

WEAVING ASPECTS TO SUPPORT HIGH RELIABLE SYSTEMS:

DEVELOPPING A BLOOD PLASMA ANALYSIS AUTOMATON

Valérie MONFORT, Muhammad Usman BHATTI, Assia AIT ALI SLIMANE

Université Paris 1 Panthéon Sorbonne
Centre de Recherche en Informatique

90 rue de Tolbiac
75013 Paris, France

Valerie.monfort@univ-paris1.fr; muhammad.bhatti@malix.univ-paris1.fr; assia.ait-ali-slimane@malix.univ-paris1.fr;

Abstract

Among current architectures, Service Oriented

Architectures aim to easily develop more adaptable

Information Systems. Most often, Web Service is the

fitted technical solution which provides the required

loose coupling to achieve such architectures. However

there is still much to be done in order to obtain a

genuinely flawless Web Service, and current market

implementations still do not provide adaptable Web

Service behavior depending on the service contract.

Therefore, our approach considers Aspect Oriented

Programming (AOP) as a new design solution for Web

Services. Based on both Web Service Description

Language (WSDL) and Policy contracts, this solution

aims to allow better flexibility on both the client and

server side. In this paper, we aim to develop an

automaton to analyze blood plasma; Web Services are

used for software part of the automaton. Faced by the

lacks of Web Services, we propose a concrete solution

based on aspects.

Key Words

Web Services, Interoperability, Security, Aspects

1. INTRODUCTION

Companies have to communicate with distant IS,
such as, suppliers, partners … they use to exchange
data through workflows in heterogeneous contexts. The
company for which we are working aims to develop
automatons to analyze blood plasma, which means
patient data information has to be highly reliable and
correct. We are involved in the architecture definition
and implementation of one of its automaton. In order to
support consequent evolution and successive
reutilization of the machines, this company decided to
define and promote flexible and adaptable architecture
according to the new emerging requirements. In this

context, Web Service technology is asked to handle the
same features as components from the DCOM, J2EE or
CORBA worlds already handle. These features, such as
security, reliability, or transactional mechanisms, can
be considered as non-functional aspects. Obviously
these aspects are crucial for business purposes and one
cannot build any genuine Information System (IS)
without consideration for them. However, managing
these aspects is likely to involve a great loss in
interoperability and flexibility. This effect has already
been experienced with various middleware
technologies. Mostly, middleware delegates these tasks
to the underlying platform, hiding these advanced
mechanisms from the developer, and then establishing
a solid bond between the application and the platform.
Thus, a great deal of work is required to make Web
Service fully adapted for the industry. Especially,
mechanisms in charge of handling non-functional tasks
must preserve seamless interoperability.

In this article, we introduce the industrial context
and technical choices for applications integration with
Web Services. From the limitations of this solution, we
propose a solution based on aspects and we explain
how to apply this solution with a concrete
implementation.

2. INDUSTRIAL CONTEXT

2.1. Description of the Automaton
Figure 1 shows some high level functional domains

supported by the automaton, including software and
firmware: arrows represent the communication flow.
Application displays specific Human Machine Interface
(HMI) according to profile and maturity level of the
user. Access is allowed or denied according to user
profile and protected from unauthenticated usage.
However, it is possible to ask for analysis and to
receive result with different media as mobile phone,
PDA, and Web with specific passwords reserved for
laboratory managers and doctors. Non functional
services, such as security, reliability, persistency,
archiving, multi tasking, and supervision, have to be

defined and implemented. Automaton supports some
business functions as patient data management and
used consumables for plasma blood analysis. Using
automaton involves data generation that is analyzed for
preventive maintenance. Communication between
software and firmware with specific protocol is
implemented by using CAN bus [14]. Automaton
allows handling of tubes containing the blood plasma.
Automaton arms take the blood plasma and use
reagents to test coagulation. With this system, blood
disorders, such as hemophilia, can be detected.

Figure 1: Functional Architecture

Communications between domains can be supported

by Web services. Moreover, it might be necessary to
exchange patient data and results between different
hospitals or other Information Systems (IS).
Infrastructures might be based on heterogeneous
technologies. For instance, a laboratory uses IBM J2EE
technologies and hospital uses Microsoft technologies.
Thus, we invoke Web Services developed by different
platforms supporting different technologies.

Figure 2: Technical Architecture

2.2. Using Web Services
DCOM, J2EE or CORBA don't scale to the Internet:
their reliance on tightly coupling the consumer of the
service to the service itself implies a homogeneous
infrastructure. Web services use industry standard
protocols to guaranty interoperability between IS. In
order to provide the missing business features required
to leverage Web Service technology, a first set of tools
has emerged. Built on top of .NET and J2EE platforms,
Microsoft and IBM have implemented their own
toolkits based on the Web Service specifications. Web
Services Enhancements for Microsoft .NET (WSE) [7]
is a supported add-on to the Microsoft .NET
framework providing developers the latest advanced
Web Services capabilities such as security, security
policy, addressing, routing, and attachments.

The Emerging Technologies Toolkit (ETTK) [8] is
a software development kit for designing, developing,
and executing emerging autonomic and Web Service
technologies. It provides an environment in which to
run emerging technology examples that showcase
recently announced specifications and prototypes from
IBM's emerging technology development and research
teams. Based on Axis [9], ETTK processes messages
through handlers in chain. One particular chain enables
developers to insert their own message managers, such
as security handlers. A MessageContext object is
included in outgoing messages and is extracted from
incoming messages. The handlers in charge of the
transformations are specified in a Web Service
Deployment Descriptor (WSDD) file. These toolkits
look quite similar in the sense that they operate and
compute messages. SOAP Engines are composed of
filters (SOAP handlers) whose main role is to perform
transformations on the SOAP message [6], depending
on parameters included in the header. The SOAP
headers are in charge of delivering the context of the
message (authentication tokens, reliable messaging
properties, etc.).

Our technical approach to current Web Service
solutions enabled us to notice two major facts which
are at the root of Web Service’s lack of flexibility.
First, there is no dynamic mechanism to bind policies
and Web Service handlers. Secondly, there is no clean
separation of concerns [5] between the functional and
the non-functional code as well as between SOAP logic
and non-functional logic within handlers, as figure 3
shows. Once the client or service is coded and the
handlers are deployed, the Web Service cannot handle
new features and, because the different logics are
tangled up, it is not easy for another developer to reuse
the application in a different context.

laboratory hospital

3. USING ASPECTS

3.1. Discovering aspects

Consequently, an appropriate way to deal with
these crosscutting concerns [2] would be to use
different units of modularization to encapsulate these
logics [4]. Moreover, if these units of modularization
could be managed by a dynamic mechanism, then the
whole system would be able to dynamically reconfigure
itself depending on the policies [1].

SOAP logic Business logic

SOAP Engine

string valueX =

message.Header.GetE lementsByTag

Name("valueX ")[0].InnerText;

 if (IsL im itReached(valueX))

 {

 V ia ws1 = new Via(new

Uri("http://localhost/ws1.asmx"));

 outgoingPath.Fwd.Insert(0,

ws1);

ReqContext.Security.E lements.Add

(new EncryptedData(tok));

X509SecurityToken x509token =

RetrieveX509C lientToken();

ReqContext.Security.Tokens.Add(x

509token);

ReqContext.Security.E lements.Add

(new Signature(x509token));

service.CallInventory(amount,

item);

Non functional

aspects handling

logic

Client or Service

Figure 3: Tangled Logic within SOAP Services

These requirements lead us to consider Aspects
Oriented Programming (AOP), in the first step, as an
answer to Web Services reusability issues [3]. AOP is
one of the most promising solutions to the problem of
creating clean, well-encapsulated objects without
extraneous functionality. It allows the separation of
crosscutting concerns into single units called aspects,
which are modular units of crosscutting
implementation. With AOP, each aspect is expressed in
a separate and natural form, and can be dynamically
combined together by a weaver. As a result, AOP
widely contributes to increased reusability of the code
and provides mechanisms to dynamically weave
aspects [4].

Considering Web Services, non-functional aspects
handling logic should be encapsulated within multiple
aspects. Each aspect would be in charge of certain
features, such as security, and would deal directly with
well-defined objects like Kerberos tokens (security) or
Shipping forms (reliable messaging). Pushing the non
functional handling logic inside aspects means that
handler’s role has to be redefined, as they will only
contain SOAP logic then. The idea is to replace the
multiple specific handlers, which used to process
SOAP messages depending on their own
implementations, by a global handler whose role will
be restrained to extracting non-functional data

contained in incoming messages, and pushing it inside
outgoing messages.

3.2. Weaving Process
At this point, we need to define where, when and

how the aspects should be weaved. Let us answer these
questions by considering the different opportunities for
each of them. First, aspects could be weaved to the
global handler, to the stub or to the service
implementation itself. In fact, considering the global
message path and process, choosing any of these
entities does not really influence the mechanism.
However, we found it more convenient to weave
aspects to the stub since it provides a natural meta
object to focus on the service itself [15]. Secondly,
there are multiple choices for when to weave aspects. It
could occur during compile time, deployment time,
load time or run time. If the weaving were to happen at
compile time or deployment time, it would not be
possible to handle policy changes dynamically.
Conversely, there is no need to weave aspects at
runtime since the policy document will most likely not
be changed after the service starts running. Thus, the
ideal solution is to weave aspects when the service is
loaded to enable one single yet sufficient analysis of
the policies document for each new instance [11].
Thirdly, the weaver should be an application capable of
reading the policy document, interpreting the policies,
selecting the relevant aspects and finally mixing them
with the plain stub, as can be seen on figure 4.

Transaction

Aspect

Security

Aspect

Messaging

Aspect

Policies

Stub

SOAP Service
Enhanced

Stub

Service or

Client

Policy

Engine

Figure 4. Aspects weaving at load time.

Transmitting non-functional data to aspects weaved to
the stub at load time is one possible solution to achieve
genuinely flexible Web Services. This mechanism
allows Web Services to be reused more easily since
each non-functional aspect is detached from both the
service implementation and the handler. The Policy
Engine inserts these aspects depending on the service

contract requirements [16][7], which means that
interoperability is preserved if, for instance,
requirements from different clients vary.

We have seen how AOP can help to gain
flexibility through a cleaner separation of logics and
which mechanism can help to provide policy awareness
among Web Services. We shall now present our
concrete implementation of these concepts.

4. A CONCRETE SOLUTION

4.1. Structure of Axis
In our solution, we take advantage of multiple

open source solutions already available for Java
therefore we modify and assemble them easily. This
way, we can start with a ready-to-use platform that we
need to complete in order to obtain flexible Web
Services. Thus, the Web Server and the SOAP Engine
are constituted by the famous open source duo Tomcat-
Axis. Basically, Axis plugs into the Tomcat Servlet
Engine, meaning that it can be considered the same as
any other Web Application. Web Services are hosted
and managed by Axis in a transparent way for Tomcat
as shown in figure 5. Axis is based on the concept of a
chained message. The MessageContext object is a
wrapper object for the request and the responses
message and for contextual information about process,
request, response, etc. In figure 5, Request and
Response are handlers that manipulate the
MessageContext.

Web Service

.class File

Connector

Container

AxisServlet

AxisEngine
Message

Context

Request

Response

SOAP Service

Tomcat

Engine

AXIS

Figure 5. Axis Server-side Architecture.

Since these handlers can easily manipulate this
object, it is quite natural to select these handlers to act
like basic SOAP logic handler. For instance, if an
incoming SOAP header contains data that says the
body message is encrypted, then the Request handler
needs to decrypt the body. But the genuine non-
functional logic is hosted by the aspects, and non-
functional data used by these aspects is transmitted by

the provider. The provider is another handler that,
when invoked, calls the stub corresponding to the
service invoked. Once processed and transformed into
appropriate objects, these data will be passed to the
stub weaved with aspects.

4.2. Stub Bytecode Modifications
Let us now see how aspects are weaved to the

stub. First, we need to understand how class loading
works in Tomcat. Indeed, if we can modify the
bytecode of the stub object when it is loaded into the
Java Virtual Machine (JVM), then it will be possible to
weave the aspects at load time. Tomcat uses multiple
class loaders, which are java objects aiming to load
resources (class or jar files). With Java 2, class loaders
follow a delegation model, which means that if a class
is asked to be loaded by a class loader, then this class
loader will first ask its parent class loader to do so. If it
cannot load the class, the initial class loader will search
inside its own resources. All Tomcat class loaders
follow this rule except Web Application class loaders,
which are responsible for the loading of each class of
the Web Application they are in charge of.
Consequently, the idea is to modify the class loader in
charge of Axis Web Application so we can reach any
Web Service stub anytime it is loaded. To obtain such a
class loader, we just need to reuse the code of the Axis
regular WebAppClassLoader and specify that Tomcat
has to use the ModifiedClassLoader when it loads Axis
Web application, via the server.xml configuration file.

<Context docBase="C:\axis-1_1\webapps\axis"
path="/axis">

 <Loader loaderClass =
"org.apache.catalina.loader.ModifiedClassLoader"/>

</Context>

The next step is to use a tool which allows
both introspection and reflection - the former to inspect
the stub code when it is loaded and the latter to achieve
the weaving of aspects. One particularly convenient
answer to these requests is brought by Javassist [1].
Javassist is a class library for enabling structural
reflection in Java, which is performed by bytecode
transformation at compile time or load time. In order to
modify bytecode at load time, Javassist performs
structural reflection by translating alterations of
structural reflection into equivalent bytecode
transformation of the initial class file. After the
transformation, the modified class file is loaded into
the JVM by a special class loader. To bring this
mechanism into our solution, the ModifiedClassLoader
must adhere to three rules. First, it must encapsulate a
Javassist.ClassPool object, which will act as a

container for objects containing class files to be loaded.
These objects derive from the CtClass class which is a
convenient handle for dealing with class files (methods
or fields adds or renames, etc.). Next, when the
ModifiedClassLoader constructor is called, this
ClassPool object must be instantiated with the Web
Application class path so it can get the scope of the
classes it can handle. Finally, whenever a class is to be
loaded, the findClassInternal (String name) method is
called and must contain the transformation logic which
will affect the stub object anytime it is loaded. The
code below shows these modifications inside of what
used to be the regular WebAppClassLoader class.

public class ModifiedClassLoader extends URLClassLoader {

 protected ClassPool pool = null;

 public WebappClassLoader() {

 pool = ClassPool.getDefault();

 pool.insertClassPath(new LoaderClassPath(this));

 ...}

 /* Method called whenever a class is to be loaded */

 protected Class findClassInternal(String name) {

 ResourceEntry entry = findResourceInternal(name, classPath);

 Class clazz = entry.loadedClass;

 /* Javassist loader is invoked to get an easily modifiable CtClass
*/

 CtClass cc = pool.get(name);

 /* Class modifications according to the PolicyEngine */

 if(isStubClass("name"))

 PolicyEngine.Process(cc);

 byte[] b = cc.toBytecode();

 clazz = defineClass(name, b, 0, b.length);

 ...

 return clazz;

 }…

4.3. Policy Engine as a Weaver
Eventually, we shall define how the Policy

Engine works. As explained before, Policies constitute
the Service Contract and, thus, describe the
requirements to establish communication. For instance,
the <wsse:SecurityToken> element, as shown below, is
used to describe which security tokens are required and
accepted by a Web service. It can also be used to
express which security tokens are included when the
service replies.

<SecurityToken wsp:Preference="..." wsp:Usage="..." >

 <TokenType>...</TokenType>

 <TokenIssuer>...</TokenIssuer>

 <Claims>...Token type-specific claims...</Claims>

 ... (TokenType-specific details)

</SecurityToken>

Once the PolicyEngine.Process(…) method is
called, the engine gets a CtClass object containing the
code of the stub. Because the name of this class is
related to the name of the service itself, it becomes easy
for the Policy Engine to locate the Policy contract and
thus it can access the policy’s requests. The next step
for the engine is to fulfill each of these requests by
inserting the appropriate aspects within the methods of
the stub. This mechanism is almost equivalent for both
client and service side. Eventually, the Policy Engine
adds fields to the stub so it can obtain and set the non-
functional data that the provider manages. At this point,
the new “SOAP messages process” is effective and can
be used to dynamically handle each of the functional
aspects declared in the Policy document. Figure 7
below illustrates the global mechanism at runtime.

SOAP

Service

Functional

Data

Non

Functional

Data

Functional and

Non Functional

Data

Service (business logic)

Aspect (Non functional

aspect handling logic)

Request

Response

Provider

Handler (SOAP logic)

BankAccount Object

X509 Token Object

ShippingForm Object

TransactionData Object

Figure 7. Functional, non-functional and SOAP logics.

5. RELATED WORKS

The Web Service Management Layer (WSML)

[10] is an aspect based platform for Web Services
allowing a more loose coupling between the client and
server sides. The idea of this technology is to transfer
the Web Service related code from the client code to
this new management layer. The advantages are the
dynamic adaptation of the client to find the most fitted
Web Service, and it also deals with the non functional
properties like Traffic Optimization, Billing
Management, Accounting, Security, and Transaction.
This work looks very similar to the solution we provide

in the sense that it aims to gather the scattered code in
aspects. However, our solution especially aims to target
the norms of the Web Service Architecture, which are
described in the policies. The Web Services Mediator
(WSM) [11] is a middleware layer that sits above
standard Web Services technologies such as Simple
Object Access Protocol (SOAP) Servers. It aims to
decouple an application from its consumed Web
Service, and to isolate the application’s characteristics
(e.g., reliability, scalability, latency etc). Aspect-
Oriented Component Engineering (AOCE) [12] has
been developed to capture the cross-cutting concerns,
such as transaction, co-ordination and security. To
achieve this solution, the WSDL grammar has been
extended by enriching it with aspect-oriented features
so that it becomes better characterized and categorized.
However, there are no universally accepted standards
of the terminologies and the notations used in AOCE.
On the whole, AOCE and our work seem to offer very
similar approaches but, although just using the policies
to select aspects might be restrictive, our strategy does
not require developers to understand any vendor
specific standard. The Web Service Description
Framework (WSDF) [13] consists of a suite of tools for
the semantic annotation and invocation of Web
Services, by mixing both Web Service and Semantic
Web communities. Instead of establishing a hard wired
connection between the client and the service, by
specifying the Web Services through addresses, WSDF
enables the developer to formally specify a service
using rules and ontological terms.

6. CONCLUSION
Service Oriented Architectures require loose

coupling to access the services which will most likely
be implemented with emerging Web Service
technology. Using current SOAP toolkits, we noticed
that interoperability between client and Web Service is
damaged by non-functional aspects required by
businesses (such as security, transaction, reliable
messaging, etc). In fact, they require establishing a
strong coupling between the service logic, the non-
functional handling logic, and the SOAP logic. On top
of this, there is no dynamic adaptation mechanism to
bind the service contract requirements to the Web
Service and client abilities. These facts significantly
reduce Web Service flexibility and affect the loose
coupling ability offered by Services. The solution that
we are providing aims to offer a dynamic mechanism to
compute the service contract on the fly, enabling Web
Services to become fully aware of the business
requirements. The main principle consists of using
computational reflection [15] as a means to achieve

separation of concerns and dynamic adaptability. Our
new SOAP Service design provides a cleaner
separation between the multiple logics weaved at load
time. After analyzing the policies requirements, a
Policy Engine is in charge of selecting the appropriate
aspects to handle business mechanism like security,
transactions, etc. This mechanism allows Services to
gain in loose coupling.

Future works will consist of widening the
application scope of this solution and validating the
Web Services behavior in concrete Service Oriented
Architectures. The main tasks will be to implement a
library to handle the multiple WS-* norms and then
develop a policies fully compliant Policy Engine.

7. REFERENCES
 [1] F. Baligand, V. Monfort “A Pragmatic Use of Contracts and

Aspects to gain in Adaptability and Reusability” The 2004 2nd
European Workshop on Web Services and Object Orientation,
EOOWS'04, ECOOP, June 14-18, 2004, Oslo, Norway

 [2] M. N. Bouraqadi-Saâdani, R. Douence, T. Ledoux, O.
Motelet, M. Südholt "Status of work on AOP at the OCM
group, April 2001" , École des Mines de Nantes, technical
report, no. 01/4/INFO, 2001 KW: AOP, execution monitoring,
program transformation, interpreter

 [3] Kiczales G. et al. “Aspect-Oriented Programming”, in Proc of
ECOOP’97. LNCS 1241, Spinger-Verlag, 1997

 [4] Eric Tanter, Jacque Noyé, Denis Caromel, Pierre Cointe
“Partial Behavioral Reflection: Spatial and Temporal
Selection of Reification”, 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2003

 [5] O. Barais, L. Duchien, R. Pawlak, “Separation of Concerns in
Software Modeling: A Framework for Software Architecture”
Transformation, IASTED International Conference on
Software Engineering Applications (SEA), IASTED, USA,
November 2003.

[6] visit web site http://www.w3.org/TR/SOAP
[7] visit web site http://msdn.microsoft.com/webservices/build-

ing/wse/
 [8] Visit web site http://www.alphaworks.ibm.com/tech/ettk
[9] Visit web site http://www.axis.com/
[10] Verheecke B., Cibrán M.A., "Aspect-Oriented Programming

for Dynamic Web Service Monitoring and Selection," to be
published in the proceedings of the European Conference on
Web Services 2004 (ECOWS'04), Erfurt, Germany,
September 2004.

 [11] Visit web site http://javaboutique.internet.com/articles/
WSApplications/

 [12] Singh, S., Grundy, J.C., Hosking, J.G. Developing .NET Web
Service-based Applications with Aspect-Oriented Component
Engineering , In Proceedings of the Fifth Australasian
Workshop on Software and Systems Architectures,
Melbourne, Australia, 13-14 April 2004.

 [13] A. Eberhart. Towards universal Web Service clients. In B.
Hopgood, B. Matthews, and M. Wilson, editors, Proceedings
of the Euroweb 2002.

 [14] Visit web site http://www.ixxat.de/
[15] Chiba, S., “Load-time Structural Reflection in Java” in Proc.

of ECOOP’2000, 2000, SpringerVerlag LNCS 1850
 [16] D. Mandrioli, B. Meyer « Applying Design by contract »

Interactive Software Engineering Inc editions Prentice Hall

