Development environment for configuration and analysis
of embedded and real-time systems -

Aleksandra Tesanovic, Peng Mu, and Jérgen Hansson
Department of Computer Science
Linkdping University, Linkdping, Sweden
{alete,jorha}@ida.liu.se

ABSTRACT

In this paper we present a tool framework that provides
developers of real-time systems with support for building
and configuring a system out of components and aspects,
as well as real-time analysis of the configured system. This
way a real-time system can efficiently be configured to meet
functional requirements and analyzed to ensure that non-
functional requirements are also fulfilled, e.g., available re-
sources such as memory and CPU. We illustrate the usabil-
ity of the tool by a case study of an embedded real-time
database system.

1. INTRODUCTION

Modern real-time computing systems are faced with in-
creasingly complex requirements in their development and
operation. Successful usage of these systems in different
applications strongly depends on the ability to tailor a real-
time system to meet specific needs of the underlying appli-
cation. Hence, there is a need for an efficient way of de-
veloping families of real-time systems, i.e., a product line
architecture, suitable for a plethora of applications.

One way to ensure meeting these requirements is to adopt
the component-based software development paradigm for
real-time systems. This way systems are developed out of
pre-defined software components, and can be tailored for a
specific real-time application by adding or removing com-
ponents to/from the architecture. However, approaches to
developing families of real-time systems out of pre-defined
components existing in a component library, e.g., [9, 15],
do not provide efficient support for features that cannot
cleanly be encapsulated into components, e.g., temporal con-
straints, scheduling policies, and synchronization. Aspec-
tual component-based real-time system development, AC-
CORD [14], is an example of an effort to integrate the two
software engineering techniques, aspect-oriented and compo-
nent-based software development, into real-time system de-
velopment. ACCORD enables building flexible product line
architectures for real-time systems as it enables assembling
the system both from components and aspects.

For a real-time system, it is essential that results pro-
duced by the system are both produced correctly and in
a timely manner. To ensure timeliness, tasks' in a real-

*This work is supported by the Swedish Foundation for
Strategic Research (SSF) via the SAVE project, the Cen-
ter for Industrial Information Technology (CENIIT) under
contract 01.07, and the Swedish National School in Com-
puter Science (CUGS).

'Real-time systems are typically constructed out of concur-

time system are associated with deadlines, and a number
of real-time scheduling techniques has been developed en-
suring that tasks meet their respective deadlines. These
typically require the knowledge of the worst-case execution
time (WCET) of a task, making the issue of determining
the WCET essential for real-time systems. Furthermore,
majority of real-time systems is also embedded, implying
that they have sparse resources in terms of CPU and mem-
ory consumption or footprint. Thus, to be able to use a
real-time system in a particular run-time environment and
an application, analysis techniques need to be available to
ensure that non-functional requirements, i.e., WCET and
memory consumption needs, are met.

The contribution of this paper is a tool framework that
provides real-time system developers with support for con-
figuration and analysis of a real-time and embedded sys-
tem composed of aspects and components, i.e., a system
developed using ACCORD approach. The tool framework
includes tools that support a designer in the composition
process, as well as in the process of performing WCET and
memory footprint analysis, and formal verification of the
composed real-time system. We show the way the tool can
be used for developing various configurations of a real-time
database system, based on the specified functional and tem-
poral requirements of the underlying run-time environment.

The paper is organized as follows. In section 2 we give
background information on ACCORD and its main con-
stituents. Then, in section 3, we describe the tool framework
we developed to support the process of assembling and ana-
lyzing systems developed based on ACCORD. We illustrate
the usability and applicability of the tool on the example of
the real-time database system in section 4. Related work
is discussed in section 5. Finally, the paper is concluded in
section 6 with conclusions and directions for future work.

2. ASPECTUAL COMPONENT-BASED RE-
AL-TIME SYSTEMS DEVELOPMENT

Within ACCORD aspects in real-time systems are classi-
fied in different categories [14]: (i) application aspects, (ii)
run-time aspects, and (iii) composition aspects. The classi-
fication eases reasoning about different embedded and real-
time related requirements, as well as the composition of the
system and its integration into a run-time environment.

Application aspects can change the internal behavior of
components to suit a particular application as they cross-
cut the code of components in the system, e.g., memory

rent programs, called tasks.

Composition interface Required
(reconfig. locations) functional
a 7 O interface

? RTCOM:

Provided
functional
interface

Figure 1: Reconfigurable Real-Time Component
Model (RTCOM)

optimization aspect and real-time policy aspect. Run-time
aspects give information needed by the run-time system to
ensure that integrating a composed real-time system would
not compromise timeliness or available memory consump-
tion. Composition aspects describe the version of the com-
ponent, possibilities of extending the component with addi-
tional aspects, and a set of other components and applica-
tion aspects with which this component can be combined.

ACCORD provides a real-time component model, denoted
RTCOM, to support reconfigurability [14]. RTCOM compo-
nents are “grey” as they are encapsulated in interfaces, while
changes to their behavior can be performed in a predictable
way using aspects.

Each RTCOM component has two types of functional in-
terfaces: provided and required (see figure 1). Provided
interfaces reflect a set of operations that a component pro-
vides to other components, while required interfaces reflect
a set of operations that the component requires (uses) from
other components. Composition interfaces define reconfig-
uration locations in the component code. Reconfiguration
locations define the points in the component code where ad-
ditional modification of components can be done by aspect
weaving. These points can be used by the component user
(or component developer) to reconfigure a component for a
specific application or reuse context. Reconfiguration loca-
tions are also used analysis purposes [13, 12]. Note also that
the operations declared in the provided functional interface
can be used for aspect weaving and, thus, they represent
also implicit reconfiguration locations.

ACCORD enables design of a system both when (1) the
components and aspects are not available in the library, and
also when (2) there is a pre-existing library of aspects and
components developed for a family of real-time systems. In
the first case, the design of a real-time system using AC-
CORD method is performed as follows. First, a real-time
system is decomposed into a set of components. Decompo-
sition is guided by the need to have functionally exchange-
able units that are loosely coupled, but with strong cohesion.
Then, a real-time system is decomposed into a set of aspects.
After the design, components and aspects are implemented
based on RTCOM. Further, components and aspect that
provide specific functionality to the system are grouped into
aspect packages. This is to ease the reuse of already de-
veloped software artifacts. The second case is illustrated in
figure 2 where the composition of the system is done using
software artifacts available in a library. Now, in the de-
sign phase of the system, the developer chooses appropriate
aspects and components and forms a system configuration
based on application requirements. Moreover, if the sys-
tem needs to be modified during its lifetime to support new

Library
components aspects

Sy

/A’//////////ﬂE:]

aspect packages

L]

b

/7777774

I

L N

iz

system configuration2

Figure 2: ACCORD-based design

functionality this can be achieved by adding aspect packages
that provide exactly the functionality needed.

3. DEVELOPMENT ENVIRONMENT

The ACCORD development environment is a tool frame-
work developed to provide tool support for the system de-
signer when assembling and analyzing a real-time system for
a particular application. We assume that, for a particular
family of real-time systems, components and aspects are al-
ready developed and placed in the library, hence, providing
support for case (2) of the ACCORD development process
described in section 2.

The ACCORD development environment consists of (see
figure 3): the ACCORD library of pre-developed software
artifacts, the ACCORD Modeling Environment (ACCORD-
ME), and a configuration compiler. In this section we de-
scribe each of the constituents of the ACCORD development
environment and then discuss limitations and benefits of the
environment.

3.1 ACCORD Library

The ACCORD library contains two types of artifacts,
namely design-level artifacts and implementation artifacts
(see figure 3). Design-level artifacts are: (i) models of com-
ponents and aspects, (ii) run-time aspects of components
and application aspects (as prescribed by ACCORD in sec-
tion 2), and (iii) formal representations of the components
and aspects. Design-level artifacts are used when designing,
modeling, and analyzing the system. Implementation arti-
facts represent the implementation, i.e., source code, of the
components and aspects. The implementation artifacts are
used when producing the final product, i.e., a compiled code
of the system that can be deployed in a specific run-time en-
vironment.

3.2 ACCORD-ME
The ACCORD-ME part of the development environment

is implemented using the generic modeling environment (GME),

Library

Application
aspects

Design-level artifacts

Implementation artifacts
Aspect
packages

Components

Application
aspects

Run-Time aspects

Requirements:

« functional characteristics

* expected performance
guarantees

* temporal constraints (e.g.,
allowed memory footprint
and WCET)

- ACCORD-ME

o
Configurator

System configuration
satisfying functional
characteristics

e

Compiled

*Configuration
compiler

»
]
=
@
3

System deployed

NotOK on Real-Time
platform

Figure 3: ACCORD Development Environment

a toolkit for creating domain-specific modeling environments
[3]. The creation of a GME-based tool is accomplished by
defining metamodels that specify the modeling paradigm
(modeling language) of the application domain. The GME
environment also enables specifying different tool plug-ins,
which can be developed independently of the environment
and then integrated with the GME to be used for different
modeling and/or analysis purposes.

The input to the ACCORD-ME are requirements that
are placed on the system. This includes functional and
non-functional, e.g., performance guarantees, and tempo-
ral and memory constraints, requirements a system should
fulfill when used in a specific run-time environment. This
tool also uses the design-level artifacts for configuration and
analysis of the system. The output of the tool is a con-
figuration file that contains information about the system
configuration that fulfills the specified functional and non-
functional requirements.

ACCORD-ME is developed with a number of sub-tools
that are plugged into ACCORD-ME, namely the configu-
rator, memory and WCET (M&W) analyzer, and formal
verifier.

The configurator helps the designer to assemble the sys-
tem configuration by suggesting a subset of suitable aspects
and components. This tool provides three levels of support
to the system configuration based on the expertise and pref-
erences of the developer.

Expert option is used by developers familiar with the li-
brary of components and aspects. The expert option
enables the developers to create a number of custom
made configurations of the system. This is useful in
cases when a comparison of the performance of differ-
ent configurations is of interest.

Configuration-based option gives a list of possible con-
figurations of the system. This option is intended for
developers that can directly express the requirements
of the system in terms of available configurations.

Requirement-based option provides the system devel-
oper with the list of requirements from which the de-
veloper can choose a relevant subset of requirements
for a particular application. Thus, developers do not
need to have knowledge of what components and as-
pects exist in the library.

The M& W analyzer analyzes a configuration with respect
to WCET and memory requirements (the algorithm em-
ployed for WCET calculations is presented in [13]). This
tool takes as input (i) a configuration file that resulted from
the configuration process aided by the configurator; and (ii)
the run-time aspects. These run-time aspects contain the
run-time information the tool needs to calculate the impact
of aspect weaving and system composition with respect to
WCET or memory consumption.

We employ symbolic techniques [4] for calculating WCE-
Ts and memory requirements of operations. This implies
that WCETS in the run-time aspects are expressed in terms
of symbolic expressions. Hence, they are a function of one or
several parameters that in turn abstract the properties of the
underlying run-time environment. The symbolic expressions
need to be re-evaluated for each run-time environment, i.e.,
parameters in symbolic expressions should be instantiated
in the analysis. Hence, the M&W analyzer provides a list
of symbolic expressions and the list of necessary parameters
that need to be configured. Since it is possible to assemble a
number of configurations in ACCORD-ME, e.g., when using
the expert option in the configurator, the M&W analyzer
detects the configurations and enables developers to choose
which configuration she/he would like to analyze. Moreover,
it is possible to choose whether WCET or memory analysis
of the system should be performed.

The formal verifier is a tool that performs the formal ver-
ification of the composed real-time system. Formal analysis
is done based on the formal framework for modular verifi-
cation of reconfigurable components presented in [12]. The
behavior of the system configuration is checked using for-
mal models of aspects and components represented as aug-
mented timed automata with reconfiguration and verifica-
tion interfaces (stored in the ACCORD library).

3.3 Configuration Compiler

This tool is part of the development environment that aids
the designer in compiling the final product. The configura-
tion compiler takes as input: (i) the information obtained
from ACCORD-ME about the created configuration that
satisfied functional and non-functional requirements, and
(ii) the implementation level artifacts. Based on this input it
generates a compilation file. This file is then used for com-
piling source code of needed aspects and components into
the final system. Hence, the output of this tool is the com-

piled system configuration, which is ready to be deployed on
a specific run-time environment. The configuration compiler
also provides necessary documentation about the generated
configuration which can later be used for maintaining the
system.

3.4 Bendfitsand Limitations

The ACCORD development environment offers benefits
for system developers in terms of automated support during
the composition process (via the configurator tool), analysis
of the system (via various analysis tools), and the compila-
tion and deployment (via the configuration compiler tool).
With this automation the overall development time for a
real-time system decreases dramatically.

The tool environment in general, and ACCORD-ME in
particular, treats both components and aspects as first-class
constituents of a real-time system. Moreover, the uniqueness
of the environment is the set of tools encompassed by the
ACCORD-ME for analysis of a real-time system woven with
aspects (via components’ reconfiguration points).

For each family of real-time systems developed using AC-
CORD, i.e., each new application domain, specific imple-
mentation of components and aspects that constitute the
domain should be made, and these should be placed in the
ACCORD library. Moreover, parts of the ACCORD de-
velopment environment should be extended to embrace a
particular domain (section 4 shows the tool applied to the
domain of real-time databases). Namely, the configurator
should be extended with a set of requirements and com-
position rules for this particular domain, and the compila-
tion rules in the configuration compiler tool need also to be
updated to contain the rules for compilation of the newly
developed components and aspects.

4. EXAMPLE APPLICATION

We illustrate the applicability of the tool on an example
of the COMET real-time database system. We first briefly
introduce COMET components and aspects, and then show
how to develop a COMET database configuration using the
ACCORD development environment.

4.1 COMET Aspectsand Components

The ACCORD library contains, in this case, a set of
COMET components and aspects developed for the domain
of embedded real-time databases. COMET components are
[8, 11]: a user interface component, a transaction man-
agement component, an index management component, a
memory management component, a locking manager com-
ponent, and a scheduling manager component. COMET as-
pects include concurrency control policies, scheduling poli-
cies, transaction model, and QoS policies. Depending on the
application with which the database is to be integrated, as-
pects, components or specific aspect packages e.g., the con-
currency control aspect package and the quality of service
aspect package [11], can be used in the system composition.

4.2 Developing COMET configuration(s)

The following example illustrates how the COMET config-
uration can be tailored for a particular real-time system. We
focus here on using ACCORD-ME for configuring a product
line architecture for a specific electronic control unit (ECU)
in vehicles. The ECU at hand is used for controlling the

Data Model :

(@ Base data item (Base and derived data item

Data Access Contral

[[] Mone [v] HP-2PL with similarity [JoDC

Index access control:

[[] None [¥] Simple (mutex-hased)
Transaction model:

[C] High performanc e Guard-Link

(@ Option1: Based on transaction 1D, period and deadline

(» Based on

ID, period and ine{epsilon

B‘cr‘wedu‘ling pniicy
) Earliest Deadline First (EDF) (& Rate Monotonic S¢heduling (RMS)

@05 policy:

@ None

Submit

Figure 4: Requirement-based configuration of the
real-time database system

engine in a vehicle, and has the following set of data man-
agement requirements [7].

R1: The application performs computations using data ob-
tained from sensors; these data items are typically re-
ferred to as base data items.

R2: Sensor data should reflect the state of the controlled
environment implying that transactions used for up-
dating data items should be associated with real-time
properties, such as periods and deadlines.

R3: Values of data should be updated only if they are stale?
to save computation time of the CPU.

R4: The tasks in the ECU should be scheduled according
to priorities.

R5: Multiple tasks can execute concurrently in an ECU.
This in turn implies that the same data items can be
read and written by different tasks (which could result
in inconsistent data values in the system).

R6: The memory footprint of the system should be within
the mem Bound, which typically is obtained from the
ECU specifications.

When developing a configuration for such a system we start
by specifying the requirements using the configurator in
ACCORD-ME. Given that we know the system require-
ments, then the requirement-based option can be chosen in
configurator to guide the system composition. Now, based
on the requirements R1-R5 we can choose options in the

2A data item is stale if its value does not reflect the current
state of the environment.

requirement-based form (shown in figure 4) provided by the
configurator as follows. The configuration of the COMET
database system that is suitable for the ECU at hand should
contain only base data items (R1). Furthermore, it should
provide mechanisms for dealing with concurrency such that
conflicts on data items are resolved (R5) and data items
that are stale are updated (R3). This can be achieved using
one of the similarity techniques, e.g., HP-2PL with similar-
ity [5]. The transaction model should be chosen such that
transactions are associated with periods and deadlines (R2).
We choose the rate monotonic scheduling policy [6] to en-
force priority-based scheduling of tasks (R4). Performance
guarantees in terms of levels of quality of service are not
required.

When these requirements are submitted, the configurator
loads those components and aspects that could satisfy them
into ACCORD-ME. For more efficient composition process
one can use help provided in the descriptions of components
and aspects in terms of composition rules. Moreover, the rel-
evant components and aspects are grouped in aspect pack-
ages for easier system composition.

Observe that if one wants to make several different config-
urations satisfying a broad spectrum of functionalities, then
the expert option in the configurator can be chosen which
loads all possible components, aspects, and aspect packages
so that the developer can configure the system. A system
configuration satisfying functional requirements is shown in
the upper part of figure 5. In ACCORD-ME;, ovals are used
as the graphical representation of aspects, while squares rep-
resent components. When the composition of the system is
made, it should be analyzed to get the memory and WCET
needs of the configuration and contrast these to the pre-
scribed available values of memory and WCETs. Hence,
when the configuration part of the system development is
finished then the obtained configuration can be analyzed
using the M&W analyzer tool (see figure 5 for the snapshot
of the analysis process). When the M&W analyzer is in-
voked, it detects the configuration(s) one might have made
in ACCORD-ME and prompts for the choice of configura-
tion. In our example, we created only one configuration
and this one is detected by the M&W analyzer (see figure
5). After the configuration is chosen, the appropriate files
describing run-time aspects of components and aspects are
loaded for analysis. Since run-time properties of aspects and
components are described in terms of symbolic expressions
with parameters, the values of these parameters should be
provided in the analysis. If a parameter is needed for a sym-
bolic expression of a WCET or a memory of a component
or an aspect, we say that this component/aspect should be
configured for a run-time environment. The list of compo-
nents that require configuration is shown during analysis,
so one can make an inspection of the symbolic expressions,
and input the values of parameters in the expressions. Note
that advice that modify the components are included in the
component run-time description as shown in the lower right
corner of figure 5. Once the values of parameters are set for
this particular ECU, the tool outputs the resulting WCET
and/or memory consumption values which can be compared
with the values given in requirement (R6).

If the obtained configuration satisfied the requirements of
the engine ECU, the next step is to compile the system and
deploy it in the run-time environment, which is done using
the configuration compiler. As mentioned previously, the

configuration compiler also provides documentation of the
composed configuration of COMET.

5. RELATED WORK

A number of GME-based tools exist that address model-
ing and development of software systems. Here we review
only those tools that provide support for development of
component or aspect-oriented systems; the full list of GME-
based tools can be found in [3]. C-SAW [2] is an example of a
GME-based tool that enables weaving of aspect models pro-
viding a constraint weaver for nor-real-time systems. VEST
[10] is a GME-based tool that supports building component-
based real-time and embedded systems with support for run-
time aspects. In contrast to our approach and the ACCORD
development environment, VEST does not provide support
for system configuration (out of components and application
aspects), nor does it support the designers in suggesting a
relevant subset of components during system composition.

The Koala tool suite [15], which is a tool environment
for composition of product line architectures in industry,
provides similar support for the developer when assembling
an embedded system out of components only.

6. SUMMARY

In this paper we have presented the ACCORD devel-
opment environment for building embedded and real-time
product-line architectures using components and aspects av-
ailable in the library. In this environment, we provide the
support for real-time system developers in all phases of the
system development, from requirement specification to con-
figuration, system analysis, and compilation and deployment
of the system. The ACCORD development environment is
suited both for developers with extensive knowledge of avai-
lable artifacts as well as ones with little or no knowledge of
available components and aspects in the library by having a
tool called configurator as the part of the environment. The
configurator suggests the subset of aspects and components
suitable for the underlying system. Moreover, the analysis
tools enable developers to efficiently analyze the system with
respect to CPU and memory needs. This analysis is essen-
tial in the real-time domain. The tool environment outputs
the compiled system configuration as a final product with
documentation to ease maintenance of the system.

Our ongoing work focuses on the implementation of the
formal analyzer, which provides mechanisms for formal anal-
ysis of the system, and its integration into the development
environment.

7. REFERENCES

[1] Uppaal tool. http://www.uppaal.com.

[2] Constraint-specification aspect weaver (C-SAW).
http://www.gray-area.org/Research/C-SAW/,
December 2004.

[3] The generic modeling environment (GME).
http://www.isis.vanderbilt.edu/Projects/gme/,
December 2004.

[4] G. Bernat and A. Burns. An approach to symbolic
worst-case execution time analysis. In Proceedings of
the 25th IFAC Workshop on Real-Time Programming,
May 2000.

[6] K.Y. Lam and W.C. Yau. On using similarity for
concurrency control in real-time database systems.

[6]

7]

18]

[0

[10]

[11]

sitimisticCo

S

x| A

BH VS A mEmEEED

; & &

kT Name;lF’ess\timist\cEnncum]F’ess\limist\cEnncum Aspectlcomponenls LJ Base: |NfA

Zoom: |75%

= >

& F g

HRZPL

‘PessilimisticConcurlencyCuntmI

Aagregate]Inheﬂlance} Meta]
=l
=% newComet

Tal PessitimisticCancurrencyControl

1 configs detected!

E choose a configuration to analyze

Memoryh

| PeszsitimisticConcurrencyControl |

canfiy panel

Some C need to be

E config parameters

Please specify followin

n"|2| Ecunr re IndexManagement

Value

intWCET |

Mame |

®
H | Indexianagement

Parameter |

HP2PL : IMC_OP_1 |2+0.4%n

i MemoryManagement

Scheduleritanagement

In |

I TransactionManagement
Concumenc R

* [§ Paradid ' \ Userinterface

Transact

Pessitin I oncurrencylontrol)

@ Paradi Anahze or source: LockingManager (Lo
Ready

The Journal of Systems and Software, 43(3):223-232,
1998.

C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in hard real-time traffic
environment. Journal of the Association for
Computing Machinery, 20(1):46-61, January 1973.

D. Nystrom, A. TeSanovié¢, C. Norstrom, J. Hansson,
and N-E. Bankestad. Data management issues in
vehicle control systems: a case study. In Proceedings of
the 14th IEEE Euromicro International Conference on
Real-Time Systems, June 2002.

Dag Nystrom, A. TeSanovié, M. Nolin, C. Norstrém,
and J. Hansson. COMET: A component-based
real-time database for automotive systems. In
Proceedings of the Workshop on Software Engineering
for Automotive Systems at 26th International
Conference on Software engineering (ICSE’04), May
2004. IEEE Computer Society Press.

H. Schmidt. Trustworthy components-compositionality
and prediction. The Journal of Systems and Software,
pages 215-225, 2003.

J. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu,
M. Humphrey, and B. Ellis. VEST: an aspect-based
composition tool for real-time systems. In Proceedings
of the 9th Real-Time Applications Symposium 2003,
May 2003. IEEE Computer Society Press.

A. TeSanovi¢, M. Amirijoo, M. Bjork, and J. Hansson.
Empowering configurable QoS management in
real-time systems. In Proceedings of the Fourth ACM

[12]

[13]

[14]

[15]

Figure 5: Snapshot of ACCORD-ME when doing WCET analysis on a real-time system configuration

SIG International Conference on Aspect-Oriented
Software Development (AOSD’05). ACM Press, March
2005.

A. TeSanovi¢, S. Nadjm-Tehrani, and J. Hansson.
chapter Modular Verification of Reconfigurable
Components. Component-Based Software Development
for Embedded Systems-An Overview on Current
Research Trends Springer-Verlag, 2005.

A. TeSanovi¢, D. Nystrom, J. Hansson, and

C. Norstrom. Aspect-level worst-case execution time
analysis of real-time systems compositioned using
aspects and components. In Proceedings of the 27th
IFAC/IEEE Workshop on Real-Time Programming
(WRTP’03), May 2003. Elsevier.

A. Tesanovié¢, D. Nystrom, J. Hansson, and

C. Norstrom. Aspects and components in real-time
system development: Towards reconfigurable and
reusable software. Journal of Embedded Computing,
1(1), October 2004.

R. van Ommering. Building product populations with
software components. In Proceedings of the 24th
International Conference on Software Engineering,
pages 255265, May 2002. ACM Press.

