult,
due to the large number of drivers and the varying
levels of programmer expertise. In this paper, we
have proposed Tarantula to provide automatic assis-
tance in evolving a driver to match changes in the
interface of more generic parts of the OS. Tarantula
is based on semantic patches, which provide (i) pre-
cise description of the contexts in which evolution
is required, (ii) encapsulation of relevant informa-
tion about external functions and data structures,
and (iii) help with the tedious process of analyzing
the driver file to determine where the evolution ap-
plies. So far, besides the examples cited here, we
have found around 30 evolutions in driver directories
such as cdrom, ide, pcmcia, and usb where Taran-
tula would be useful. We plan to continuing studying
driver code to find a more complete set of examples.
Our next step will be to refine the language of se-
mantic patches and develop the supporting program
analysis infrastructure.
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