Evaluating an Aspect-Oriented Approach for
Production-Testing Software

Jani Pesonen Mika Katara Tommi Mikkonen
Nokia Corporation Tampere University of Tampere University of
Tieteenkatu 1 Technology Technology

Tampere, Finland
jani.p.pesonen@nokia.com

ABSTRACT

Aspect-orientation enables an approach where tangled code
can be addressed in a modular fashion. However, the design
of interworking between object-oriented baseline architec-
ture and aspects attached on top of it is an issue, which has
not been solved conclusively. For industrial-scale use, guide-
lines on what to implement with objects and what with as-
pects should be derived. In this paper, we introduce a way
to reflect the use of aspect-orientation to production test-
ing software of mobile systems. Such piece of infrastructure
software is used to smoke test the proper functionality of a
manufactured device. The selection of suitable implementa-
tion technique is based on variance of devices to be tested,
with aspects used as means for increased flexibility.

Keywords

Production testing, variability, aspects

1. INTRODUCTION

Aspect-oriented approaches provide facilities for sophisti-
cated dealing with tangled and cross-cutting issues in pro-
grams [2]. With aspects, it is possible to weave new oper-
ations into already existing systems, thus creating new be-
haviors. Moreover, it is possible to override methods, thus
manipulating the behaviors that already existed.

With great power comes great responsibility, however. The
use of aspect-oriented features should therefore be carefully
designed to fit the overall system, and ad-hoc manipulation
of behaviors should be avoided especially in industrial-scale
systems. This calls for an option to foresee functionalities
that will benefit the most from aspect-oriented techniques,
and focus the use of aspects to those areas. Unfortunately
case studies on the identification of properties that poten-
tially result in tangled or scattered code in a certain problem
domain have not been widely available. However, under-

Korkeakoulunkatu 1
Tampere, Finland

mika.katara@tut.fi

Korkeakoulunkatu 1
Tampere, Finland

tommi.mikkonen@tut.fi

standing the mapping between the problem domain and its
solution domain, which includes both conventional objects
as well as aspects, forms a key challenge for industrial-scale
use.

In this paper, we address domain-specific identification of
types of properties that lend themselves to aspect-oriented
methodology. The domain we will use as an example is
that of production testing of a family of mobile devices,
where common and device specific features form different
categories of requirements that can be used as the basis
for partitioning between object-oriented and aspect-oriented
techniques. The way we approach the problem is that the
common parts are included in the object-oriented base im-
plementation, and the more device-specific ones are then
woven into that implementation as aspects.

The rest of this paper is structured as follows. Section 2
gives an overview of production testing of mobile devices.
The section also introduces a production-testing framework
for Symbian OS based mobile devices. Section 3 discusses
how we relate the problem domain and its aspect-oriented
solution domain in this particular case. Section 4 provides
an evaluation of aspect-orientation in this setting, and Sec-
tion 5 concludes the paper with some final remarks.

2. PRODUCTION TESTING

Production testing is a verification process utilized in the
product assembly to measure production line correctness
and efficiency. The purpose is to evaluate devices’ assem-
bly correctness by gathering information on the sources of
faults and statistics on how many errors are generated with
certain volumes. In other words, production testing is the
process of validating that a piece of manufactured hardware
functions correctly. It is not intended to be a test for the
full functionality of the device or product line, but a test for
correct composition of device’s components. With volumes
typical to modern mobile terminals, the production testing
involves software support that must be increasingly sophis-
ticated, versatile, cost-effective, and adapt to great variety
of different products. In software the most successful way of
managing such variance is to use product families [1].

2.1 Overview
Individual design of all software for all mobile device con-
figurations results in an overkill for software development.

Production-testing Software

System HW

services
«subsystem» «subsgsstem»
Server procedures
— > Test - F-t--[)| Device
proxy 1 Testd driver
«subsystem»
User Interface
&
————1-A «st < H—| Test [+1-1 F-+--1{ Symbian
. Test2
Messaging handler proxy 2 server
Test case _\ _\ Bisie
N
L Test |1 F-r1-H

proxy n

Figure 1: Production-testing framework.

Therefore, product families have been established to ease
the development of mobile devices. In such families, im-
plementations are derived by reusing already implemented
components, and only product specific variance is handled
with product specific additions or modifications. In this pa-
per, we will focus on a product family where Symbian OS [3]
is used as the common implementation framework. Symbian
OS is an operating system for mobile devices, which includes
context-switching kernel, servers that manage devices’ re-
sources, and rich middleware for developing applications on
top of the operating system.

The structure of the production-testing framework in Sym-
bian environment follows the lines of Figure 1 and consists
of three subsystems: user interface, server and test proce-
dures. Test procedure components (Test 1, Test 2, etc.)
implement the actual test functionalities and together form
the test procedures subsystem. These components form the
system’s core assets by producing functionality for basic test
cases. Furthermore, adding specializations to these compo-
nents produces different product variants hence dedicating
them for certain specific hardware, functionality, or system
needs. In other words, the lowest level of abstraction created
for production testing purposes is composed of test proce-
dure components that only depend on the operating system
and used hardware. As a convenience mechanism for exe-
cuting the test cases, we have implemented a testing server,
which is responsible for invoking and managing the tests.
This server subsystem implements the request-handling core
and generic parts of the test cases, which are abstract test
procedure manifestations as test proxies. Finally, a user in-
terface is provided that can be used for executing the test
cases. The user can be a human user or a robot that is able
to recognize patterns on the user interface, for instance. The
user interface subsystem implements the communication be-
tween the user and the production-testing system.

2.2 Variability management

From the viewpoint of production testing, the most impor-
tant pieces of hardware are Camera, Bluetooth, Display and
Keyboard. In addition, also more sophisticated pieces of
equipment can be considered, like WLAN for instance. The
test software on the target is then composed of components

for testing the different hardware and device driver versions,
which are specific to actual hardware. When composing the
components, one must ensure that concerns related to a cer-
tain piece of hardware are taken into account in relevant
software components as well. For instance, more advanced
versions of the camera hardware and the associated driver,
allow higher resolution than the basic ones, which needs to
be taken into consideration while testing the particular con-
figuration. Since the different versions can provide different
functional and non-functional properties, the testing soft-
ware must be adapted to the different configurations. For
example, the execution of a test case can involve compo-
nents for testing display version 1.2, Bluetooth version 2.1
and keyboard version 5.5. The particular display version
may suggest using a higher resolution pictures as test data
than previous versions, for instance. To further complicate
matters, the composition of hardware is not fixed. All the
hardware configurations consist of a keyboard and a color
display. However, some configurations also include a cam-
era or Bluetooth, or both. Then, when testing a Symbian
OS device with a camera but without Bluetooth, for in-
stance, Bluetooth test procedure components should be left
out from the tester software.

To manage the variability inherent in the product line, the
production testing software is assembled from components
pertaining to different layers as follows. Ideally, the ba-
sic functionality associated with testing is implemented in
the general testing components that only depend on the
Symbian OS or certain simple, common test functionality
of generic hardware. However, to test the compatibility of
different hardware variants, more specialized test procedure
components must be used. Moreover, to cover the particu-
lar hardware and driver versions, suitable components must
be selected for accessing their special features. Thus, the
test software is assembled from components, some of which
provide more general and others more specific functionality
and data for executing the tests.

3. APPLYING ASPECT-ORIENTED TECH-
NIQUESTO PRODUCTION TESTING

In the following we assess the possibilities of applying aspect-
oriented techniques to production-testing by identifying the

most important advantages of the technique in this problem
domain.

3.1 Identifying tangling

Strive for high adaptability and support for greater vari-
ability implies more complex implementations and a large
amount of different product configurations. Attempts to
group such varying issues and their implementations into
optimized components or objects using conventional tech-
niques make the code hard to understand and to main-
tain. This leads to heavily loaded configuration and large
amounts of redundant or extra code, and complicates the
build system. Thus, time and effort are lost in performing
re-engineering tasks required to solve emerging problems.
Hence, for industrial-scale systems, such as production-
testing software, this kind of tangled code should be avoided
in order to keep the implementation cost-effective, easily
adaptable, maintainable, scalable, and traceable.

Code tangling is evident in test features with long historical
background. The need for maintaining backwards compat-
ibility causes the implementation to be unable to get rid
of old features, whereas the system cannot be fully opti-
mized for future needs due to the lack of foresight. After
few generations the test procedure support has cluttered
and complicated the original simple implementation with
new sub-procedures and specializations. As an example con-
sider testing a simple low-resolution camera with fairly small
photo size versus a mega-pixel camera with an accessory
flashlight. In this case the first generation of production-
testing software had fairly simple testing tasks to perform,
perhaps nothing else but a simple interface self-test. How-
ever, when the camera is changed the whole testing func-
tionality is extended, not only the interface to the camera.
In addition to new requirements regarding the testing func-
tionality, also some tracing, monitoring or other extra tasks
may have been added. While the test cases still remain the
same, the test procedure becomes heavily tangled piece of
code.

Another typical source of tangling code is any additional
code that implements features not directly related to test-
ing but still required for all or almost all common or special-
ized implementations. These are features such as debugging,
monitoring or other statistical instrumentation, and special-
ized initializations. Although the original test procedure
did not require any of these features, apart from specialized
products and certainly should be excluded in software in
use in mass production, they provide useful tools for soft-
ware and hardware development, research, and manufactur-
ing. Hence, they are typically instrumented into code using
precompiler macros, templates, or other relatively primitive
techniques.

In object-oriented variation techniques, such as inheritance
and aggregation, the amount of required extra code for
proper adaptability could be large. Although small inheri-
tance trees and simple features require only a small amount
of additional code, the amount expands rapidly when in-
troducing test features targeted for not only one target but
for a wide variety of different, specialized hardware vari-
ants. Redundant code required for maintaining such in-
heritance trees and objects is exhaustive after few gener-

ations and hardware variants. Hence, the conserved derived
code segments should provide actual additional value to the
implementation instead of gratuitous repetition. Further-
more, these overloaded implementations easily degrade per-
formance. Hence, the variation mechanism should also pro-
mote light-weighted implementations, which require as little
as possible extra instrumentation.

Intuitively, weaving the aspects into code only after prepro-
cessing, or pre-compiling, does not add complexity to the
original implementation. However, assigning the variation
task to aspects does only move the problem into another
place. While the inheritance trees are traceable, the aspects
and their relationships, evolution and dependencies require
special tools for this. Hence, the amount of variation imple-
mented with certain aspects and grouping the implementa-
tions into manageable segments is the key asset in avoiding
tangling with at least tolerable performance lost.

3.2 Partitioning to conventional and aspect-
oriented implementation

The Symbian OS provides more abstract interfaces on upper
and more specialized on lower layers. Hence, Symbian OS
components and application layers provide generic services
while the hardware dependent implementations focus on the
variation and specializations. In order to manage this lay-
ered stucture in implementation a distinction between con-
ventional and aspect-oriented implementation is required.
Separating features and deciding which to implement as as-
pects and which using conventional techniques is, however,
a difficult task. On the one hand, the amount of required
extra implementation should be minimized. On the other
hand, the benefits from introducing aspects to the system
should be carefully analyzed while there are no guidelines or
history data to support the decisions.

We propose a solution where aspects instrument product
level specializations into the common assets and hence, pro-
vide linking time binding into the system. Furthermore,
the common product specific and architecture and system
level test functionalities comply with conventional object-
oriented component hierarchy. However, certain common-
alities, such as tracing and debugging support, should be
instrumented as common core aspects and hence, optional
for all implementations. Thus, we identify two groups
of aspects: test specialization aspects and general-purpose
core aspects. The specialization aspects embody product-
level functionalities and are instrumented into the lowest,
hardware related abstraction level. Secondly, the common
general-purpose aspects provide product-level instrumenta-
tion of optional system level features.

In this solution we divided the implementation on the ba-
sis of generality: Special features were to be implemented
using aspect-oriented techniques. These are all special,
strictly product-specific features for different hardware vari-
ants clearly adding special dedicated implementations rele-
vant to only certain targets and products. On the contrary,
however, the more common the feature is to all products,
it does not really matter whether it is implemented as part
of the conventional implementation or as a common aspect.
The latter case would benefit from smaller implementation
effort but suffer from lack of maintainability. Hence, com-

Production-testing Software

System HW

services
«subsystem» «s”b-?éss‘? me,
Server] procedures]
— > Test | {-1 -t4-F| Devi
proxy 1 Teg N drjve;
[~
«subsystem» a AT 1
User Interface j/:’_\/
e K
i i P K 1 *é Test {-I» Testz | [/ Symbian
Messaging [14 n proxy 2 server
4
Test case (_| _‘ eee
N
> Test -1 Testn EEE
proxy n

Figure 2: An aspect capturing specialization concern in production-testing framework.

mon aspects are proposed to include only auxiliary concerns
and dismiss changes to core implementation structures and
test procedures.

3.3 Cameraexample

We demonstrate the applicability of aspect-orientation in
production-testing domain with a simple example of an
imaginary camera specialization. In this example, an ex-
traordinary and imaginary advanced mega-pixel camera
with accessory flashlight replaces a basic VGA-resolution
camera in a certain product in our product family. Since
this unique hardware setup is certainly a one-shot solution,
it is not appropriate to extend the framework of the prod-
uct family. Evidently, changes in the camera hardware di-
rectly affect the camera device driver and in addition to
that, require also changes to the production-line’s test cases.
New test procedure is needed for accessory flashlight and
camera features and the old camera tests should be varied
to take into account the increased resolution capabilities.
Hence, enhanced camera hardware has an indirect effect on
the production-testing software, which has to support these
new test cases and algorithms by providing required testing
procedures. Hence, camera related specialization concerns
affect four different software components, which are all lo-
cated on different levels of abstraction: the user interface,
request handler, related test procedure component, and the
device driver. Components requiring changes compared to
the initial system illustrated in Figure 1 are illustrated in
Figure 2 as grey stars.

From the figure it is apparent that the required specializa-
tion cuts across the whole infrastructure and is likely to be
difficult to maintain using conventional techniques. In this
case, that is how to comply with the extraordinary setup. In
practice this could involve new initialization values, adapta-
tion to new driver interface, and, for example, introduce new
algorithms. With conventional techniques, such as object-
orientation, this would entail inherited specialization class
with certain functionalities enhanced, removed or added.
Furthermore, a system level parameter for variation must
have been created in order to cause related changes also in
the server and the user interface level, which is likely to
bind the implementation of each abstraction level together.

Hence, a dependency is created not only between the hard-
ware variants but also between the subsystem variants on
each abstraction level. These modifications would be toler-
able and manageable if parameterization is commonly used
to select between variants. However, since this enhancement
is certainly unique in nature, a conventional approach would
stress the system adaptability in an unnecessary heavy man-
ner.

However, the crosscutting nature of this specialization con-
cern makes it an attractive choice for aspects that group
the required implementation into a nice little feature to be
included only in the specialized products. These aspects,
which are illustrated in Figure 2 as a bold black outline,
would then implement required changes to user interface,
request handler, testing component, and device driver with-
out intruding the implementation of the original system.
Hence, the actual impact of the special hardware is neg-
ligible to the framework and the example thus demonstrates
aspect-orientation as a sophisticated approach of incorpo-
rating excessive temporary fixes.

4. EVALUATION

In order to gather insight into the applicability of aspects
to production-testing system, we assessed the technique
against the most important qualities for such system. These
include system’s adaptability, variability, reliability and ro-
bustness, and performance. In addition, major concerns are
the traceability and maintainability of the implementation.

Since the production-testing system is highly target-oriented
and should adapt easily to a wide variety of different hard-
ware environments, the system’s adaptability and variabil-
ity are the most important qualities. We consider that by
carefully selecting the assets to implement as aspects could
extend the system’s adaptability with still moderate effort.
A convincing distinction between the utilization of this tech-
nique and conventional ones is fairly dependent on the scope
of covered concerns. While the technique is very attractive
for low-level extensions, it seems to lack potential to provide
foundation for multiform, large-scale implementations.

Including aspects in systems with lots of conventional imple-

mentations has drawbacks in maintenance and traceability.
Designers can find it difficult to follow whether the imple-
mentation is in aspects or in the conventional part. As the
objects and aspects have no clear common binding to fea-
tures, following the implementation and execution flow be-
comes more complex and difficult to manage. Aspects can be
considered as a good solution when the instrumented aspect
code is small in nature. In other words, aspects are used to
produce only common functionalities, for example tracing,
and do not affect the internal operation of the functions.
That is, aspects do not disturb the conventional develop-
ment. However, these deficiencies may be caused by the
immaturity of the technique and hence reflect designers’ re-
sistance for changes. Also the lack of good understanding of
the aspect-oriented technology and proper instrumentation
and development tools tend to create skeptic atmosphere.
However, the noninvasive nature of aspect-oriented tech-
niques makes it superior technique in incorporating tracing
and debugging features.

Production-testing software should be as compact and effec-
tive as possible in order to guarantee highest possible pro-
duction throughput. Hence the performance of the system
is a critical issue also when considering aspects. Although
the conventional implementation can be very performance
effective, the aspects provide interesting means to ease the
variation effort without major performance drawbacks.

5. DISCUSSION

In this paper, we have described an approach for assembling
production-testing software from components that provide
test functionality and data at various levels of generality.
To implement this product line architecture, we have de-
scribed a solution based on aspects. The solution depends
on the capability of aspects to weave in new operations into
already existing components, possibly overriding previous
ones. Thus, the solution provides functionality that is spe-
cialized for the testing of the particular hardware configura-
tion.

One practical consideration in mobile setting is the selection
between static and dynamic weaving. While dynamic weav-
ing adds flexibility, and would be in line with the solution
of [4], static weaving has its advantages. The prime moti-
vation for advocating static weaving is memory footprint,
which forms an issue in mobile devices. Therefore, available
tool support [5] is technically adequate for our purposes.

Unfortunately, tool support for weaving is not the only
source of problems in our case. The tool chain of the Sym-
bian development is built around GCC version 2.98, with
some manufacturer specific extensions needed in mobile set-
ting [6]. Our first attempts indicate that using tools en-
abling aspects in this setting is not straightforward but re-
quires more work. While in principle we could circumvent
the problem by using mobile Java and Aspect] [7] to study
the approach, hiding the complexities of the implementa-
tion environment would not be in accordance to the spirit
of the problem, where specialized hardware and tools are
the important elements.

So far we have not tried out our approach in actual produc-
tion testing, mainly due to the aforementioned problems.

Thus, it remains as future work. We would also like to in-
vestigate more on the possibilities aspects could have in con-
junction with product family architectures. Especially, the
compositionality of aspects in the setting where platform-
specific tools are needed is an open issue.

6. REFERENCES

[1] J. Bosch. Design and Use of Software Architectures:
Adopting and evolving a product-line approach.
Addison—Wesley, 2000.

[2] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit.
Aspect-Oriented Software Development.
Addison—Wesley, 2004.

[3] R. Harrison. Symbian OS C++ for mobile phones. John
Wiley & Sons., 2003.

[4] J. Pesonen. Assessing production testing software
adaptability to a product-line. In Proceedings of the
11th Nordic Workshop on programming and software
development tools and techniques (NWPER’2004),
pages 237-250, Turku, Finland, August 2004. Turku
Centre for Computer Science.

[5] O. Spinczyk, A. Gal, and W. Schréder-Preikschat.
AspectC++: An aspect-oriented extension to C++. In
Proceedings of the 40th International Conference on
Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia, February
2002.

[6] C. Thorpe. Symbian OS version 8.1 Product
description. At http://www.symbian.com/ on the
World Wide Web.

[7] Aspect] WWW site. At
http://www.eclipse.org/aspectj/ on the World Wide
Web.

