
Two Party Aspect Agreement using a COTS Solver

Eric Wohlstadter
University of British Columbia

wohlstad@cs.ubc.ca

Stefan Tai
Thomas Mikalsen
Isabelle Rouvellou

IBM Watson Research Center

stai,tommi,rouvellou@us.ibm.com

Prem Devanbu
University of California, Davis

devanbu@cs.ucdavis.edu

ABSTRACT
A number of researchers have proposed an aspect-oriented
approach for integrating concerns with component based ap-
plications. With this approach, components only implement
a functional interface; aspects such as security are left unre-
solved until deployment time. In this paper we present the
latest version of our declarative language, GlueQoS, used
to specify aspect deployment policies. Our work is focused
on automating the process of configuring cooperating re-
mote aspects using a client-server handshake. During the
handshake the two parties agree on aspect configuration by
using mixed integer programming. A security example is
presented as well as initial performance observations.

1. INTRODUCTION
Extending component interfaces directly with information
about non-functional concerns limits the reusability of an
interface. Each component implementing the interface must
be prepared to handle these concerns appropriately. Fur-
thermore, it also limits customizability, for example, the
ability of local security officers to tailor policy enforcement
code to suit their settings.

To address this shortcoming, a number of researchers have
proposed an aspect-oriented approach for integrating con-
cerns with component based applications [18, 6, 8, 11, 14,
19]. With this approach, components only implement a
functional interface; aspects such as security are left un-
resolved until deployment time. A pointcut specification,
written by a deployment expert, can be used to weave as-
pects and the original components. As presented, the ap-
proach does not consider the issue of matching client-side
aspects to the deployment on the server. This is important
when client and server-side aspects must cooperate [19, 13],
security or fault-tolerance aspects being prime examples.

This inflexibility limits the use of the approach in new,
emerging application areas such as service-oriented archi-
tectures (SOA). In a SOA, client applications and server
applications from the same product family are not always
consistently deployed across a wide-area. This may yield
variation in the features1 of client and server software. We
propose to provide dynamic and symmetric reconciliation
between the (potentially different) features (implemented as
aspects) of two communicating processes. However, different

1We use the term feature to denote an artifact of software
requirements and aspect to denote an artifact of software
implementation.

aspects can interact in various ways, and this complicates
reconciliation.

We use the term interaction [21] to reflect how aspect com-
binations affect each aspect’s ability to function as it would
separately. Interactions can be complex, subtle, and very
difficult to identify. Finding such interactions is outside the
scope of this paper. In addition, aspect configuration is a
matter of deployment policy and can vary.

In this paper we present the latest version of our declarative
language, GlueQoS, used to specify aspect deployment poli-
cies. A middleware-based resolution mechanism uses these
specifications to dynamically find a satisfying set of aspects
that allow a client and server to inter-operate. We have
presented a previous version of this work in [20]. The mo-
tivation and example we present are an update of our pre-
vious work. However, this paper additionally describes a
completely revised language design and implementation.

The remainder of this paper is organized as follows: Section
2 presents the GlueQoS language, Section 3 presents an ex-
ample, Section 4 presents the COTS solver we used, Section
5 presents implementation, Section 6 reviews related work
and finally we conclude in Section 7.

2. POLICY LANGUAGE
Policies are specified in the GlueQoS policy language. The
language provides a set of built in operators to specify ac-
ceptable aspect configurations, as well as the ability to ex-
tend the system with functions to measure operating con-
ditions (such as load, available energy, and bandwidth). A
configuration includes which aspects should be used as well
as what their operating parameters should be.

Each client to server session is associated with a set of
adaptlets [19]. An adaptlet conceptually encapsulates a pair
of client and server aspects. This includes the provided and
required interfaces of client and server aspects. This scop-
ing of aspects can be viewed in analogy to the “aspect per”
scoping of AspectJ but based on a client/server negotiated
session. The adaptlet abstraction serves to properly type the
“connection” between cooperating aspect instances. Our
work is focused on automating the process of configuring
these instances using a client-server handshake. During the
handshake the two parties agree on a set of adaptlets to
use, as well as the values of any parameters they expose.
In this section we detail the constructs in GlueQoS used



to automate this handshake including support for boolean
constraints, linear constraints, and run-time monitoring.

2.1 Boolean Constraints
Aspect agreement can range from a very simple problem
(e.g., when all aspects are orthogonal (non-interacting)), to
a very hard problem (e.g., when aspect interactions are ar-
bitrary). Since aspect-oriented middleware systems are not
widely deployed, we draw on work in other areas [5, 21, 1]
in order to hypothesize what an ideal framework requires.
Therefore, our description is highly expository in nature
rather than purely prescriptive.

Each host (client or server) will need to include in their
policy a set of statements to impose some requirements on
the adaptlets used in a session. If an adaptlet is used in
a session, we say the adaptlet’s status is on (true) for that
session; otherwise, the adaptlet’s status is off (false).

Due to the nature of interactions, sometimes one adapt-
let may be dependent on another adaptlet. Also, adaptlets
might conflict: viz, they cannot be used together. Finally,
since hosts do not have a priori knowledge of which adaptlets
are supported by a peer, it is useful to provide choices amongst
a number of adaptlets, in order to meet some requirement.
Here we present the encoding of these constraints in Glue-
QoS, whose syntax follows from boolean logic:

• Dependency: The deployment of an aspect, A, de-
pends on the deployment of another aspect, B. This
can be encoded as an implication, (A implies B).

• Conflict: Two aspects conflict if their combination has
a negative effect on the behavior of the entire applica-
tion. The deployment of one aspect should exclude the
deployment of the other. The decision that an effect is
negative is application dependent but may include ef-
fects such as introducing deadlock, putting data in in-
consistent states, or degrading performance. Conflict
is encoded by, not(A and B).

• Choice: Either aspect or both can be chosen to meet
some requirement. This is encoded as (A or B).

Based on these examples, it is straightforward to encode
other requirements such as those stemming from three-way
interactions. Now, given that in a SOA agreement may
need to be performed at run-time, one can see it is desirable
to provide for efficient computation of aspect status based
on host policies. However, even deciding status for poli-
cies of Choice and Conflict is not easily computable (i.e.,
not tractable) in general. The important question that we
address in the remainder of this section is, “Is there a rea-
sonable restriction of arbitrary boolean constraints that is
tractable?”. We believe the answer is no, so we have opted
not to impose any restrictions on boolean constraints.

One way to answer this question would be list all known
tractable restrictions [7] and argue why each one is not
reasonable. We believe this is possible, however the list
in lengthy, and contains relatively few restrictions actually
used in any practical setting. Noteworthy examples from

the list are 2-SAT and Horn-SAT. Instead, we describe a
minimal restriction of boolean constraints which is still in-
tractable, yet we argue is reasonable. By minimal we mean
that it is difficult to imagine how one could usefully restrict
it further.

We start with 2-SAT. It requires that dependencies be of the
form (A implies B). For instance, ((A and B) implies C)

is not allowed. This seems reasonable since software depen-
dencies are usually cast in terms of binary relationships.
Now, conflicts are required to be of the form, not(A and

B). For instance, not(A and B and C), is not allowed. This
seems reasonable since it is difficult to imagine a case where
two software packages don’t conflict until a third is present.
Finally, choices are required to be of the form (A or B).
For instance, (A or B or C) is not allowed. Our argument
rests on the fact that we believe this restriction seems un-
reasonable. So, relaxing 2-SAT slightly to allow multiple
choice gives us our restriction which is reasonable yet in-
tractable. An equivalence reduction between 3SAT (a clas-
sical intractable problem) and this relaxation of 2-SAT is
straightforward. This is by no means a formal proof, but we
hope it gives the reader insight into our language design.

Since no shortcuts seem likely, we appeal to brute force pro-
vided by a COTS constraint solver. In terms of language
design, we have traded off scalability for expressiveness. Ar-
bitrary interactions are supported but can only be reasoned
over efficiently if the total number of aspects on a given
system is limited. From our initial experiments we believe
support for up to 50 aspects should be easily manageable.

2.2 Linear Constraints
Now that we have addressed the motivation and interpre-
tation for policies regarding acceptable adaptlet status, we
turn to the matter of adaptlet parameter constraints.

Every adaptlet may need to be configured according to a set
of parameters. This is analogous to Component Oriented
Programming [16]. For example, in the Java Beans com-
ponent model every bean may expose a set of attributes for
deployment time configuration. However, in our scenario we
must allow for joint agreement, between client and server,
of the session-time parameters.

For this purpose, we allow the representation of linear con-
straints [15, 4] over adaptlet parameters. For example, a
linear constraint could be used with two adaptlets imple-
menting a service-level agreement,

−2.0 ∗ PayFeature.price + 1.0 ∗QoS.guarantee = −100.0

This constraint sets the price of a connection at fifty dollars
plus half the amount of bandwidth reservation. Graphically,
this allows clients and servers to negotiate a choice of the
two aspect parameters (referenced as fields of the aspects)
anywhere along the line defined by the equation.

In contrast to systems of non-linear constraints, linear sys-
tems are decidable and tractable. Thus far we have not
explored support for non-linear constraints. Modern solvers
are usually based on the Simplex [4] algorithm due to Dantzig.



2.3 Run-time Policy Adaptation
Recall that hosts execute in an environment that is continu-
ously changing; they might need to be configured according
to a dynamic deployment context. Rather than force de-
ployment experts to constantly update policies manually,
our policy language includes constructs to reflect these en-
vironmental changes. The constructs are of two types: user-
defined value functions and user-defined predicate functions.

The values of coefficients or constants in linear constraints
can be input through user-defined value functions. Evalu-
ation of these functions occurs periodically throughout the
execution of client and server applications. Before policy res-
olution occurs, a “snapshot” of the client and server policies
is taken to reflect their current states. A similar approach
is used in QuO [11], however, not in the context of aspect
agreement. For example, we can update the example given
as,

−2.0 ∗ PayFeature.price + 1.0 ∗QoS.guarantee =
{cpuLoad() ∗ 100.0− 100.0}

Graphically, this allows the expression of a line which is
shifted vertically based on the current value of the user-
defined function cpuLoad.

Likewise, requirement of a particular adaptlet in an accept-
able configuration may also depend on the state of the ex-
ecution environment. A security feature, for example, may
only be required for certain types of network connections
e.g.,
Password and (Encryption when { linkType(“mobile”) }).

Here, the required configuration varies between using the
Password feature alone and using both the Password and
Encryption feature. This variation is based on evaluation of
the linkType user-defined predicate using our when keyword.

We have shown that the acceptable feature configurations
may vary dynamically. The actual policies expressed depend
on the moment when resolution occurs. We have provided
two constructs in our language to express this variation.

2.4 Special Functions
In addition to the language elements we have laid out so
far, two special types functions are supported. These are
the Supports and Preference functions.

Our client/server scenario must account for the fact that
client and server policies are written in isolation. There-
fore, the sets of adaptlets mentioned in each policy might
not be the same. We chose the semantics that any adaptlet
not mentioned in both policies would be assumed to have
its status forced to off. This default assumption can be
suppressed by adding a Supports clause. For example, the
clause Supports(A) can be interpreted as adding the tautol-
ogy (A or not(A)) to the set of constraints.

Assuming the client is given some Choice (as in Section
2.1) between adaptlets to meet a particular requirement, the
Preference function provides a way to instruct the COTS
solver which adaptlet to choose. Optimization methods based
on linear programming allow for computation of a solution

which maximizes some utility function over the constraint
variables. Leveraging this utility function we can support
preferences over the configuration of aspects from any pos-
sible configurations. Currently the Preference function is
only available to clients because the asymmetry in our hand-
shake protocol (see Section 5.1) cannot provide proof that
any server Preference functions would be respected. We
plan to revisit this restriction in future work.

In the following section we demonstrate a possible usage of
the language elements laid out in this section.

3. SECURITY EXAMPLE
Consider deployment of a client/server application in an en-
vironment where two security adaptlets are required. The
first is authentication. The server must protect certain ser-
vices from unauthorized access; so client requests must be
preceded or accompanied by an authentication step involv-
ing the presentation of credentials in order to gain group
membership for those services. Credentials can be based
on a password, or on public-key signatures. In this case,
an aspect on the server side is responsible for checking cre-
dentials, and the corresponding aspect on the client-side is
required to present the appropriate credentials.

The second adaptlet, the client-puzzle protocol (CPP) [5], de-
fends against denial-of-service (DoS) attacks. A DoS attack
occurs when a malicious client (or set of malicious clients)
overloads a service with requests, hindering timely response
to legitimate clients. Certain components of the server may
be prone to DoS attack because of the amount of compu-
tation required by the components. CPP protects a com-
ponent by intercepting client requests and refusing service
until the client provides a solution to a small mathematical
problem.

CPP and Authentication interact in interesting ways. For
example, suppose the server’s only requirement is to pre-
vent DoS attacks. If we trust authenticated clients not
to mount DoS attacks, then the authentication and client-
puzzle adaptlets are equivalent and one can be substituted
for the other; it would be redundant to use both. However,
sometimes authentication may not imply a decreased risk of
DoS attacks, so these adaptlets would be viewed as orthogo-
nal. In other situations, we may require both authentication
and DoS defense.

Client-side preferences must also be considered when select-
ing the adaptlets that govern a client-server interaction. A
client may consider CPP and Authentication to be equiva-
lent, and express a policy that it can use either. A client
with a performance requirement, however, would naturally
prefer to employ authentication to avoid computing puzzle
solutions. A client who values its privacy would prefer to
expend CPU cycles in order to not have to reveal their iden-
tity; this client may prefer to use CPP rather than provide
identity-revealing credentials.

Figure 1 is a realization of the security policy as expressed
in GlueQoS. The first policy is shown for the server.

Each line (1, 2, and 3) represents a different configuration
constraint. The first is an implication between the status



Server:
(1) (Authentication implies (CPP.size = { cpuLoad()*8 }));
(2) (CPP when { cpuLoad() > .5 });
(3) (Authentication or (CPP.size = { cpuLoad()*16 }));

Client1:
(4) Authentication;

Client2:
(5) Supports(CPP,Authentication);
(6) Preference(not(Authentication),Authentication);
(7) (CPP.size <= 4);

Figure 1: Security Example

of the Authentication adaptlet and a constraint on the size
parameter of the CPP adaptlet. It states that with Au-
thentication, the size of puzzles varies linearly from 0 to 8
depending on CPU load. Another constraint (line 2) uses
a predicate (cpuLoad() > .5) to determine whether CPP
is required. When CPU load is less than .5, the server al-
lows Authentication to be used without the CPP; otherwise
just CPP, with the largest puzzle size, can be used. This
shows how run-time conditions can dynamically adapt the
acceptable adaptlet combinations expressed by hosts.

The first client policy is shown on line 4. This client will
only use the Authentication adaptlet (perhaps because of
software availability, or because it is too performance-limited
for CPP). Therefore, this client can only create a session
with the server when the server’s load is less than 0.5.

The second client policy (lines 5-7) uses parameter con-
straints to choose between two adaptlet combinations. Note
that the Preference semantics in our language denotes a
preference for the first alternative. Consider a situation
where this client wishes to maintain its anonymity by not
using the Authentication feature. However, it also has a per-
formance requirement that takes precedence. Perhaps the
client is on a mobile device with low computing power. Line
6 expresses the client’s preference to maintain anonymity.
However, in order to keep performance at a certain thresh-
old the client will also use Authentication if it will keep the
puzzle size low. By comparing to the sample server’s policy
(lines 1 and 3 in particular): if this client contacts the server
when the server’s CPU load is 25 percent or lower the client
can maintain its anonymity by using CPP only (from line 3
and 7, 16∗ .25 <= 4). However, if it contacts the server and
the server’s CPU load is between 25 percent and 50 percent
it will agree to reveal its identity to maintain higher perfor-
mance (from line 1 and 7, 8 ∗ .5 <= 4). When the server’s
load passes 50 percent the client will be not be able to find
a solution to the constraints imposed by the policy.

4. MIXED INTEGER PROGRAMMING POL-
ICY MATCHING

In Section 2, we described our policy language for express-
ing adaptlet configurations. We have made some informed
design decisions and arrived at an implementation based on
mixed integer programming. Pragmatically, the best choice
for these decisions would be based on best practices observed
over a number of years. Certainly this is difficult as aspect-
oriented middleware is not widely deployed in practice.

Mixed Integer Programming has been used widely in the
area of Operations Research [4] for decades. Here we apply
this technique for automating the configuration of aspect-
oriented software in a client/server setting.

Mixed Integer Programming extends the theory of linear
programming. In a mixed integer program (MIP) a subset
of variables can be constrained to integer values. Hence, the
“mixed” denotation refers to a mix of real and integer vari-
ables. A popular strategy for solving a MIP is based on the
Branch-and-Bound [15] algorithm. In this paper we view the
MIP algorithm as a COTS component that is utilized for the
purpose of resolving policies. This is achieved by modeling
adaptlet status as 0/1 integers and adaptlet parameters as
integer or real variables.

5. IMPLEMENTATION
Our prototype implementation builds on the existing DADO
dynamic AOP middleware [19] and the Lindo API [10] for
mixed integer programming. This involves attaching poli-
cies to applications, maintaining a run-time representation
of policies, and finally deploying the properly parameterized
resolved aspects.

A deployment expert considers local requirements and as-
pect interactions to design a policy. The policies are asso-
ciated with CORBA interface types, before an application
is executed. Our implementation currently does not sup-
port policies on a per-method basis; a single policy can be
assigned to each interface type. At application load-time
the GlueQoS middleware builds a data-structure represent-
ing these policies. Now we describe the overall set-up as in
Figure 2.

Client
Stub

Server
Object

MIP

1

2

3

4

56

Policy

Policy

Figure 2: The overall flow of the GlueQoS runtime,
including client stub, server stub, and the Mixed
Integer Programming (MIP) runtime component

The figure represents the client and server runtime using our
GlueQoS middleware, separated on the left and right sides
respectively. The dotted-line boxes represent the boundary
between middleware related functionality and the black-box
MIP component.



Inside the dotted lines are three pieces. First, the large
circles represent the client stub and server object to which
the session based aspect agreement applies. Second, the
tree of nodes represents the policy data-structure. Third, a
separate thread, shown as the curved line, is responsible for
updating this data-structure based on the values retrieved
from user-defined functions. Now we focus on the interaction
defined by the numbered flow of the diagram.

5.1 Client/Server Interaction
The GlueQoS middleware at each end of an interaction de-
termines adaptlet configuration for each application session.
These aspects and their operating parameters remain fixed
for the lifetime of the session. In the future, we plan to
investigate support for continuous adaptation of operating
parameters.

When a client locates a server, it sends a policy request (1)
to the server object to initiate a session. Policy requests are
implemented as a CORBA operation that is transparently
introduced to all IDL interfaces. This is performed by a
compiler that is part of our DADO toolset.

The server creates a session for the client in the form of a
cookie. Now, the server serializes the policy data-structure,
associates it with the newly created session and returns the
serialization to the client. Note that at this point, all run-
time adaptation functions have been evaluated out of the
policy, creating a static policy based on the current environ-
ment. This means that in the example, the server does not
have to reveal the fact that policy is based on current cpu
load.

Now, the client must match its own policy with the server
and choose an adaptlet configuration acceptable to both.
First, client and server data-structures are merged. Now,
a client matches policies by carrying out the mixed integer
program resolution. The merged data-structure and a vector
representing the client’s preferences are passed to the Lindo
API. It will return a satisfying assignment for all variables or
signal unsatisfiability (3). These results are used to control
the execution of aspects. In the case of unsatisfiability, an
exception is thrown to the application to signal incompatible
policies.

The configuration chosen by Lindo is used in the creation of
aspects which implement the adaptlet collaboration. These
aspects are instantiated using the Java Reflection API. The
parameter values chosen are passed to the aspect’s construc-
tor. The signature of the constructor and parameters for
each aspect are part of the adaptlet type. The values can
then be used by the advice to configure aspect execution. In
this way the resolved aspects are activated and configured
according to the policies of both client and server.

The setup chosen by the client is then serialized and sent
to the server (4). This message is piggybacked on a sub-
sequent application request to the server. The server must
verify that the setup chosen by the client actually satisfies
its own policy. This requires only a simple linear time check
of constraint satisfiability (5). The values for the variables
are plugged into the policy which was associated with the
client’s session. If verification is successful, the server can

discard the associated policy and create aspects in the man-
ner described for the client side. On subsequent requests,
the cookie from the client is used to execute aspects and
advice on a per-client basis. If verification is unsuccessful
an exception is thrown back to the client (6).

5.2 GlueQoS Prototype
Our GlueQoS implementation has been tested on the ex-
ample presented in this paper and a previous version on an
example in a related paper [17].

To understand some of the performance impact induced
by the GlueQoS software we measured the overhead of the
GlueQoS handshake phase (Figure 2, steps 1 - 5) on the
example of Figure 1 with the second client policy. Our ex-
periments showed that the overhead is dominated by the
communication costs of steps 1 and 2 in Figure 2.

An important detail missing from this experiment is the
fact that only a single example policy was used. Since the
policy solver of step 3 grows exponentially with the number
of integer variables required in the policy encoding, it will
be important to repeat the experiments for a range of policy
sizes. We could draw from the approach described in [12].
This work shows how to generate random 3-SAT instances
of a desired size and difficulty (i.e., time required to solve the
instance). In the future it may be possible to extend that
work for generating random policies of varying difficulty that
can be used for further experiments.

6. RELATED WORK
Aspect-Oriented middleware is motivated by the need to
provide flexible customization with a simplified deployment
process, combining the benefits of reflective middleware with
container based deployment.

Recently, the open-source JBoss [9] application server an-
nounced aspect-oriented deployment of container services
using the Javassist [2] byte code editing toolkit. A simi-
lar approach is used in the Java Aspect Components (JAC)
framework [14] that also utilizes load-time byte code weaving
(using BCEL [3]) in Java. New services can be constructed
by implementing aspect-specific interceptors. Deployment
takes place using the notion of pointcuts from the AspectJ
language. In JAC, aspects can be un-deployed/re-deployed
dynamically using a standardized API.

The Quality of Objects (QuO) [11] project aims to provide
consistent availability and performance guarantees for dis-
tributed objects in the face of limited or unreliable com-
putation and network resources. QuO defines an abstrac-
tion known as the operating region for processes (client or
servers) cooperating in a distributed object environment.
Changes in perceived run-time conditions move a process
into different operating regions. Advice that is bound to a
particular operating region or region transition is the main
vehicle by which adaptation is achieved.

The aspect-oriented middleware presented in this section
achieve both flexible customization and simplified deploy-
ment. This is made possible by a clear separation between
adaptation programming and deployment. Deployment is
facilitated by pointcut based descriptions which map adap-



tation behavior to application events. Our work on Glue-
QoS could be used to simplify run-time deployment of co-
operating aspects in client-server applications. Previously,
we have presented the notion of an adaptlet collaboration
which serves to properly type client and server aspect roles.

7. CONCLUSION
GlueQoS is middleware software to support dynamic adjust-
ment of aspects between clients and servers. Configuration
preferences are specified in the GlueQoS policy language.
These policies are exchanged at binding time between sys-
tems interacting in an ad-hoc setting. The polices are then
matched up, and resolved by the middleware. The resolved
aspects are then deployed and executed. GlueQoS has been
implemented in the context of adaptlets.

8. REFERENCES
[1] BEA, IBM, Microsoft, and SAP AG. Web services

policy framework (WS-Policy), May 2003.

[2] S. Chiba. Load-time structural reflection in Java. In
Proc. of the European Conference on Object-Oriented
Programming, pages 313–336, 2000.

[3] M. Dahm. Byte code engineering with the BCEL API.
Technical Report B-17-98, Freie Universit at Berlin,
Institut fur Informatik, 31 pages, 2001.

[4] G.B. Dantzig. Linear Programming and Extensions.
Princeton University Press, Princeton, N.J., 1962.

[5] D. Dean and A. Stubblefield. Using client puzzles to
protect TLS. In Proc. of the USENIX Security
Symposium, 9 pages, 2001.

[6] F. Duclos, J. Estublier, and P. Morat. Describing and
using non-functional aspects in component based
applications. In Proc. of the International Conference
on Aspect-Oriented Software Development, pages
65–75, 2002.

[7] J. Franco and A. van Gelder. A Perspective on
Certain Polynomial Time Solvable Classes of
Satisfiability. In Abstracts of the International
Symposium on Mathematical Programming, 1997.

[8] F. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer,
and M. Steckermeier. Aspectix: a quality-aware,
object-based middleware architecture. In Proc. of the
3rd IFIP Int. Conf. on Distrib. Appl. and
Interoperable Sys., 2001.

[9] JBoss. <http://www.jboss.org>. 4.0 edition.

[10] Lindo API. <http://www.lindo.com/>. 2.0 edition.

[11] J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr,
R. Vanegas, and K. Anderson. QuO Aspect languages
and their runtime integration. In Proc. of the
Workshop on Languages, Compilers and Runtime
Systems for Scalable Components, 16 pages, 1998.

[12] D. Mitchell, B. Selman, and H. Levesque. Hard and
easy distributions of SAT problems. In Prof. of the
Conference on Artificial Intelligence, pages 459–465,
1992.

[13] M. Nishizawa, S. Chiba, and M. Tatsubori. Remote
pointcut – a language construct for distributed aop. In
Proc. of the International Conference on Aspect
Oriented Software Development, 2004.

[14] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A flexible framework for AOP in Java. In Proc.
of the International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns
(Reflection), 24 pages, 2001.

[15] M. Simonnard. Linear Programming. Prentice Hall,
1966.

[16] C. Szyperski. Component Software – Beyond Object
Oriented Programming. Addison Wesley, 1997.

[17] Stefan Tai, Thomas Mikalsen, Eric Wohlstadter,
Nirmit Desai, and Isabelle Rouvellou. Transaction
policies for service-oriented computing. Data and
Knowledge Engineering Journal: Special Issue on
Contract-based Coordination and Collaboration,
51:59–79, 2004.

[18] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten,
and B.N. Jorgensen. Dynamic and selective
combination of extensions in component-based
applications. In Proc. of the International Conference
on Software Engineering, pages 233–242, 2001.

[19] Eric Wohlstadter, Stoney Jackson, and Premkumar
Devanbu. Dado: Enhancing middleware to support
cross-cutting features in distributed, heterogeneous
systems. In Proc. of the International Conference on
Software Engineering, pages 174–186, 2003.

[20] Eric Wohlstadter, Stefan Tai, Thomas Mikalsen,
Isabelle Rouvellou, and Premkumar Devanbu.
Glueqos: Middleware to sweeten quality of service
policy conflicts. In Proc. of the International
Conference on Software Engineering, 2004.

[21] P. Zave. An experiment in feature engineering.
Programming Methodology, pages 353–377, 2003.


