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ABSTRACT
Current implementations of software providing dynamic as-
pect functionality in operating system (OS) kernels are quite
restricted in the possible joinpoint types for native code they
are able to support. Most of the projects implementing ad-
vice for native code use basic technologies adopted from in-
strumentation methods which allow to provide before, after
and around joinpoints for functions. More elaborate join-
points, however, are not available since support for monitor-
ing native code execution in current CPUs is very restricted
without extensive extensions of the compiler toolchain. To
realize improved ways of aspect activation in OS kernels, we
present an architecture that provides an efficient low-level
virtual machine running on top of a microkernel system in
cooperation with an aspect deployment service to provide
novel ways of aspect activation in kernel environments.

1. INTRODUCTION
Current implementations providing dynamic aspect func-

tionality today typically are based on either modifications of
a high-level virtual machine (VM) like the JVM or modifica-
tions of the instruction stream that is executed on demand
on the machine code level. Systems based on high-level
VMs, like e.g. Steamloom [2], provide a rich set of func-
tionality and are able to supply rather complex joinpoint
models since they have the ability to intercept the execu-
tion of virtual machine instructions. Due to general char-
acteristics of these VMs – no pointers are available in Java,
languages running on top of the VM (Java, C#) are not
widely used as system implementation languages – provid-
ing aspect support for an operating system kernel running
on top of the VM is not feasible1. In contrast, aspect activa-
tion directly on the machine instruction level, provided by

1There are, however, operating systems written in Java.
These have never become mainstream, though.

.

systems like TOSKANA [10] and Arachne [17], is restricted
to the amount of interaction that is possible by dynamically
rewriting the instruction stream using the available symbolic
information in the executable code.

In this paper, TOSKANA-VM, a novel way to provide aspect
support for legacy operating systems is presented. Based
on experiences with the NetBSD-based implementation of
TOSKANA using native code manipulation [10], an interme-
diate approach between direct control of the native instruc-
tion execution and employing a high-level virtual machine
is chosen. Since the abstraction level of a virtual machine
is required in order to gain improved control over the exe-
cution of instructions, an existing low-level machine, LLVM
[14], was chosen as the basis for TOSKANA-VM. In addition
to the virtual machine itself, LLVM consists of a complete
compiler toolchain providing support for compiling C and
C++ programs that use GNU extensions. This is the basis
for running a kernel on top of LLVM with only a moderate
amount of modifications.

LLVM, however, is not well suited to run as a virtualiza-
tion layer on top of the bare hardware. Thus, TOSKANA-
VM uses the L4 microkernel as basis for executing LLVM
instances. Here, L4 provides only minimal kernel function-
ality like memory management, task and thread abstractions
and a fast implementation of inter-process communication.
On top of L4, a mix of LLVM instances with their associated
programs in LLVM bytecodes and native code can run con-
currently. One of the native programs running on top of L4
is the weaver, which is responsible for activating and deac-
tivating joinpoint shadows in the particular LLVM instance
using IPC notifications.

This paper is organized as follows. Section 2 describes
the overall structure of a system based on the L4 micro-
kernel and an operating system personality, followed by an
overview of low-level virtual machines in section 3. Section
4 describes ways to implement aspect-oriented functionality
in a virtual machine. An overview of the L4- and LLVM-
based system structure is contained in section 5. Section
6 summarizes related work. Section 7 concludes the paper
and outlines areas for further research.

2. MICROKERNEL-BASED SYSTEMS
Compared to traditional monolithic operating system ker-

nels, a microkernel-based system divides the functionality it
provides into several system components that are cleanly
separated from each other. At the base of the system, the
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microkernel itself provides only the absolute minimum func-
tionality of a kernel – in the case of L4 used in this paper,
this is restricted to memory management, task management
and interprocess communication primitives. All other func-
tionality usually contained in a monolithic kernel is dele-
gated to so-called kernel personalities, which are essentially
user-mode tasks running as microkernel applications.

2.1 L4 System Structure
The basis for all interaction with the hardware in a L4-

based system [15] is the microkernel itself. L4 has complete
control over the hardware and is the only process in the
system running in privileged (“kernel” or supervisor) CPU
mode. All other parts of the system run under control of the
microkernel in non-privileged user mode. This includes all
operating system personalities described in the next para-
graph.

L4 is optimized for fast inter-process communication, which
is extensively used throughout the system. IPC messages
can be sent and received by any task in the system; messag-
ing in L4 is synchronous, so the delivery of IPC information
is guaranteed by L4 as soon as the IPC call returns to the
caller. In addition, L4 supports a method to share address
spaces between different tasks running on top of L4. Using
the flexpages system, one task can share parts of its virtual
address space with another task with page-sized granularity.

In order to support virtualization of OS instances, L4 pro-
vides abstractions for timers and interrupts as well as vir-
tual memory management and encapsulates these as IPC
messages.

2.2 OS Instances
Since L4 only provides basic kernel functionality, an addi-

tional layer of software is required to implement the features
required by application programs that L4 is lacking. This is
realized in the form of an operating system personality that
provides the standard interfaces of a traditional monolithic
OS kernel to applications running on top of it. In the case
of L4, a port of Linux as a personality is available, called
L4Linux [11]. L4Linux is a modified version of Linux 2.6 in
which all critical hardware accesses (interrupt control, page
table handling, timer control) are removed and replaced by
IPC calls to the underlying L4 microkernel that performs
these operations on behalf of the Linux personality (if per-
mitted by the security guidelines).

L4Linux runs as an ordinary user mode process, thus sev-
eral L4Linux instances are unable to interfere with each
other. As a consequence, a virtualization on the level of
L4Linux instances running in parallel is feasible and already
used in several applications [19, 9].

3. THE LOW-LEVEL VIRTUAL MACHINE
LLVM is a virtual machine infrastructure consisting of a

RISC-like virtual instruction set, a compilation strategy de-
signed to enable effective program optimization during the
lifetime of a program, a compiler infrastructure that pro-
vides C and C++ compilers based on the GNU compiler
collection and a just-in-time compiler for several CPU archi-
tectures. LLVM does not implement things that one would
expect from a high-level virtual machine. It does not require
garbage collection or run-time code generation. Optional
LLVM components can be used to build high-level virtual
machines and other systems that need these services.

3.1 LLVM Instruction Set
The LLVM code representation is designed to be used in

three different forms: as an in-memory compiler (providing
the intermediate representation IR), as an on-disk bytecode
representation (suitable for fast loading by a Just-In-Time
compiler), and as a human readable assembly language rep-
resentation. This allows LLVM to provide a powerful inter-
mediate representation for efficient compiler transformations
and analysis, while providing a natural means to debug and
visualize the transformations. All three different forms of
LLVM code representation are equivalent.

The LLVM representation aims to be as light-weight and
low-level as possible while being expressive, typed, and ex-
tensible at the same time. It aims to be a “universal IR”,
by being at a low enough level that high-level ideas may
be cleanly mapped to it (similar to how microprocessors
are “universal IRs”, allowing many source languages to be
mapped to them). By providing type information, LLVM
can be used as the target of optimizations: for example,
through pointer analysis, it can be proven that a C auto-
matic variable is never accessed outside of the current func-
tion.

3.2 The LLVM Infrastructure
As fig. 1 illustrates, the LLVM compilation strategy ex-

actly matches the standard compile-link-execute model of
program development, with the addition of a runtime and
offline optimizer. Unlike a traditional compiler, however, the
.o files generated by an LLVM static compiler do not contain
any machine code, but rather LLVM code in a compressed
format.

Compiler 1

Compiler N

.o
files

Optimizing
Linker

.exe
(llvm)

Host
machine

Offline
Reoptimizer

Runtime
Optimizer

LLVM Native

Libraries

LLVM

LLVM

Profile &
Trace Info

Profile
& Trace

 Info
Opti-
mized
Code

Figure 1: LLVM Compilation Infrastructure

The LLVM optimizing linker combines LLVM object files,
applies interprocedural optimizations, generates native code,
and links in libraries provided in native code form.

Once the executable has been produced, the developers
(or end-users) of the application begin executing the pro-
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gram. Tracing and profiling information generated by its
execution can be optionally used by the runtime optimizer
to transparently tune the generated executable.

The system heavily depends on having a code representa-
tion with the following qualities:

The bytecode is high-level and expressive enough to per-
mit high-level analyses and transformations at linktime and
in the offline optimizer when profiling information is avail-
able. Without the ability to perform high-level transforma-
tions, the representation does not provide any advantages
over optimizing machine code directly.

Also, the code has a dense representation, to avoid in-
flating native executables. Additionally, it is useful if the
representation allows for random access to portions of the
application code, allowing the runtime optimizer to avoid
reading the entire application code into memory to do local
transformations.

Finally, the code is low-level enough to perform lightweight
transformations at runtime without too much overhead. If
the code is sufficiently low-level, runtime code generation has
low overhead in a broad variety of situations. A low-level
representation is also useful because it allows many tradi-
tional optimizations to be implemented without difficulty.

4. ASPECT ACTIVATION IN A VM
When handling aspect activation in native code, the inter-

ception of the execution of arbitrary machine instructions is
usually not supported extensively by standard CPUs. Con-
sequently, the joinpoint model is quite restricted and dy-
namically inserting joinpoint shadows is an intricate task,
since self-modifying code is used in the process.

Using a virtual machine instead of executing code directly
on the CPU provides improved methods of detecting possi-
ble joinpoints, since all instructions are now either directly
interpreted by the VM or translated into short native code
segments by the just-in-time (JIT) compiler.

The following subsection describes the restricted “tradi-
tional” approach using code splicing, followed by a descrip-
tion of the advantages of the instruction-manipulating VM-
based approach.

4.1 Code Splicing in Native Code
When directly working with native code, like in the TOS-

KANA project on NetBSD, the basic method for inserting
dynamic joinpoint shadows into native code is code splicing.
Code splicing is a technology that replaces the bit patterns
of instructions in native code with a branch to a location
outside of the predefined code flow, where additional instruc-
tions followed by the originally replaced instruction and a
jump back to the instruction after the splicing location are
inserted.

TOSKANA uses fine-grained code splicing, which is able
to insert instrumentation code with the granularity of a sin-
gle machine instruction. As shown in fig. 2, splicing replaces
one or more machine instructions at a joinpoint with a jump
instruction to the advice code with the effect that the advice
code is executed before the replaced instruction.

This method has some significant drawbacks. When mod-
ifying native code, some complications show up that have to
be taken care of in order to avoid corrupting activities cur-
rently running in kernel mode.

Since the execution of kernel functions may usually be
interrupted at any time, it is desirable to make the splicing

branch

Woven dynamic aspect 
code

Replaced instruction in 
original code

Jump back to instruction 
after join point

Kernel Code Dynamic Aspect
join point

Figure 2: Code Splicing

operation atomic.
Another problem may be that more than one instruction

has to be replaced by the jump instruction in the splicing
process and the second of these replaced instructions is a
branch target. A branch to that address would then end
up trying to execute the bit pattern that is part of the tar-
get address as operation code with unpredictable results. In
this case, either a workaround has to be activated – e.g. by
rewriting an instruction before the joinpoint itself, thereby
reducing the precision of the joinpoint location – or the re-
placement of an instruction must be avoided here, leading
to a slightly restricted amount of available joinpoints.

The biggest problem with code splicing is that it only pro-
vides a very restricted joinpoint model. Since no information
on register contents and values of pointers is available to the
weaver, any operations involving dynamically calculated or
loaded values are not eligible as possible joinpoint types.

Thus, essentially, only support for before, after, and around
joinpoints is available by splicing in jumps to advice code at
the beginning and return points of the respective function.
A wider variety of joinpoint types is desirable, but can not
be achieved using splicing.

4.2 Manipulation of Instruction Execution
Using LLVM gives the aspect weaver enhanced control

over the execution of (VM bytecode) instructions. Instead
of having to rely on self-modifying code at program run-
time, the infrastructure executing the (byte-)code itself can
now be instructed to intercept instruction execution, thereby
providing much more detailed information about the current
state of the machine.

Based on LLVM, TOSKANA-VM is able to supply a broa-
der range of joinpoint types. The types currently imple-
mented are described in the following paragraphs, accom-
panied with an explanation of the basic VM functionality
executed to support them.

Execution and Call
LLVM provides two function call instructions, which ab-
stract the calling conventions of the underlying machine,
simplify program analysis, and provide support for excep-
tion handling. The simple call instruction takes a pointer
to a function to call, as well as the arguments to pass (by
value). Although all call instructions take a function pointer
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to invoke (and are thus seemingly indirect calls), for direct
calls, the argument is a global constant (the address of a
function). This common case can easily be identified simply
by checking if the pointer is a global constant. The second
function call instruction provided by LLVM is the invoke
instruction, which is used for languages with exception han-
dling.

When using code splicing, no clean distinction can be
made between execution and call joinpoints, as the only
point at which the weaver can be certain that the function
in question was actually executed is within the code of the
function itself.

exec_bytecode() {

   ...
   if (bytecode == call) {
      
a=get_target_addr();
      
if(lookup_joinpoint(a)) {
         call_advice(a);
      }
   ...
}

...

...
call 0x1200
...
...

advice_x() {
   ...
   ...
   ...
}

...
0x1000: advice_a
...
0x1200: advice_x
...
...

Joinpoint Registry

advice
code

LLVM

Executed
Bytecode

Figure 3: A Call Joinpoint

Implementing call joinpoints, as depicted in fig. 3, re-
quires an interception of the call instruction described above.
The target of the call instruction has to be compared against
a list of active joinpoints and the related advice code is called
appropriately.

Execution joinpoints – illustrated in fig. 4 – however, have
a different semantics, since they exist at a point when the
body of code for an actual method is executed. Thus, in-
terception of the call is not sufficient; rather, the bytecode
instruction pointer of the currently executing instruction has
to be monitored. As soon as program execution enters (or
leaves) the range of addresses defined by the function in
question, advice code can be called. While monitoring the
instruction pointer seems expensive at first look, the current
implementation uses a fast hash-table mechanism to speed
up the lookups. In future versions, annotated bytecodes
could accelerate this functionality even further, requiring
enhanced tool support.

Variable Assignment and Access
Capturing variable assignment and access was not possible
using splicing, since accesses to variables in native code not
only occur using a direct address reference (which could be
detected), but more commonly using pointers to variables
contained in registers or calculated target addresses that
were not available to the splicing process.

In LLVM, however, the final address of every read or write
instruction executed by the VM is well-known. Hence, in-
terception of read accesses (i.e., variable read) and write
accesses (i.e., variable assignment) can be intercepted and
corresponding advice code can be executed as the address
of the variable is well-known from the symbol table.

A problem with joinpoints triggering on variable accesses

exec_bytecode() {

   ...
   ip++;
   b=fetch_bytecode(ip);
   if (exec_jp(ip)) {
        call_advice(a);
   }
   exec_bytecode(b);
   ...
}

...

...
 call 0x1200

0x1200:
 mov...  
 ...
 ...
 ret

advice_y() {
   ...
   ...
   ...
}

...
0x1000: advice_a
...
0x1200: advice_y
...
...

Joinpoint Registry

advice
code

LLVM

Executed
Bytecode

Figure 4: An Execution Joinpoint

lies in variables that are stored in registers for the sake of
faster access times. Here, the VM provides a mapping from
memory addresses to register contents; however, a track-
ing of variables in registers in the VM is necessary which is
time-consuming. Thus, currently only volatile variables and
variables to which an address operator (&) has been applied
can be used as variable access joinpoints.

5. SYSTEM STRUCTURE: L4+LLVM
An overview of the system is given in figure 5. On top of

the microkernel, the infrastructure consists of one or more
instances of LLVM running in their own address spaces and
the weaver as a separate process that handles communica-
tion with the VM instances.

Running on top of L4, one or more instances of LLVM
execute, these in turn can run L4Linux instances compiled
to bytecode or other L4-based applications compiled with
LLVM as their target.

L4 microkernel

Weaver LLVM
Instance

LLVM
Instance

L4Linux
(Native)

L4Linux
(Bytecode)

L4 
Application
(Bytecode)

Appl.
Bytec

Appl.
native

(IPC)

Figure 5: L4/LLVM-based TOSKANA-VM System

The dynamic aspect weaver is a separate component run-
ning on top of L4. It receives joinpoint description and weav-
ing/unweaving requests from other tasks in the system and
instructs a LLVM instance to add or remove the joinpoint
description to respectively from its table of active joinpoints.
Then, the weaver inserts the specified advice code in the ad-
dress space of the LLVM instance in question using shared
memory obtained via L4 flexpages.

In this L4-based system, tasks compiled to native code
can execute in parallel to the LLVM instances. Of course,
these tasks provide no support for dynamic aspects.
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6. RELATED WORK

6.1 Steamloom
The Steamloom virtual machine [2] is an extension to

an existing Java virtual machine. It follows the approach
to tightly integrate support for AOP with the VM imple-
mentation itself instead of relying on a set of Java classes.
Steamloom comprises changes to the underlying VM’s ob-
ject model and just-in-time compiler architecture. Its ap-
proach to dynamic weaving is to dynamically modify method
bytecodes and to schedule those methods for JIT recompi-
lation afterwards.

Steamloom was built to evaluate the benefits that can
be gained by implementing AOP support in the execution
layer instead of at application level. Various measurements
[12] have shown that both flexibility and performance sig-
nificantly benefit from such an integrative approach.

6.2 Arachne
Arachne [17] is a dynamic weaver for C programs. It uses

the µDyner AOP infrastructure for writing and dynamically
deploying aspects into running user mode C applications
without disturbing their service. The implementation of
joinpoints, however, requires source instrumentation of the
program to reduce the cost of dynamic weaving. µDiner pro-
vides a special hookable source-level annotation with which
the developer of the base program annotates points in the
program at which dynamic adaptation is permitted. Here,
only functions and global variables can be declared to be
hookable. The aspect code is written using a special ex-
tension of C that provides the syntax for specification of
joinpoints and advice types.

6.3 a-kernel
Research in AOP in OS kernels was initiated by [7], where

problems crosscutting a common layered operating system
structure were identified using FreeBSD as an example. Based
on AspectC, an AOP extension of C, the a-kernel project
tries to evaluate the usability of aspects to improve OS mod-
ularity and reduce the complexity and fragility associated
with the implementation of an operating system.

In [5], [8], [6], and [4], various cross-cutting concerns are
implemented as static aspects using AspectC. In addition,
an analysis of code evolution implementing cross-cutting
concerns between different versions of FreeBSD is under-
taken and the evolution is remodelled using static aspects.

Further development resulted in the RADAR [18], a low-
level infrastructure using dynamic aspects in OS code. Cur-
rently, no experience with implementing the system seems
to exist.

6.4 Singularity
Singularity [13] is a new research operating system devel-

oped by Microsoft focussing on the construction of depend-
able systems through innovation in the areas of systems,
languages, and tools. Based on executing operating system
code using a VM (MSIL) running on top of a microkernel,
this system shows similarities to the approach presented in
this paper. However, support for AOP is not mentioned in
the related publications – a combination of dynamic AOP
approaches for .NET and Singularity might be an interesting
alternative to TOSKANA-VM.

6.5 DTrace
DTrace [3] is a toolkit developed by Sun Microsystems to

dynamically insert instrumentation code into an unmodified,
running Solaris OS kernel. Unlike other solutions for dy-
namic instrumentation that execute native instrumentation
code, DTrace implements a simple virtual machine in kernel
space that interprets byte code generated by a compiler for
the “D” language, which is an extension of C specifically
developed for writing instrumentation code.

D provides safe instrumentation of the kernel. To avoid
endless loops in instrumentation code, only forward branches
are permitted by the VM. Thus, the functionality of D pro-
grams is relatively restricted. While this provides a lot of
security when dynamically inserting code into random spots
in the kernel, the execution model provided by DTrace is
too restricted to implement general advice code.

6.6 Xen
Xen [1] is a virtual machine monitor for x86 that sup-

ports execution of multiple guest operating systems with
high levels of performance and resource isolation using par-
avirtualization technology. On top of Xen, different operat-
ing systems are able to run concurrently.

Xen requires modifications to kernels running on top of it,
but applications run unmodified. Due to the paravirtualiza-
tion, which only virtualizes and intercepts certain privileged
instructions, Xen is not capable of interception instruction
flow at arbitrary points in the code, so deploying advice code
is not possible using this virtualization approach.

6.7 VVM
Instead of designing and implementing a new virtual ma-

chine for each application domain, the goal of VVM is to vir-
tualize the virtual machine itself. VVM supports so-called
“VMlets” that contain a specification of a virtual machine
implemented using VVM.

No large-scale operating system has been developed to run
on top of either of these virtual machines, however, so the
feasibility of this approach still has to be determined.

6.8 z/VM
Another low level virtual machine that is explicitly used to

virtualize a single physical machine into distinct partitions
each running its own operating system instance is IBM’s
z/VM[16], used on z-Series mainframe systems. z/VM sup-
ports a large number of operating systems running in par-
allel on top of the virtual machine2 and would be an ideal
target for implementing dynamic aspect support in the ex-
ecution layer.

7. CONCLUSIONS
This paper presented a novel approach to providing en-

hanced aspect-oriented programming technology in the con-
text of an operating system kernel. First results show that
using a low-level virtual machine as a thin layer above the
hardware while relegating basic system functionality to a
microkernel directly executing in native code on the CPU
provides a reasonable architecture to provide and experi-
ment with joinpoint models that implement novel concepts

2A test has shown that 40,000 parallel Linux instances are
possible
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or operate on a more fine-grained level than the joinpoints
available through code splicing.

The current implementation of an aspect-enhanced LLVM
and the weaver task on top of L4 is capable of running test
programs written in C compiled as LLVM bytecodes. The
next step is the port of a complete kernel personality (e.g.
L4Linux) to run in bytecode on top of L4 and LLVM. This
should be feasible, since L4Linux already provides a separate
architecture component for L4, which subsequently has to
be augmented with the necessary low-level adaptations and
compile infrastructure changes for a LLVM target.

The performance of a complex system like a kernel per-
sonality running in bytecode instead of native code will be
an interesting focus of optimization. The currently available
simple test cases give the impression that running a kernel in
bytecode will be feasible performance-wise, though no exact
data is available at this time.

Future work also includes the provision of an improved
security model. The method currently available in L4 to re-
strict communication between processes – “clans and chiefs”
– does not provide sufficient control over which processes are
permitted to communicate. This model will be replaced by a
new security infrastructure of an upcoming L4 release which
will be the basis for future TOSKANA-VM releases.

8. REFERENCES

[1] P. T. Barham, B. Dragovic, K. Fraser, S. Hand, T. L.
Harris, A. Ho, and R. Neugebauer. Xen and the Art of
Virtualization. Proceedings of the 19th ACM
Symposium on Operating Systems Principles, pages
164–177, 2003.

[2] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.
”Virtual Machine Support for Dynamic Join Points”.
In ”Proceedings of the Third International Conference
on Aspect-Oriented Software Development
(AOSD’04)”, pages 83–92. ACM Press, 2004.

[3] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal.
”Dynamic Instrumentation of Production Systems”.
In ”Proceedings of the USENIX Annual Technical
Conference”, pages 15–28. USENIX, 2004.

[4] Y. Coady and G. Kiczales. ”Back to the Future: A
Retroactive Study of Aspect Evolution in Operating
System Code”. In ”Proceedings of the Second
International Conference on Aspect-Oriented Software
Development (AOSD’03)”, pages 50–59. ACM Press,
2003.

[5] Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, and
J. S. Ong. ”Structuring System Aspects: Using AOP
to Improve OS Structure Modularity”. In
”Communications of the ACM, Volume 44, Issue 10”,
pages 79–82. ACM Press, 2001.

[6] Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, J. S.
Ong, and S. Gudmundson. ”Exploring an
Aspect-Oriented Approach to OS Code”. In
”Proceedings of the 4th Workshop on
Object-Orientation and Operating Systems at the 15th
European Conference on Object-Oriented Programming
(ECOOP-OOOSW) ”. Universidad de Oviedo, 2001.

[7] Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, J. S.
Ong, and S. Gudmundson. ”Position Summary:
Aspect-Oriented System Structure”. In ”Proceedings

of the 8th Workshop on Hot Topics in Operating
Systems (HOTOS-VIII)”, page 166. IEEE Press, 2001.

[8] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn.
”Using AspectC to Improve the Modularity of
Path-Specific Customization in Operating System
Code”. In ”Proceedings of of the Joint European
Software Engineering Conference (ESEC) and 9th
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE-9)”, pages
88–98. ACM Press, 2001.

[9] M. Engel and B. Freisleben. Wireless Ad-Hoc Network
Emulation Using Microkernel-Based Virtual Linux
Systems. Proceedings of EuroSIM 2004, pages
198–203, 2004.

[10] M. Engel and B. Freisleben. Supporting Autonomic
Computing Functionality via Dynamic Operating
System Kernel Aspects. ”Proceedings of the Fourth
Conference on Aspect-Oriented Software Development
(AOSD’05)”, 2005 (to appear).
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ABSTRACT 
For consistency with component-oriented programming, the 
implementation of aspect-based software product families should 
be decoupled from the components that they influence.  One 
solution is to implement such families with language-independent 
aspect-oriented programming (AOP) in combination with 
property-based crosscutting.  Language-independent AOP 
decouples the implementation language of such a family from that 
of the components to which family members are applied.  Using 
property-based crosscutting avoids coupling the software product 
family with a specific set of components, because join points are 
selected according to some implementation commonality such as 
a containing type name rather than precise details of their 
implementation.  However, experimental evidence shows that 
compiling a component’s implementation to a language 
independent format can introduce new join points that match a 
property-based crosscut.  These matches can result in unexpected 
behaviour.  To assure correct and predictable behaviour when a 
software product family member is applied to an application it is 
better to use attribute-based crosscutting, in which join points are 
selected according to the appearance of attributes, called 
annotations in Java, on the join point’s implementation. 

 

1. INTRODUCTION 
The use of aspects to implement software product families has 
been demonstrated by work on spontaneous containers [13].  
Here, different aspects are responsible for implementing 
persistence, transaction processing and access control properties 
of a container.  Moreover, different implementations of each 
property can exist.  These aspects can be assembled to create a 
container that enforces network policies applied to a particular 
network node.  Such a product family might find practical 
application in tradeshow venues [13], where services vary 
according to the status of the attendee.   The containers that allow 
visitor PDAs to interact with each other will differ from those 
provided to exhibitors.  For instance, access control capabilities 
may be required by exhibitors that make use of a tradeshow 
registration database that is not available to visitors. 
Language independent AOP and the use of property-based 
crosscutting should reconcile the implementation of aspect-based 
software product families with component-oriented programming.  
Software components emphasize deployment and composition 
characteristics that allow components provided by one 
organization to be combined with components of another by a 
third-party unrelated to either organization [14].  Specifically, “a 
third party is one that cannot be expected to have access to the 
construction details of all the components involved.” [14].  Thus, 

implementation source code should not be a factor in the ability of 
an aspect-based software product family member to bind with 
components in an application.   Language-independence addresses 
this requirement by allowing aspects and components to be 
written in a variety of languages and freely intermixed [9].  Using 
property-based crosscutting [6], an aspect selections join points in 
application according to some commonality such as a shared 
containing type, some naming convention, or common parameter 
types in the case of methods.  Sufficiently general property-based 
crosscutting allows aspects to be used with a variety of 
components without the need to customize the aspect on a 
component by component basis.  Using language independent 
AOP and property-based crosscutting should allow third parties to 
treat aspect-based software product families and application 
components being composed as black boxes. 
The vehicle for testing this theory was Weave.NET [7], a 
language independent aspect weaver that supports a pointcut-
advice mechanism [10] and allows clear-box crosscutting.  
Weave.NET targets Microsoft’s Common Language 
Infrastructure (CLI) [3].  The CLI simplifies the task of 
implementing Weave.NET by providing a language-independent 
substrate to which components, regardless of implementation 
language, are compiled.  The CLI standardizes the metadata 
descriptions of types and type members implemented by CLI 
components, regardless of implementation language, and 
component behaviour is written in a language-neutral binary 
format.  With respect to the clear-box / black-box distinction [4], 
a black-box technique manipulates components in terms of their 
public interfaces, while a clear-box technique manipulates the 
parsed language structures used to write these interfaces. Clear-
box techniques, such as those available with the pointcut-advice 
mechanism AspectJ [15], often offer a richer set of join points, 
because they provide a better representation of all the structures 
of a programming language used to write the component.  In the 
case of components, language constructs that are expressed 
directly in byte code, such as accesses to type members, can be 
modified [4]. 
In our experiments, initially reported in [7], we applied members 
of a simple diagnostics software product family to a Fibonacci 
series enumerator, and we noted an inability to make strong 
assurances of correct and predictable behaviour of the resulting 
application.  In our experiments, implementations of a recursive 
Fibonacci series enumerator algorithm written in SML.NET [5], 
VisualBasic.NET [12] and C# [11] were composed with logging 
and profiling functionality implemented using aspects.  Using 
language independent AOP and property-based crosscutting, the 
same logging and profiling aspects could be applied to each 
Fibonacci enumerator component without change.  However, we 
noted that in the case of the component implemented in 
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SML.NET it was not possible to predict the behaviour of the final 
application based on the source code of the Fibonacci algorithm.  
During the translation to a language neutral format, the SML.NET 
compiler introduced addition join points to the internal 
implementation of component interfaces that matched the logging 
aspect. 
Rather than change to black box crosscutting, we avoided 
inadvertent join point matches using attributed-based crosscutting 
[7, 8].  The additional join points added during component 
compilation did not influence the component implementation, and 
so predictability could have been restored by limiting the weaver 
being used.  However, it was possible to restore predictability 
with attribute-based crosscutting rather than by crippling the 
weaver.  With attribute-based crosscutting, join point selection is 
written in terms of attributes.  Attributes [3], also called 
annotations [1], offer a programming-language mechanism for 
associating additional information with the metadata descriptions 
of types and their members.  Language support for attributes 
typically includes the ability to define new attributes and the 
ability to place attribute declarations along side the definition of 
types and their members.  Annotation of a program element with 
an attribute causes additional data to become associated with the 
metadata description of that program element; however, 
annotating code with attributes does not influence program 
behaviour.  For instance, an attribute might append the metadata 
of a method with the name of the programmer implementing the 
method.  This information would be associated with the metadata 
description of the method.  Rather than using the method name in 
a pointcut specification, the attribute name can be used instead.  
Since an attribute applied to source code appears only once in the 
compiled assembly, attribute-based crosscutting avoids 
inadvertent join point selection and thus results in more 
predictable behaviour. 
In the remainder of this paper, we present the experimental results 
that identified problems with property-based crosscutting and that 
identified attribute-based crosscutting as a possible solution.  In 
section 2, we summarize the composition scenario in terms of the 
software product family functionality being implemented and the 
components to which family members are being applied.  In 
section 3, we present an implementation of the software product 
family based on property-based crosscutting solution and evaluate 
its drawbacks.  In section 4, we do the same for an attribute-based 
crosscutting solution, and explain what drawbacks in the previous 
section are avoided.  Finally, we summarize our findings in 
section 5. 

2. EXPERIMENTAL SCENARIO 
To evaluate the usefulness of property-based crosscutting in the 
context of language-independent AOP, we chose to use a software 
product family that provided application diagnostics.  The 
software product family provides profiling and logging 
functionality features, and it is written using the aspect model 
provided by Weave.NET.  One, the other, or both diagnostics 
features can be applied to methods of an application.  However, in 
this paper we focus on the application of logging functionality to 
components implementing a common Fibonacci series algorithm.  
The algorithm enumerates series elements, and it was chosen 
based on the observation that Fibonacci algorithms are a common 
means of demonstrating AOP techniques [2]. 

2.1 Target Application 
The specific algorithm targeted for our language-independence 
tests is a component implementing a recursive algorithm that 
enumerates members of the Fibonacci series.  The algorithm, 
shown in Figure 2.1, includes two methods, one that generates 
elements in the Fibonacci series, and a second that reports a series 
of elements generated using the former method.  Components 
containing these methods have been written in C#, VB.NET and 
SML.NET.  The C# version shown in Figure 2.1 is typical of the 
algorithm, which is recursive regardless of the programming 
language used. 
public class FibonacciSeries { 
  public void FibSeries(int seriesLen){ 
    for (int i = 0; i<= seriesLen; i++) { 
      long result = Fibonacci(i); 
      System.Console.WriteLine("Element\t"+ 
                       i+ "\tvalue \t"+result); 
    } 
  } 
 
  public long Fibonacci(int n){ 
    if (n > 1) 
      return this.Fibonacci(n-1)  
            + this.Fibonacci(n-2); 
    return 1; 
  } 
} 

Figure 2.1:  C# source for algorithm to enumerate Fibonacci 
series elements. 

2.2 Test Aspect 
Our Fibonacci algorithm lacks an explicit indication of its 
complexity, but this is remedied by adding diagnostics 
functionality that provides logging.  This logging is implemented 
via an aspect that reports the start and end of execution join 
points.  Logging is a fairly simple concept made simpler by 
limiting the aspect to reporting the start and end of a method 
execution to the application console rather than logging to a file.  
A sample implementation of logging behaviour written in 
SML.NET is shown in Figure 2.2.  The method names in the 
source allude to the kind of advice they implement.  The 
appearance of multiple methods with the prefix 
LogAfterJoinPointXXX corresponds to the use of different 
return types in the methods of the Fibonacci series algorithm. 

3. LOGGING VIA PROPERTY-BASED 
CROSSCUTTING  
Property-based crosscutting is consistent with language 
independent AOP, and it allows an aspect to be created that can 
be applied to various components without the changes to the 
crosscutting specification However, the crosscutting 
specifications suffer the drawback of being error prone.  Also, 
obtaining assurances of correct program behaviour is difficult, as 
program behaviour cannot be determined from inspection of 
component source code. 
When the logging aspect is written using property-based 
crosscutting, the crosscutting specification is the same regardless 
of the language implementing the Fibonacci algorithm with which 
logging is woven.  The logging aspect’s XML-based crosscutting 
specification is shown in Figure 3.1 and it defines a named 
pointcut called SomeMethodExecution that identifies method 
invocations that take an integer as a parameter, regardless of the 
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return type.  The crosscutting specifications are reusable without 
modification in that they can be applied to components without 
change.  Reuse then relies on the component’s types being the 
same, in terms of members and member signatures, regardless of 
implementing language. 
structure Aspect_ML_Logging = 
struct 
_classtype Logger() : TCD.CS.DSG.Weave.Reflect.Aspect() 
 with  
  LogBeforeJoinPointInt (param:int) = 
  let 
   val jptInfo = 
valOf(this.##get_JoinPointStaticPart()); 
  in 
   print "Join point: "; 
   print (valOf(jptInfo.#toShortString())); print "\n"; 
   print "Execution parameter: "; 
   print (Int.toString(param)); print "\n" 
  end 
 and 
  LogAfterJoinPointLong(param:int, result:Int64.int)= 
  let 
   val jptInfo = 
valOf(this.##get_JoinPointStaticPart()); 
  in 
   print "Join point: ";  
   print (valOf(jptInfo.#toShortString())); print "\n"; 
   print "Execution parameter: ";  
   print (Int.toString(param)); print "\n"; 
   print "Execution result:    ";  
   print (Int64.toString(result)); print "\n" 
  end 
 and 
  LogAfterJoinPointVoid (param:int) = 
  let 
   val jptInfo = 
valOf(this.##get_JoinPointStaticPart()); 
  in 
   print "Join point: ";  
   print (valOf(jptInfo.#toShortString())); print "\n"; 
   print "Execution parameter: " ;  
   print (Int.toString(param)); print "\n"; 
   print "Execution result:    NONE!"; print "\n" 
  end 
 end 
end  

Figure 2.2:  Implementation of logging behaviour written in 
SML.NET 

During weaving trials in which the logging aspect was applied to 
each implementation of the Fibonacci algorithm, we noted that the 
specification of types in XML was error prone, because mapping 
from language-based type names to CLI type names must be done 
manually.  Writing a custom crosscutting specification in XML 
involves using metadata descriptions to select join points.  To 
make Weave.NET aspects language independent, the crosscutting 
specifications are specified in terms of CLI types, and not the 
development language types with which a programmer will be 
familiar.  The need to map from development language types to 
CLI types is acute in the case of primitive types, whose CLI 
names vary considerably from those used in the source code of a 
component.  For example, Table 3.1 shows the mappings between 
SML.NET primitive types, their C# equivalent and their CLR 
name.  These tables show no overlap between the programming 
language type names and those used by the CLI. 

<item>   
  <named_pointcut> 
    <modifier><public/></modifier> 
    <name>SomeMethodExecution</name> 
    <local_var_ref> 
      <var_type>Int32</var_type> 
      <var_name>data</var_name> 
    </local_var_ref> 
    <pointcut> 
      <and> 
        <pointcut><primitive> 
          <execution> 
            <method_signature> 
              <return_type> 
                <type_name>*</type_name> 
              </return_type> 
              <join_point_type> 
                <type_name>*</type_name> 
              </join_point_type> 
              <method_name>*</method_name> 
              <parameters> 
                <parameter> 
                  <type_name>Int32</type_name> 
                </parameter> 
              </parameters> 
            </method_signature> 
          </execution> 
        </primitive></pointcut> 
        <pointcut><primitive> 
          <args> 
            <parameter> 
<formal_parameter_name>data</formal_parameter_nam
e> 
            </parameter> 
          </args> 
        </primitive></pointcut> 
      </and> 
    </pointcut> 
  </named_pointcut> 
</item> 

Figure 3.1:  A pointcut identifying method execution join 
points to which logging is applied. 

Table 3.1:  Mapping between CLI (.NET) types and C# / 
SML.NET equivalents, taken from [5]. 
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structure App_Noninvasive_ML_Fibonacci 
 : sig val main: string option array option->unit 
    end =  
struct 
_classtype FibonacciSeries() 
 with  
  Fibonacci (n) = 
    case(n) of 
      0 => (Int64.fromInt(1)) 
    | 1 => (Int64.fromInt(1)) 
    | n => (this.#Fibonacci(n-1) + 
           this.#Fibonacci(n-2)) 
 and  
  FibSeries (n) = 
    case(n) of  
     ~1 => () 
    | n => (this.#FibSeries (n-1);  
           print "Element\t"; 
           print (Int.toString (n));  
           print "\t value \t";  
       print(Int64.toString(this.#Fibonacci(n))); 
           print "\n" ) 
 end 
 fun SelfTest (elements, times) = 
  let 
   val fibML = FibonacciSeries() 
  in 
   case(times) of 
          0 => () 
        | n => (fibML.#FibSeries(elements); 
               SelfTest(elements, times-1)) 
  end 
 fun main  (a : string option array option) = 
  let   
    val elements = 10 
    val times = 1 
  in  
    SelfTest(elements, times) 
  end 
end  

Figure 3.2:  SML.NET implementation of application to 
calculate Fibonacci Series elements. 

We did experiment with making it easier to simplify type 
specification by allowing the use of truncated versions of CLI 
type names in which the namespace is removed.  Hence, the use 
of Int32 rather than System.Int32 in the XML of Figure 
3.1.  While these truncated versions are shorter to write, they 
make mistakes easier to make.  For example, in writing 
“System.String”, we found the capitalization of System to 
be a reminder to capitalise the ‘String’ portion.  When the 
namespace was removed, it was easier to forget that the CLI type 
was being used, and so we reverted to using language-specific 
monikers.  For example, ‘string’, all lower case, was used 
instead of ‘String’ with the capital first letter.  These mistakes 
are hard to spot, since it appears that the type is correctly written 
Generally, user types present less difficulty, as their name and 
namespace holds across language boundaries.  There are still 
quirks when user types are exported as nested classes.  For 
instance, class types exported by SML.NET are nested in their 
respective module.  Thus, a class Logger defined in module 
ML_Logger would be accessed using the moniker 
Aspect_ML_Logger+Logger. 

Our evaluation also noted a severe problem with the accidental 
selection of join points that could not be overcome using source 
code analysis tools.  In Figure 3.1, the regular expressions are 
used in the pointcut designator’s argument to create a property-

based crosscut.  However, such regular expressions can make 
unexpected join point selections.  Before evaluation, we made the 
general assumption that these extra join points could be spotted in 
source code.  If this were the case, then with a careful 
examination of component source could be used to predict the 
behaviour of the final application and on the basis of this 
prediction correct behaviour could be ascertained.  However, 
evaluation tests involving components written in SML.NET 
indicate superfluous join points are not always visible from 
source.  Assemblies generated by the SML.NET compiler can 
contain considerably more types than could be inferred from the 
source code.  For example, Figure 3.2 defines a SML module with 
methods main and SelfTest at the module level and methods 
Fibonacci and FibSeries in the class 

 
Figure 3.3:  Disassembler view of types contained in a 
component written in SML.NET source in Figure 3.2. 

FibonacciSeries.  Using the directive “export 
App_Noninvasive_ML_Fibonacci” to compile this source 
results in a CLI component containing a surprising number of 
additional types.  As shown in Figure 3.3, a disassembler view of 
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the type definitions in the component uncovers a large number of 
types for which there are no explicit declarations in the source 
code.  As expected, there is a type corresponding to the module 
that contains the implementation of main and SelfTest, and 
there is a class corresponding to the FibonacciSeries class 
declaration that contains the implementations of Fibonacci and 
FibSeries.  The difficulty is that there are other types such as 
Globals with methods such as “static char a(int32 
A_0)” that would match the property-based crosscut for logging 
shown in Figure 3.1. 
Our tests verified that property-based crosscutting has useful 
reusability characteristics, but its drawbacks make it quite 
difficult to use when obtaining strong assurances of correct and 
predictable behaviour is a concern.  Difficulties in specifying 
XML using a language independent type system made it difficult 
to write crosscutting specifications by hand.  While these could be 
overcome with diligence, the inadvertent join point selection 
could not.  New join points introduced by the compiler when a 
component was compiled could not be determined through source 
code analysis, whether done by a human or via an automated 
application. 

4. LOGGING VIA ATTRIBUTE-BASED 
CROSSCUTTING 
To contrast attribute-based crosscutting, we revised the logging 
aspect to exploit attribute types for join point selection, and 
composed this new logging aspect with the Fibonacci series 
algorithm implementations.  Our evaluation noted the use of 
attribute-based crosscutting offers a more succinct and accurate 
means of applying crosscutting functionality, and attributed-based 
crosscutting avoided the unexpected join point selection that 
prevented application behaviour from being predicted from source 
code analysis. 
Attribute-based crosscutting specifications complement an 
attribute type [8] that allows access to aspect functionality 
through annotation of component source.  In contrast to property-
based crosscutting, attribute-based crosscutting uses attribute type 
names in place of join point implementation details such as types 
and type member signatures.  When using attribute type names, 
the grammar for pointcut specifications is unchanged when it 
comes to the primitive pointcut designators available, but the 
parameters used for designators are changed.  Rather than 
signature or type name arguments, primitive pointcut designators 
are parameterized with attribute tags describing the attribute type 
name.  In the case of the Weave.NET, these attributes are 
implemented by the CLI’s custom attribute types.   
The contrast between property-based and attribute-based 
crosscutting can be seen in Figure 4.1.  The top pane of the figure 
contains the execution pointcut specification used in Figure 3.1 to 
select execution join points for logging.  In this pane, the selection 
of method execution join points is based on a partial method 
signature.  In the bottom pane, the specification is revised to 
select methods tagged with an attribute type with the name 
Logging.  This second version contains considerably fewer 
terms than the first, but it is reliant on the ability to annotating 
method source with an attribute type. 
An example application of attribute types is shown in Figure 4.2, 
where methods of the Fibonacci series algorithm are bound to 

logging functionality.  This example emphasizes the attribute 
annotations by marking them in bold. 

<execution> 
  <method_signature> 
    <return_type> 
      <type_name>*</type_name> 
    </return_type> 
    <join_point_type> 
      <type_name>*</type_name> 
    </join_point_type> 
    <method_name>*</method_name> 
    <parameters> 
      <parameter> 
        <type_name>Int32</type_name> 
      </parameter> 
    </parameters> 
  </method_signature> 
</execution> 

<execution> 
  <attribute>Logging</attribute> 
</execution> 

Figure 4.1:  Contrast between property-based crosscutting 
(top) and an aspect-based crosscutting (bottom). 

public class FibonacciSeries { 
  [Logging] 
  public void FibSeries(int seriesLen) { 
    for (int i = 0; i<= seriesLen; i++) { 
      long result = Fibonacci(i); 
      System.Console.WriteLine("Element \t"+ 
                       i+ "\tvalue \t"+result); 
    } 
  } 
  [Logging] 
  public long Fibonacci(int n) { 
    if (n > 1) 
      return this.Fibonacci(n-1)  
           + this.Fibonacci(n-2); 
 
    return 1; 
  } 
} 

Figure 4.2:  Fibonacci series enumerator annotated with 
attributes to identify methods for logging. 

In our tests, we noted attribute-based crosscutting provides an 
alternative means of identifying CLI metadata that avoids 
mistakes made with property-based crosscutting specifications 
that are extremely difficult to detect.  Recall that writing property-
based crosscutting involves specifying join points in terms of 
metadata that is native to the CLI.  There is little help available 
from the weaver for detecting erroneous type specifications, as it 
is hard to design a weaver that can distinguish between types that 
are specified correctly and those that are specified in error.  For 
instance, the method parameters in Figure 4.2 are of type int.  
int is the C# moniker for the CLI type System.Int32, and 
thus the short form Int32 appears in the property-based crosscut 
in Figure 4.1.  Should the type int appear accidentally in the 
crosscutting specification, one would expect the weaver to 
complain.  However, it is legitimate for a programmer to define a 
custom CLI type by the name of int in a different namespace.  
Even if we require that type names in the crosscutting 
specifications include a full namespace, int is still a valid user 
defined type.  Attribute-based property selection avoids the issue 
of detecting errors made when the language type name is mapped 
to the CLI type name mappings, since the placement of attributes 
on types or type members avoids the need to deal with join point 
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selection in terms of CLI-specific type names.  In effect, the use 
of attributes represents the introduction of language-independent 
monikers for types and type members. 
structure App_Invasive_ML_Fibonacci  
  : sig val main: string option array option -> unit 
    end =  
struct 
_classtype FibonacciSeries() 
 with  
  {Aspect_CS_Logging.Logging()} Fibonacci (n) = 
    case(n) of 
      0 => (Int64.fromInt(1)) 
    | 1 => (Int64.fromInt(1)) 
    | n => (this.#Fibonacci(n-1) + this.#Fibonacci(n-2)) 
 and  
  {Aspect_CS_Logging.Logging()} FibSeries (n) = 
    case(n) of  
     ~1 => () 
    | n => (this.#FibSeries (n-1); 
            print "Element\t"; print (Int.toString (n)); 
            print "\t value \t";  
            print (Int64.toString(this.#Fibonacci (n))); 
            print "\n" ) 
 end 
      ... 
end  

Figure 4.3:  SML.NET implementation of Figure 3.2 updated 
to exploit custom attributes. 

Also, attribute-based property selection avoided unexpected join 
point selection, since attributes follow the implementation of the 
tagged method.  With revisions to include attributes, the SML-
based Fibonacci series algorithm in Figure 3.2 takes on the 
appearance of that of Figure 4.3, where attributes appear in bold.  
Note that the definitions of main and SelfTest have been 
removed for brevity.  As before, additional helper types will 
appear in the compiled assembly.  However, an examination of 
the metadata of the assembly indicates that only those methods 
explicitly tagged at the source code level will have their metadata 
description annotated by the logging attribute in the compiled 
assembly.  Thus, applying logging on the basis of attributes rather 
than method signature, constrains logging to the Fibonacci and 
FibSeries methods. 
So, in addition to making it simpler to specify aspect-based 
software product families, attribute-based property eliminated 
problems with predictability that had prevented strong assurances 
of correct application behaviour from being made from an 
examination of component source. 

5. CONCLUSIONS 
In the context of language-independent AOP, attribute-based 
crosscutting specifications have two important advantages over 
property-based crosscutting.  Use of attributes represents the 
introduction of language-independent monikers for types and type 
members that simplify the specification of crosscutting in a 
language independent fashion.  Second, attribute-based 
crosscutting will not inadvertently match unwanted join points 
introduced during the translation of a component source to a 

language-independent substrate.  This occurs because only those 
component structures explicitly annotated with an attribute at the 
source code level will have their metadata description annotated 
by that logging in the compiled component. 
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Abstract

The Linux operating system is undergoing contin-
ual evolution. Evolution in the kernel and generic
driver modules often triggers the need for correspond-
ing evolutions in specific device drivers. Such col-
lateral evolutions are tedious, because of the large
number of device drivers, and error-prone, because
of the complexity of the code modifications involved.
We propose an automatic tool, Tarantula, to aid in
this process. In this paper, we examine some recent
evolutions in Linux and the collateral evolutions they
trigger, and assess the corresponding requirements on
Tarantula.

1 Introduction

The Linux operating system (OS) is undergoing con-
tinual evolution to improve performance, meet new
hardware requirements, and improve the software ar-
chitecture. When evolution in one OS kernel mod-
ule causes the interface of the module to change, the
need for evolution percolates out into other OS ser-
vices. This collateral evolution can become quite te-
dious when many modules depend on the interface
and the modifications required are complex. It is
also error-prone, because of the difficulty of under-
standing both the evolution and its impact on the
dependent modules. As a result, some collateral evo-
lutions happen very slowly and bugs are introduced.
The problems are compounded for modules outside
the kernel source tree, which are maintained by de-
velopers different from those performing the original
evolution and who may not have access to complete
information about evolution requirements.

Device drivers are particularly vulnerable to the
need for collateral evolution. As illustrated in Figure
1, drivers depend on services provided by the kernel
and by modules generic to various families of devices.

Due to the rapid proliferation of new devices, there
are many drivers. Indeed, an evolution in a generic
function defined by the kernel can require modifica-
tion of over a hundred driver files. Drivers are also a
high priority for users, who, in an open system such
as Linux, can submit patches to update the drivers
for their machines, despite not having a complete un-
derstanding of the implications of the evolution.

A particularly striking example of the difficulty of
driver evolution is the case of the function check -
region used in driver initialization. In Linux 2.4.1,
this function was called 322 times in 197 driver files.
Starting in Linux 2.4.2 (Feb. 2001), the use of this
function began to be eliminated, because changes in
the driver initialization process implied that its use
could cause race conditions. Eliminating check -
region requires both replacing it with a call to
request region and introducing some cleanup code
at any subsequent code point that indicates failure of
the driver initialization process. Identifying the latter
code points entails a non-trivial control-flow analysis
possibly across multiple functions. Accordingly, bugs
have appeared in the process of eliminating check -
region and the evolution is not complete as of Linux
2.6.10 (Dec. 2004), even though the function has been
deprecated since Linux 2.5.54 (Jan. 2003).

To reduce the difficulty of performing collateral
evolution of device drivers, we propose to develop
an automatic tool, Tarantula, to aid in the evolu-
tion process. Using Tarantula, a collateral evolution
is described as a set of rewrite rules, referred to as
a semantic patch, that specify the affected code pat-
terns and associated changes. Given a driver and a
semantic patch, Tarantula identifies driver code that
matches the code patterns and interactively proposes
the associated changes. If the user accepts a change,
Tarantula transforms the code automatically. We en-
vision that a developer who modifies the interface of
a generic module also writes a corresponding seman-
tic patch. This developer then applies the semantic
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i2c/i2c−core.c

kernel media/video/videodev.cusb/usb.c

i2c/i2c−algo−pcf.c i2c/i2c−algo−bit.c

usb/serial/usbserial.c

usb/serial/belkin_sa.c
usb/serial/cyberjack.c
... (17 files total)

i2c/i2c−dev.c i2c/i2c−elektor.c
i2c/i2c−elv.c

i2c/i2c−velleman.c
i2c/i2c−phillips−par.c

media/video/bttv_if.c

(9 files total)

media/radio/radio−cadet.c ...
media/video/zr36067.c ...
(25 files total)

media/video/saa5249.c

media/video/msp3400.c ...

Figure 1: Some kernel dependencies in Linux 2.4.27 (device drivers are shown in italics)

patch to drivers in the kernel source tree, profiting
from the interactivity of Tarantula to identify over-
looked code patterns and code fragments that are
matched inappropriately. When a semantic patch has
been validated on the kernel sources, the developer
makes it publicly available for use by the maintainers
of drivers outside the kernel source tree.

In this paper, we present preliminary work in the
development of Tarantula. Based on a study of evo-
lution in driver code across versions of Linux 2.4
through 2.6, we present examples that illustrate the
kinds of code modification that collateral evolution
entails. In each case, we assess the corresponding re-
quirements on the expressiveness of semantic patches
and on the power of the underlying rewriting en-
gine. In terms of expressiveness, we find the need
for rewrite rules that describe control-flow paths, for
which we propose to use temporal logic (CTL) [10].
To support such rules, we find the need for a rewrit-
ing engine that includes inter-procedural control-flow
analysis, alias analysis, and constant propagation.

The rest of this paper is organized as follows. Sec-
tion 2 presents some examples of evolution in Linux.
Section 3 assesses these examples in terms of the re-
quirements that they pose on Tarantula. Finally, Sec-
tion 4 presents related work and Section 5 concludes.

2 Examples

In this section, we present some representative ex-
amples of evolution in Linux and the difficulties that

have arisen in the collateral evolutions in driver code.

2.1 Elimination of check region

The function check region is used in the initializa-
tion of device drivers, in determining whether a given
device is installed. In early versions of Linux, the ker-
nel initializes device drivers sequentially [18]. In this
case, a driver determines whether its device is at-
tached to a given port as follows: (i) calling check -
region to find out whether the memory region as-
sociated with the port is already allocated to an-
other driver, (ii) if not, then performing some driver-
specific tests to identify the device attached to the
port, and (iii) if the desired device is found, then call-
ing request region to reserve the memory region for
the current driver. In more recent versions of Linux,
the kernel initializes device drivers concurrently [5].
In this case, between the call to check region and
the call to request region some other driver may
claim the same memory region and initialize the de-
vice. Starting with Linux 2.4.2, device drivers began
to be rewritten to replace the call to check region
in step (i) with a call to request region, to actually
reserve the memory region. Given this change, if in
step (ii) the expected device is not found, then re-
lease region is used to release the memory region.

Eliminating a call to check region requires replac-
ing it by the associated call to request region and
inserting calls to release region along error paths.
In the first step, it is necessary to find the call to re-
quest region that is associated with the given call
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Figure 2: check region elimination in Linux 2.4-2.6

to check region. In Linux 2.4.1, the call to re-
quest region is in the same function for only 56% of
the calls to check region.1 In the remaining cases,
an interprocedural analysis is needed. In the second
step, it is necessary to identify code points at which
it is known that the expected device has not been
found and thus release region is required. Such
points include returning an error value, as found in
75% of the functions calling check region, and go-
ing around a loop that checks successive ports until
finding one with the desired device, as found in 23%
of these functions. At such code points, it may be the
case that only a subset of the incoming paths contain
a call to check region, as occurs in 31% of the func-
tions calling check region. In this case, the call to
release region must be placed under a conditional.

Both steps in eliminating check region are diffi-
cult and time-consuming. This difficulty has lead to
the slow pace of the evolution, as shown in Figure 2.
The evolution is still not complete as of Linux 2.6.10.

2.2 An extra argument for
usb submit urb

The function usb submit urb, defined until Linux
2.5.7 in the generic module usb/urb.c, until Linux
2.5.20 in the generic module usb/core/usb.c, and
subsequently in the generic module usb/core/

1This analysis and the other analyses reported for the elim-
ination of check region were carried out using CIL [17], which
requires parsing each file. Due to problems obtaining appropri-
ate compilation arguments and incompatibilities between the
Linux 2.4.1 code and the gcc 3.3.3 compiler, we were only able
to parse 78% of the driver files successfully. The percentages
reported here are as compared to this set of parsable files.

urb.c, implements the passing of a message, im-
plemented as USB Request Block (urb), by a USB
driver. This function uses the kernel memory-
allocation function, kmalloc, which must be passed a
flag indicating the circumstances in which blocking is
allowed. Up through Linux 2.5.3, the flag was chosen
in the implementation of usb submit urb as follows:

in_interrupt () ? GFP_ATOMIC : GFP_KERNEL

Comments in the file usb/hcd.c, however, indicate
that this solution is unsatisfactory:

// FIXME paging/swapping requests over USB should not
// use GFP_KERNEL and might even need to use GFP_NOIO ...
// that flag actually needs to be passed from the higher level.

Starting in Linux 2.5.4, usb submit urb takes one of
the following as an extra argument: GFP KERNEL (no
constraints), GFP ATOMIC (blocking not allowed), or
GFP NOIO (blocking allowed but not I/O). The driver
programmer selects one of these constants according
to the context of the call to usb submit urb.

Choosing the extra argument of usb submit urb
requires a careful analysis of the surrounding code as
well as an understanding of how this code is used by
more generic modules. The only relevant documen-
tation in the Linux code is the comments preceeding
the definition of usb submit urb starting in Linux
2.5.4. These comments state that GFP ATOMIC is re-
quired in a completion handler, in code related to
handling an interrupt, when a lock is held (including
the lock taken when turning off interrupts), when the
state of the running process indicates that the process
may block, in certain kinds of network driver func-
tions, and in SCSI driver queuecommand functions.
Many of these situations, however, are not explicitly
indicated by the code surrounding the call to usb -
submit urb. Instead, they require an understanding
of the contexts in which the function containing the
call to usb submit urb may be applied.

The difficulty in understanding the conditions in
which GFP ATOMIC is required and identifying these
conditions in driver code is illustrated by the many
calls to usb submit urb that were initially trans-
formed incorrectly. Figure 3 lists the versions in
Linux 2.5 in which corrections in the use of usb -
submit urb occur and the reason for each correction.
In each case, the error was introduced in Linux 2.5.4
or when the driver entered the kernel source tree,
whichever came later. A major source of errors is
the case where the function containing the call to
usb submit urb is stored in a structure or passed to
a function, as these cases require extra knowledge
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Figure 3: Linux 2.5 versions in which GFP ATOMIC
replaces GFP KERNEL in a call to usb submit urb

about how the structure is used or how the function
uses its arguments. Indeed, in the serial subdirec-
tory, all of the calls requiring GFP ATOMIC fit this pat-
tern and all were initially modified incorrectly (and
corrected in Linux 2.5.7). Surprisingly, in 17 out of
the 71 errors, the reason for using GFP ATOMIC is lo-
cally apparent, reflecting either carelessness or insuffi-
cient understanding of the conditions in which GFP -
ATOMIC is required. Indeed, in Linux 2.6.10, in the
file usb/class/audio.c, GFP KERNEL is still used in
one function where interrupts are turned off.

2.3 Introduction of video usercopy

A Linux ioctl function allows user-level interaction
with a device driver. Copying arguments to and from
user space is a tedious but essential part of the imple-
mentation of such a function. In Linux 2.5.7, in the
generic module media/video/videodev.c, a wrap-
per function was introduced to encapsulate this ar-
gument copying. This function was refined in Linux
2.5.8 and named video usercopy. As of Linux 2.6.9,
video usercopy was used in 29 media files.

Introducing the use of video usercopy requires
primarily (i) identifying the ioctl function and (ii)
rewriting its code to eliminate copying between user
and kernel space. An ioctl function does not have a
fixed name, but can be recognized as the value stored
in the ioctl field of the structure implementing the
driver interface. Copying between user and kernel
space is typically implemented by using the functions
copy from user and copy to user to copy informa-

tion to and from a local structure specific to each ioctl
command. Video usercopy provides the ioctl code
with a generic-typed kernel pointer to this informa-
tion. The ioctl code must thus be modified to cast
this pointer to the structure type used by each com-
mand and to replace references to the local structure
by pointer dereferences. The latter transformation
can be quite invasive. For example, in the ioctl func-
tion of media/radio/radio-typhoon.c, 61% of the
lines of code changes between Linux 2.5.6 and 2.5.8.

The function video usercopy is not specific to me-
dia drivers, and thus there has been interest in mak-
ing the function more generally available [9]. Some
evidence of the difficulties this may cause are pro-
vided by the case of i2c/other/tea575x-tuner.c
in which video usercopy was introduced in Linux
2.6.3. In this file, the calls to copy from user and
copy to user were not removed. The bug was never
fixed. Instead, the use of video usercopy was re-
moved from this file in Linux 2.6.8.

3 Requirements

The semantic patches of Tarantula must (i) identify
the code to modify, (ii) describe how to construct the
new code, and (iii) describe the impact on the existing
context. We review the above examples in terms of
these issues, and identify the requirements they place
on Tarantula. Required features are shown in italics.

In the check region example, the code to mod-
ify is indicated by a use of the function name. The
new code that replaces a call to check region is de-
termined by the call to request region that would
subsequently be executed at run time. To specify
the connection between these calls, the rewrite rules
must be able to describe a control-flow path. For this,
we propose to use temporal logic [10], a logic that
describes relationships between successive events, in-
stantiated here as successive program constructs. So
that the rewriting engine can identify such paths in
the source program, it must include a control-flow
analysis. Because the calls to check region and
request region are not always in the same function,
the control-flow analysis must be inter-procedural. Fi-
nally, replacement of check region by request -
region implies that calls to release region must be
inserted in the context. This again requires rewrite
rules that describe paths, and temporal logic and
control-flow analysis are useful here. Some of the
paths requiring release region are interprocedural
error paths. Constant propagation of error return val-
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ues is thus needed to restrict the analysis to mean-
ingful control-flow paths.

In the usb submit urb example, the code to trans-
form is again indicated by a use of the function name.
The new argument is determined by properties of the
enclosing calling context. Again, these properties are
interprocedural and depend on control flow, and thus
temporal logic and control-flow analysis are useful.
In a few cases, functions containing calls to usb -
submit urb are stored in structures or variables local
to the driver are subsequently invoked through these
entities. These cases require alias analysis.

In the video usercopy example, identifying the
code to transform requires finding the ioctl function,
which entails reasoning about global structure decla-
rations. The introduction of video usercopy has a
significant effect on the context: calls to copy from -
user and copy to user disappear, and the types of
the variables manipulated by these functions change.
To express these modifications, the rewrite rules must
be able to express properties of local-variable decla-
rations and uses.

We have previously used rewrite rules including
temporal logic to describe the modifications needed
to reengineer the source code of a legacy OS to sup-
port the Bossa process scheduling framework [1, 16].
Those rules were implemented using the CIL infras-
tructure for C program analysis and transformation
[17]. For Tarantula, we will generalize this work
by extending the rewrite rule language to describe a
more general set of transformations, and by improv-
ing the rewriting engine to include more complex vari-
ants of the analyses, such as inter-procedural analy-
ses exploiting constant values. Of the required anal-
yses, CIL already provides intra-procedural control-
flow analysis, inter-procedural constant propagation,
and inter-procedural alias analysis.

4 Related Work

Our work involves the description of code patterns
requiring evolution and the transformation of code
matching these patterns using rewrite rules. This
work is related to pattern-based approaches to bug
finding and to techniques that allow the description
of code modifications such as Aspect-Oriented Pro-
gramming (AOP).

Recent years have seen a surge of interest in auto-
matic approaches to detecting bugs in large pieces
of software, including the Linux operating system
[6, 7, 8, 14]. These approaches rely on identifying re-

quired code patterns and then detect code fragments
that are inconsistent with these patterns. In the con-
text of Linux, most of the bugs found using these ap-
proaches are in device driver code. We believe that
the patterns used by these approaches derive largely
from the interface provided by the kernel and generic
modules. In the context of evolution of this interface,
existing approaches detect bugs after they appear,
while our approach prevents bugs by providing assis-
tance in the evolution process. Our work can also be
viewed as introducing a new source of code patterns
into consideration. While previous work has focused
on patterns identified within a single version of Linux,
we consider patterns derived from evolution.

AOP is a programming paradigm that isolates the
implementation of a modular crosscutting concern in
a single unit, known as an aspect [12]. An aspect
includes both code implementing the concern and di-
rectives indicating how to integrate this code with an
existing base program. Coady et al. have investigated
the use of aspects in OS code to improve modular-
ity, and have considered the impact of OS evolution
on these aspects [2, 3, 4]. Semantic patches can be
viewed as a form of aspects, as they specify code and a
means of determining where this code should be intro-
duced. Nevertheless, the goals of our approach, and
hence the mechanisms employed, are different. AOP
is directed towards the complete implementation of a
functionality that is somewhat orthogonal to the base
program. Thus, for example, the widely-used aspect
system, AspectJ [11], does not permit fine-grained
modification of the base program, such as changing
the type of a local variable. Our approach is directed
towards specifying modifications to a portion of an in-
tegral functionality, specifically the interaction with
the interface of a more generic module. Accordingly,
our approach allows describing much more invasive,
finer-grained transformations and requires more com-
plex supporting analyses.

The Splice aspect system allows an aspect to use
program analysis to specify where a base program
should be transformed [15]. The specification is de-
scribed in terms of logic programming rules com-
bined with operators expressing temporal properties.
Based on our previous experience in describing tem-
poral properties in the reengineering of Bossa, we
plan to use temporal logic directly, rather than via
logic programming. The precision of the analyses
used by Splice has been restricted to ensure scala-
bility to large programs. Because we have observed
that device drivers typically have shallow call graphs,
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we plan to favor analysis precision over efficiency. Fi-
nally, Splice has only been used to implement lock
insertion and a loop transformation, whereas we tar-
get a much wider range of transformations.

Our use of temporal logic was originally inspired by
that of Lacey et al. on using temporal logic to specify
program transformations [13].

5 Conclusion

Keeping drivers up to date is known to be difficult,
due to the large number of drivers and the varying
levels of programmer expertise. In this paper, we
have proposed Tarantula to provide automatic assis-
tance in evolving a driver to match changes in the
interface of more generic parts of the OS. Tarantula
is based on semantic patches, which provide (i) pre-
cise description of the contexts in which evolution
is required, (ii) encapsulation of relevant informa-
tion about external functions and data structures,
and (iii) help with the tedious process of analyzing
the driver file to determine where the evolution ap-
plies. So far, besides the examples cited here, we
have found around 30 evolutions in driver directories
such as cdrom, ide, pcmcia, and usb where Taran-
tula would be useful. We plan to continuing studying
driver code to find a more complete set of examples.
Our next step will be to refine the language of se-
mantic patches and develop the supporting program
analysis infrastructure.
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ABSTRACT
Reaching a good separation, maintainability and configurability of
non-functional concerns like performance, timeliness or depend-
ability is a frequently expressed but still unrealisable hope of using
AOP technology. Non-functional properties have the tendency to
be emergent, that is, they have no concrete representation in the
code, but appear through the complex interactions between soft-
ware components in the whole. This makes it is very hard, if not
impossible at all, to express them in a configurable manner by ob-
jects or even aspects. The architecture of a software system, how-
ever, is known to have a high impact on some non-functional prop-
erties. Thus, it may be possible to reach configurability of non-
functional software properties by the means of reconfigurable soft-
ware architectures. This paper discusses the connection between
non-functional and architectural properties in the domain of oper-
ating system product lines.

1. INTRODUCTION
Reaching better separation of concerns in software systems was
and is the driving factor for the development of AOP technologies.
One of the big hopes associated with the application of AOP is to
get a clearly modularized implementation of even so callednon-
functional concerns. The non-functional properties of a software
system are those properties that do not describe or influence the
principal task / functionality of the software, but can be observed
by end users in its runtime behaviour.Performanceor resource uti-
lization are the most common examples for non-functional proper-
ties, but also less observable properties likerobustnessor depend-
ability are important members of the class.1 Even if non-functional
properties have no impact on the primary functionality of the soft-
ware system, they have a big impact on its applicability in the real
world. A system that provides perfect functionality, but works ter-
ribly slow, is just unusable. Non-functional properties are therefore
important concerns, their controllability may be crucial for the suc-
cess of a software project.

This is especially true in the domain of embedded systems, where
hardware cost pressure leads to strictly limited resources in terms
of CPU and memory. Under such circumstances, non-functional
concerns like memory usage or timeliness may even dominate the
functional properties of the final product. As a consequence, there

∗This work was partly supported by the German Research Council
(DFG) under grant no. SCHR 603/4

1This definition of “non-functional” is intentionally from the per-
spective of an end user. Other stakeholders (e.g. developers
or salesmen) would probably define very different properties like
portability or unique selling pointsas “non-functional”.

is an ongoing tendency to develop operating systems for embed-
ded devices as tailorableproduct linesthat provide a more or less
fine-grained selectability of functional features. This facilitates, by
leaving out optional functions, some optimization of the system for
specific memory constraints. However, existing operating system
product lines provide only very limited configurability with respect
to other non-functional properties like timeliness, protection or ro-
bustness.

1.1 Problem Analysis
The problem with most non-functional properties is that they are
emergent properties. They are neither visible in the code nor struc-
ture of single components, but “suddenly” emerge from the orches-
tration of many components into a complete system. Properties that
manifest in the integrated system only are indeed crosscutting, as
they result from certain (unknown) characteristics of every single
component. Due to their inherent emergence it is, however, not pos-
sible to tackle them by decomposition techniques like AOP. They
need to be understood holistically, that is, on the global scope of
software development. One could say they need to be addressed by
“holistic aspects”, meaning that the realization of non-functional
concerns does not crosscut (just) the code, but the wholeprocessof
software development.

1.2 The Role of Architecture
The architecture of a software system is known to have a high
impact on many non-functional properties. Architecture can well
be understood as a“holistic aspect”, as it encompasses the set of
fundamental design decisions made at the early stages of the soft-
ware development process. Many architectural decisions are ac-
tually driven by non-functional requirements, based onexperience
regarding their effect on such properties. In the operating systems
domain, for instance, it isknownthat the isolation of every system
components into an own address space (as inµ-kernel OS) has posi-
tive effects on safety and fault protection, while a monolithic kernel
structure isknownto lead to lower demands on system resources.
From the functional viewpoint (of an application) there is, however,
no real difference between aµ-kernel OS and a monolithic kernel
OS[7]. Hence, the architecture of the operating system is itself an
all-embracing non-functional property[10].

Architecture is usually seen as being something fixed. Most archi-
tectural decisions cover large parts of the code, which makes it very
expensive to change them later. However, as they crosscut the code
they are potentially addressable by aspects. Thus, it should be pos-
sible to implement architecture in aconfigurableway and thereby
leverage towards anindirect configuration of emergent properties.
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In the CiAO project[11] we are currently working on the develop-
ment of an operating system family that provides configurability of
certain architectural properties.

1.3 Structure of the Paper
The rest of the paper is organized as follows: In the next section,
we discuss the influence of architectural concerns to non-functional
properties in the domain of operating systems. Section 3 describes
our approach towards the design of architecture-neutral OS compo-
nents, which is also explained by an example in section 4. Finally,
conclusions are drawn and the paper is briefly summarized.

2. CONCERNS OF OS ARCHITECTURE
To reach configurability of architectural properties in operating sys-
tem product lines, it is necessary to havearchitecture-transparent
OS components, that is, components which are designed and im-
plemented to be independent from the actual architecture to use. It
is essential to clearly separate the functional component code from
those elements that reflect architectural decisions. The following
lists some of the more important properties that “make” the archi-
tecture of an operating system kernel[10], together with the emer-
gent properties they are known to imostly unvisible and nfluence.
The focus is on embedded systems:

synchronization If the kernel supports concurrent/parallel execu-
tion of control flows, concurrent data access must not lead
to race conditions. Synchronized access to data may be im-
plemented by waiting-free algorithms, special hardware sup-
port (e.g. atomic CPU operations), interrupt locks or higher-
order synchronization protocols. Locks may be allocated on
a coarse-grained or fine-grained base. The chosen kernel
synchronization strategy has a noticeable impact onlatency,
timelinessandperformance.

isolation The different components of an operating system may
have access to the whole system state or to well-isolated
subsets only. Components may be isolated by design
through type-safe programming languages, by hardware sup-
port (segmentation or address spaces via memory manage-
ment units (MMUs) or translation lookaside buffers (TLBs))
or even by distributing them across hardware boundaries.
Isolation may cause additional requirements on data align-
ment, sharing and interaction. The chosen isolation strategy
has a noticeable impact onmemory usage, safety, andper-
formance.

interaction System services may be invoked and interact with
each other by plain procedure calls, local message passing,
inter-process calls (IPCs) or remote procedure calls (RPCs).
Interaction may imply implicit synchronization, data dupli-
cation or (in the case of RPCs) even fail on occasion. The
chosen interaction strategy often goes in line with isolation.
It has a noticeable impact onlatency, memory usageand
performance.

The above listed properties are fundamental building blocks of any
operating system architecture[9]. In our research activities on ap-
plying AOP principles to the PURE operating system family[17,
13], we had the experience that it is not possible to implement an
ex postconfigurability of such fundamental properties. The reason
is that most architectural properties do not only lead to character-
istic code patterns in the component code (which are addressable

by aspects), but also to a number ofimplicit constraintsthat are not
visible in the code. The developer of an implementation without
isolation, for instance, implicitly relies on the possibility to pass
complex data structures by simple untyped references. An imple-
mentation that uses message-based interaction implicitly relies at
some places on the serialization of inter-component invocations.
However, it is nearly impossible to detect which parts of the code
implicitly rely on which constraints. An automatic transformation
of such component code to another architecture, e.g. by aspects, is
not feasible.

The integration of symetric multiprocessing (SMP) support into
Linux is an impressive example for the enormous impact of an
architectural property (kernel synchronization) to a non-functional
property (performance). It is also a good example for the high costs
of architectural transformations in legacy code: The first kernel re-
lease that supported SMP hardware was version 2.0. As most com-
ponents still relied on the coarse-grained kernel synchronization
scheme of earlier versions, it performed badly in SMP environ-
ments. To improve the performance property, a switch towards a
fine-grained synchronization strategy was unavoidable. Hundreds
of device drivers, file systems, and other components of the system
had to be adapted[2]. Now the 2.6 kernel has fine-grained locking
in almost all parts of the system and performs quite well, but the
process took several years to complete.

3. THE CIAO APPROACH
Our conclusion from the experiences with PURE is that an oper-
ating system has to be designedspecificallyfor architectural trans-
parency. In the CiAO project we are now developing a new family
of operating systems that fulfills the requirements for architectural
configurability. This is a challenging task, as one needs to become
aware of all the explicit and implicit elements that are induced by an
architectural property. As it is not possible to build software with-
outanyarchitecture, a set of abstractions is needed that generalizes
over the concrete property implementation. These abstractions are
then used by components and later transformed, by aspects, into
their architecture-specific representation.

The possible different implementations of architectural properties
highly influence each other. Method calls are, for example, a suit-
able abstraction for the interaction concern. However, to be able
to transform them by aspects into a message-based communication
scheme, it is necessary to have a clear distinction between inter- and
intra-component invocations. This can be realized by naming con-
ventions. Moreover, if isolation enforces message-passing to other
address spaces, untyped references must not be used as arguments,
as they are not resolvable for transportation into another address
space. Message-based interaction is, however, synchronized by de-
sign, while interaction by method calls is not. As a consequence,
critical sections in the component code always have to be marked
explicitly.

This implementation interdependence advises a bottom up design
process.Domain analysisis the first step in finding suitable ab-
stractions for a specific architectural property. Domain analysis
encompasses a detailed analysis of the property implementations
in all architectures to support, e.g. by taking a close look at ex-
isting operating systems. The result of domain analysis is a set
of commonalities and differences between the architecture-specific
implementations, represented asfeature diagrams[4]. The com-
monalities are the anchor for developing the abstractions of the
architecture-neutral model during the design phase. Differences
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Figure 1: Feature diagram of theIRQ Synchronizationdomain

are integrated into the model step-by-step by generalization, if pos-
sible, or are separated out into architecture-specific models. The
architecture-neutral model finally can be used as a reference archi-
tecture for the architecture-independent implementation of func-
tional components.

4. EXAMPLE:
INTERRUPT SYNCHRONIZATION

Most operationg system kernels support two different notions of
control flows. Continuing, long-running control flows are typically
supported by athread abstraction. Control flows to perform short-
term reactions on (non-deterministic) external hardware events are
implemented byinterrupt handlers. From the perspective of the
operating system, a thread can be understood as walking top down
through the kernel, while the control flow of interrupt handlers goes
bottom up through the kernel. If, by any chance, interrupts and
threads can meet on their execution paths (e.g. by accessing some
common state), the kernel needs to ensure synchronized access to
this state. The strategy provided for this purpose is usually referred
to asinterrupt synchronization.Interrupt synchronization is an im-
portant part of the kernel synchronization concern discussed above.

4.1 Domain Analysis

Analyzed Systems
The following systems were analyzed: Linux, Windows
(NT/2000/XP), Solaris, PURE[1] and L4Ka[8]. For systems with
SMP support the single-CPU case was analyzed.

General Observations
The execution of an interrupt control flow is initiated by hardware.
In case of an IRQ signal, the CPU interrupts the current executing
control flow and branches into an IRQ handler function. The IRQ
handler function must not block, as this might freeze the system. If
an IRQ handler needs to access some resource which is currently
in use by some thread (or some other IRQ handler), it cannot wait
for the resource to be released. Therefore, every OS needs some
mechanism todelaythe execution of the interrupt code, or at least
of those parts accessing the ressource, until the resource is avail-
able.

Delay Mechanisms
The most simple way to enforce delayed execution is usinghard
synchronization, which, however may result in high latency and lost
interrupts. For this reason, most operating systems follow a more
sophisticated approach and implement the delayed execution by
somesoftware mechanism. The following describes the approaches
used by the analyzed systems:

hard synchronization This approach is, because of its simplicity,
often used on smallµ-controller OS that execute only very
few tasks. The idea is to delay the propagation of the inter-
rupt signal by disabling the IRQ line. Most interrupt con-
trollers are able to hold a signaled but disabled interrupt until
the IRQ line is reenabled again. However, if interrupts are
disabled too long or too often, latency goes up and IRQ sig-
nals might be lost.

prologue/epiloguesThis approach is used by Linux [2, 14], Win-
dows[15], PURE[13] and many other operating systems. The
general idea is to explicitly divide the code to be executed in
case of an interrupt into a critical and an uncritical part. The
critical part, calledprologue, is executed with low latency at
interrupt level. It should perform only the most time-critical
tasks and may only access resources that are protected at in-
terrupt level. Before termination, the prologue may request
the delayed execution of the part which is not time-critical
by registering one or moreepilogues2. Epilogues are queued
until the kernel propagates them for execution, which is (typ-
ically) the case after all nested interrupt handlers have ter-
minated and before the scheduler is activated. Epilogues
thereby have priority over threads, but are interruptable by
prologues if new IRQ signals come in. Threads inside the
kernel can temporary disable the propagation of epilogues to
access shared resources. In this case, epilogue propagation is
delayed until the thread finishes its access.

driver threads This approach is common forµ-kernel OS like
L4Ka[8]. The general idea is to lift all code to be executed
in case of an interrupt up to the thread level. The kernel it-
self contains only a generic interrupt handler, which sends

2Epilogues correspond tobottom halvesor taskletson Linux and
to deferred procedure calls (DPCs)on Windows.
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Figure 2: Different configurations of interrupt synchronization in a device driver

a message to the thread registered for an interrupt signal and
activates the scheduler3. If the thereby activated driver thread
has the highest priority, it is then selected for execution and
starts the real processing of the interrupt request. Because the
code is executed inside a thread, it may even block on other
threads (e.g. use synchronous IPCs). Interrupt synchroniza-
tion is thereby mapped to ordinary thread synchronization,
no special mechanism is required.

IRQ pseudo-threads This very sophisticated approach is used by
Solaris[6]. The general idea is, again, to map interrupt syn-
chronization to thread synchronization and thereby avoid
the need for an extra interrupt synchronization mechanism.
However, instead of sending a message to a waiting thread
and activating the scheduler in case of an interrupt, Solaris di-
rectly switches to a special pre-allocated pseudo-thread. The
pseudo-thread owns a complete thread context (instruction
pointer, stack), but is not a deschedulable entity as it is still
running on interrupt level while executing the handler code.
Only if the control flow is required to block (e.g. because of
waiting for a locked mutex), the kerneltransparentlylifts up
the pseudo-thread to become a real schedulable (but blocked)
thread entity, ends the interrupt, and activates the scheduler.
Henceforth, the interrupt handler code is executed on thread
level until it terminates.

Commonalities and Differences
The various approaches used for interrupt synchronization result
in differentexecution modelsfor interrupt code. They also lead to
differentprogramming modelsfor the developer of device drivers,
in which interrupt handling typically takes place. The feature dia-
gram in Figure 1 depicts these two models as main dimensions of
commonality and difference in the domain of IRQ synchronization.

3The message is actually an IPC sent to a usermode thread in an-
other address space (e.g. of a device driver process). However,
this is not relevant here, as it is part of the isolation and interaction
properties.

In theexecution model dimension, one can distinguish approaches
that execute the complete IRQ handler on one synchronization level
from those, where the interrupt code is spread over two different
synchronization levels. The simplehard synchronization, as well
as the L4KaDriver threadsbelong to the first category, whereas
Solaris’ IRQ pseudo-threadsand prolog/epiloguesbelong to the
second. In the 2-level approaches, an interrupt control flow always
begins execution on interrupt level. It continues delayed execution
on either thread level (Solaris) or epilogue level (Windows, Linux,
PURE).

In the programming model dimension, one can again distinguish
between 1-level and 2-level approaches. However, only forpro-
logue/epiloguesthe developer has to split the code explicitly be-
tween boths levels, by optionally requesting the execution of epi-
logues. Driver threadsand IRQ pseudo-threadsoffer an identi-
cal programming model, as the latter performs an automatic transi-
tion from interrupt level to thread level on demand. Optionally, the
thread-based approaches permit the interrupt control flow to block
on other threads.

4.2 Generalization
The variability in the execution model is desired, as it corresponds
to the different implementation of the architecural property, which
in turn lead to the variability regarding non-functional properties.
The variability in the programming model, however, has to be gen-
eralized for the development of architecture-neutral components.
The goal is to be able to configure the execution modelwithout
having to buy another programming model. Figure 2 shows the
possible configurations, as well as the resulting structure, of a de-
vice driver which is accessed from thread and interrupt level.4

Finding a common set of abstractions for the architecure-neutral
progamming model requires some reduction to the common de-

4The possible configurations also depend on the configuration of
other system components, like multi-threading support, which is
required by the thread-based configurations.

Owner
22



nominator. If the specific architectures depends on certain assump-
tions, the most restrictive ones have to make it into the architecture-
neutral model. For instance, only thepro-/epiloguesmodel en-
forces an explicit splitting of the driver into two different levels
of execution (Figure 2). Nevertheless, it has to become a part of
the architecture-neutral model. This is possible, as the enforced
explicit splitting is just an additional requirement which does not
conflict with other requirements. In other cases, however, it might
be necessary to seperate out an abstraction into the architecture-
specific model. The optionalmay blockfeature (Figure 2) is an
example for an architecture-specific abstraction that is only avail-
able in the thread-based models. A device driver implementation
which depends on this feature can not be transformed into thehard
synchronizationor pro-/epiloguesmodel.

The aim of the architecture-neutral driver model is to provide
enough context information to enable a transformation of the driver
code into the architecture-specific model by aspects. This basically
means to insert the “right” synchronization primitives at the “right”
places. Logically, it is access to state which has to be synchro-
nized. However, this can be mapped to method synchronization, as
all state information is considered to be accessible by a restricted
set of methods only. In our model, each method of a device driver
is placed in one of three different synchronization classes:

synchronized Methods of this class are, depending on the actual
configuration, synchronized by some higher-order protocol.
If invoked by an interrupt, the actual execution is typically
delayed. If invoked by a thread, parallel invocation from in-
terrupt has to be prevented. This is the default class for driver
methods. It corresponds to the following execution levels:
IRQ (Configuration 1),Epilogue(Configuration 2),Thread
(Configuration 3),IRQ + Thread(Configuration 4)

blocked For Configuration 2 (pro-/epilogues), methods of this
class correspond to execution levelIRQ. For all other config-
urations they are simply merged into the classsynchronized.

transparent Methods of this class do not need any synchroniza-
tion at all, as they perform atomic operations only or use
interruption-transparent algorithms. Hence, they can be in-
voked from any control flow at any time.

If methods from the same class invoke each other, no synchro-
nization is necessary. Synchronization primitives have to be in-
serted for transitions from thread or interrupt level tosynchronized
or blocked. Configuration 2 additionaly requires synchronization
of transitions between the classessynchronizedandblocked. The
following section describes with a brief example how this can be
implemented in AspectC++[16].

4.3 Implemention Sketch
Consider a simple device driver for the system timer, as in the fol-
lowing listing.

class Timer {
... // state

public :
void init( long time );
long get() const ;
void add_event(const EventCallback* cb);

private :
void tick();
void process_events();

friend class irq_dispatcher;

void handler() {
tick();
process_events();

}

// what belongs to which synchronization class
pointcut int_handler() = "% Timer::handler()";
pointcut blocking() = "% Timer::init(...)"

|| "% Timer::tick()";
pointcut transparent() = "% Timer::get(...)const";
pointcut synchronized() = "% Timer ::%(...)"
&& !int_handler() && !blocking() && !transparent();

};

The driver offers a public interface for threads to set and get the
system time (init(), get()) and to be notified at a certain time
(add_event()). The privatehandler() method is invoked by the
low-level interrupt dispatcher in case of an interrupt signal. It ad-
vances the system time and notifies all registered events that have
expired. Theget() method performs an atomic read operation and
is therefore considered to betransparent, whileinit() is assigned
to blocked, as it performs a non-atomic write operation on the in-
ternal timer value, which is also modified bytick(). All other
methods (excepthandler()) are assigned tosynchronized.

The Timer driver code is architecture-neutral regarding the inter-
rupt synchronization property. The following aspect is used to
transform it to usehard synchronization:

aspect Configuration1 {
pointcut block() = Timer::synchronized()

|| Timer::blocking();
advice call ( block() && !within ( block()

|| Timer::int_handler() ) : around () {
disable_int();
tjp ->proceed();
enable_int();

}
};

The aspect for theprologue/epiloguesmodel has to give some extra
advice for the delayed execution of epilogues and for the potential
transitions between the synchronization classesblockedand syn-
chronized:

aspect Configuration2 {
pointcut block() = Timer::blocking();
pointcut delay() = Timer::synchronized();
advice call ( delay() )

&& !within ( "% Timer ::%(...)" ) : around () {
lock_epilogues();
tjp ->proceed();
leave_epilogues();

}
advice call ( block() ) && !within ( block()

|| Timer::int_handler() ) : around () {
disable_int();
tjp ->proceed();
enable_int();

}
advice call ( Timer::synchronized() ) && !within (

Timer::synchronized() ) && cflow (
execution ( Timer::int_handler ())): around (){

add_epilog (tjp ->action ());
}

};

For thedriver threadsmodel no advice has to be given, as all nec-
essary synchronization is implicitly done by the message-based in-
teraction used to invoke methods. As discussed in section 2,inter-
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action is another architectural property which is not in the scope of
this paper.

aspect Configuration3 {
// nothing to do!

};

Finally, the necessary synchronization primitives for theIRQ
pseudo-threadsmodel are applied by this aspect:

aspect Configuration4 {
pointcut exclude() = Timer::synchronized()

|| Timer::blocking();
advice call ( exclude() )

&& !within ( exclude() ) : around () {
lock_mutex();
tjp ->proceed ();
unlock_mutex();

}
};

5. SUMMARY AND CONCLUSIONS
Many non-functional properties of software systems are emergent
and, thus, need to be addressed on a global scope by some sort of
“holistic aspects”. Architecture can be understood as such a “holis-
tic aspect”, as it has a noticeable impact on many non-functional
properties. Architectural decisions do crosscut significant parts of
the actual implementation of every component. This gives the op-
portunity to address them by aspects and thereby configure non-
functional propertiesindirectlyby the means of configurable archi-
tectures. On the other hand, software components have to be specif-
ically designed with architectural configurability in mind, which
can be a quite complicated task. The work on CiAO is clearly at an
too early stage to evaluate the benefits of using aspects for this pur-
pose on the large scale. From what we did so far we can, however,
draw some preliminary conclusions:

The devil is in the details While it is broadly accepted that as-
pects are feasible for encapsulating crosscutting concerns,
their applicability for the non-trivial case always seems to
be a question on its own. For the (relatively complex) inter-
action patterns found in operating systems this is specifically
true, as subtle implementation details can have an enormous
impact on correctness or performance. Hence, an in-depth
analysis of the technical details is unavoidable for a reliable
evaluation if and how AOP is beneficial for the encapsulation
of certain architectural properties.

Applicability to other OS concerns Interrupt synchronization is
just one of the properties that “make” the architecture of an
operating system. It is a natural starting point for a bottom-
up process, which is required to tackle the inherent interde-
pendencies between architectural properties. Architecture-
neutral models for other fundamental properties, including
isolation and interaction, have to be developed as well. This
will probably be again a matter of very specific details. How-
ever, we are optimistic that the general approach as described
in section 3 works for these other properties as well.

Additional Requirements to AspectC++ The interrupt synchro-
nization example demonstrates that AspectC++ already pro-
vides the ability to perform quite complex context-dependent
transformations. Nevertheless it is rather likely that we have
to carefully extend AspectC++ to address other architectural
properties. To implement, for instance, component interac-
tion via IPCs as an aspect, one has to be able to give advice

that forwards the whole calling context to a thread running in
another address space.5

6. RELATED WORK
There is some related work in the domain of applying AOP tech-
niques to operating systems. Coady et all demonstrated the encap-
sulation of an architectural OS property (prefetching) by an aspect
in the FreeBSD kernel[3]. However, the focus of this work was not
on configuration of architectural properties. The THINK frame-
work demonstrates, how operating systems with different interac-
tion schemes can be constructed from architecture-neutral com-
ponents by using special “binding components”[5]. THINK does
not use AOP, it is based on COM interfaces and does not support
the configuration of other architectural properties. Related work
that suggest to exploit aspects for specifying synchronization con-
straints is to numerous to list, however, the work of Lopes[12] prob-
ably had the most noticeable impact to this topic.

7. REFERENCES
[1] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-Preikschat,

O. Spinczyk, and U. Spinczyk. The PURE family of object-oriented
operating systems for deeply embedded systems. In2nd IEEE Int.
Symp. on OO Real-Time Distributed Computing (ISORC ’99), pages
45–53, St Malo, France, May 1999.

[2] D. P. Bovet and M. Cesati.Understanding the Linux Kernel.
O’Reilly, 2001.

[3] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to
improve the modularity of path-specific customization in operating
system code. InESEC/FSE ’01, 2001.

[4] K. Czarnecki and U. W. Eisenecker.Generative Programming.
Methods, Tools and Applications.AW, May 2000.

[5] J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller. THINK: A
software framework for component-based operating system kernels.
In 2002 USENIX TC, pages 73–86. USENIX, June 2002.

[6] S. Kleiman and J. Eykholt. Interrupts as threads.ACM OSR,
29(2):21–26, Apr. 1995.

[7] H. C. Lauer and R. M. Needham. On the duality of operating system
structures.ACM OSR, 13(2):3–19, Apr. 1979.

[8] J. Liedtke. Onµ-kernel construction. In15th ACM Symp. on OS
Principles (SOSP ’95). ACM, Dec. 1995.

[9] A. Lister and R. Eager.Fundamentals of Operating Systems.
Macmillian, 4 edition, 1988.

[10] D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk. On the
design and development of a customizable embedded operating
system. InSRDS Dependable Embedded Systems (SRDS-DES ’04),
Oct. 2004.

[11] D. Lohmann and O. Spinczyk. Architecture-Neutral Operating
System Components.19th ACM Symp. on OS Principles (SOSP’03),
Oct. 2003. WiP session.

[12] C. V. Lopes.D: A Language Framework for Distributed
Programming. PhD thesis, College of Computer Science,
Northeastern University, 1997.

[13] D. Mahrenholz, O. Spinczyk, A. Gal, and W. Schröder-Preikschat.
An aspect-orientied implementation of interrupt synchronization in
the PURE operating system family. In5th ECOOP W’shop on
Object Orientation and Operating Systems, pages 49–54, Malaga,
Spain, June 2002.

[14] A. Rubini and J. Corbet.Linux Device Drivers. O’Reilly, 2001.
[15] D. A. Solomon and M. Russinovich.Inside Microsoft Windows

2000. MS Press, 3 edition, 2000.
[16] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An

aspect-oriented extension to C++. In40th Int. Conf. on Technology
of OO Languages and Systems (TOOLS Pacific ’02), pages 53–60,
Sydney, Australia, Feb. 2002.

[17] O. Spinczyk and D. Lohmann. Using AOP to develop
architecture-neutral operating system components. In11th SIGOPS
Eur. W’shop, pages 188–192, Leuven, Belgium, Sept. 2004. ACM.

5Within the same address space this is already possible in As-
pectC++ by using so-calledaction objects[17, 16].

Owner
24



Software security patches

Audit, deployment and hot update

Nicolas Loriant, Marc Ségura-Devillechaise, Jean-Marc Menaud

Obasco Group
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ABSTRACT
Due to its ever growing complexity, software is and will prob-
ably never be 100% bug-free and secure. Therefore in most
cases, software companies publish updates regularly. For the
lack of time or care, or maybe because stopping an applica-
tion is annoying, such updates are rarely, if ever, deployed
on users’ machines.

We propose an integrated tool allowing system administra-
tors to deploy critical security updates on the fly on appli-
cations running remotely and without the intervention of
the end-user. Our approach is based on Arachne, an as-
pect weaving system that dynamically rewrites binary code.
Hence applications are still running while they are updated.
Our second tool Minerve integrates Arachne within the stan-
dard updating process: Minerve takes a patch produced by
diff, a tool that lists textual differences between two ver-
sions of a file, and eventually builds a dynamic patch that
can later be woven to update the application on the fly. In
addition, by translating patches into aspects and thus gener-
ating a more abstract presentation of the changes, Minerve
eases auditing tasks.

1. INTRODUCTION
Despite the availability of correcting patches, in 2003, 80% of
computer attacks exploited already published security vul-
nerabilities [3]. Sasser for example is not an exception - the
patch preventing its propagation was available two weeks
before it spread all over the world. Thus, most threats
could be avoided by strict tracking of security bulletins and
quick updating of security vulnerabilities. System adminis-
trators can not achieve these tasks without adequate tools.
Indeed, reading the 5500 security alerts annually published
by the CERT/CC (assuming 5 minutes per bulletin) would
require about 13 weeks of work. If only one percent of the
reported vulnerabilities were relevant, if the computer net-
work is composed of one hundred machines and if updating
one machine takes about an hour, deploying patches would
require 157 weeks per year [2]. And this evaluation neglects
the time spend in negotiations with end users to stop their
applications during updates.

In this paper, we propose a semi automatic approach to
deploy security updates. Its goal is to reduce the required
time while still allowing system administrators to protect

their network efficiently. Our framework is based on two
tools, Minerve and Arachne [13]. The first reduces the time
spent to audit and to adapt the patch by translating regular
patches into aspect source code. The second is a dynamic
weaver that deploys the translated patches on the fly freeing
administrators from the hassle of negotiating with users.

This paper is organized as follows: section 2 describes a
global view of our framework and shows how it integrates
itself in the usual patch deployment process. Sections 3 and
4 present Minerve and Arachne respectively. Section 5 sum-
marizes our experimental results and presents a complete
example. Sections 6 and 7 discuss benefits of AOP for dy-
namic patching and the future work. Section 8 concludes.

2. THE FRAMEWORK
Within the open source community, security holes are cor-
rected through the distribution of patches. A patch is pro-
duced with the diff tool [6], it traces the differences between
the source of the old vulnerable version of the application
and the source of the patched one. Hence upon a patch
publication, administrators are left with no option but re-
compiling and redeploying the application.

Redeploying a software is very expensive with respect to
time and resource consumption. First, the system adminis-
trator has to review the patch to check whether it can be
trusted or not. This review is difficult as patches are not
meant to be read and solely composed of the lines of source
code that are different between the vulnerable version and
the version of the patch. While patches stress the differ-
ences between two versions, they do not help administrators
to understand the impact of the changes on the application.
Secondly, patches are effective only once the application has
been recompiled, redeployed and relaunched. But stopping
or even suspending an application is often uncomfortable or
simply impossible. Small companies running their own e-
commerce site can not afford the additional costs a proper
fault tolerant system forgiving temporarily unavailability of
a single machine. In a roaming or mobile context, it is hard
to believe that even a fault tolerant approach would ever be
a solution.

The framework we propose in this paper aims at both re-
ducing the time spent in administrative tasks and decreasing
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the resources required to update an application on the fly.
It is worth noticing that fault tolerant approaches meet the
second objective but not the first. Our approach is based on
two tools: Minerve and Arachne. Minerve is a patch trans-
former. Its input is a diff-like patch. Minerve outputs a
series of aspects written in the Arachne aspect language [4].
The use of an aspect language clearly presents the modifica-
tions made by the patch. Such a clear presentation decreases
the time required to audit the patch. Moreover, prior to the
generation of the aspect source code, Minerve checks that
the new patch can be deployed dynamically without leading
to an incoherent execution .

Once the system administrator has validated the new patch,
our second tool, Arachne comes into action. Arachne is a
run-time aspect weaver for C applications. Pre-installed on
every computer of the network, Arachne dynamically weaves
the patch provided by Minerve into the running program.
Modifications are injected atomically ensuring the consis-
tency of the running program.

The modifications carried out by the patch are taken into
account immediately without stopping the services provided
by the program or losing current work for the end-user. Nev-
ertheless, modifications are only made on the running pro-
cess, thus our framework should be complemented with a
usual patching like it can be done with static patch deploy-
ing tools [8], in order for the modifications to be permanent.

3. MINERVE, PATCH ANALYSIS AND TRANS-
FORMATION

Source patches provided by developers are usually generated
and deployed using tools like diff and patch. diff simply
lists line by line textual differences between the two ver-
sions of every source file of a program. Thus this tool does
not provide much information about the semantics of the
modifications. patch does the opposite work by injecting
differences listed into the source of the application.

In a static update process, the contents of the patch is par-
tially validated by the compilation process. But this off-line
verification does not apply to a dynamic update (on-line).
From the original source code, Minerve is in charge of re-
trieving information about the modifications contained in
the patch. This additional information permits to verify the
dynamic applicability of the patch, and to produce an ex-
pressive dynamic patch that can be validated by the system
administrator.

In the rest of this section, we will present how Minerve ex-
tracts, transforms and validates a patch according to the
original source code of a program. In order to demonstrate
the feasibility of our approach, we reviewed security holes af-
fecting ANSI C applications running under the GNU Linux
operating system on an IA32 platform. It is also important
to note that Minerve does not verify the static correctness
of a patch but only validates its dynamic applicability.

3.1 Modification analysis
Minerve’s first task is to classify modifications contained in
a patch. As we focus on applications written in C, we enu-
merated all possible modifications that could be applied at

run-time. C is a typed, procedural language with side ef-
fects. We distinguish two kinds of types: simple types cor-
responding to entities that can be manipulated efficiently by
the processor, e.g. int, and complex types made up of other
types. A source patch can modify a program behavior in
two ways. First, by modifying the mechanisms it contains
(functions). Second, by changing type definitions of the data
it manipulates (variables). From a static point of view, this
distinction is unnecessary but it is essential to update ap-
plication on the fly since compiled code of function bodies
is usually kept in read only memory while data is not.

3.1.1 Possible modifications
Three kinds of modifications can occur: a patch can add, re-
move, or replace a function. Minerve treats the addition and
the removal of a function as if they were function replace-
ments. Indeed, adding a function in a running application is
useless if the patch does not add another function that use
it.

Replacing a function f by another function f ′ can possibly
modify the prototype of f . This case can be seen as the
addition of a new function f ′ while modifying all calls to
f . Furthermore, when a patch replaces an existing function
without changing its signature, the updating process has to
guarantee that the original function is not executing at the
time it is updated [7, 12]. In order to ensure this condition,
we rely on Arachne’ mechanisms presented in Section 4.

In order to ensure the coherency of the program, the replace-
ment of a function f by f ′ must be done atomically. For this
we rely on Arachne. Nevertheless this is not sufficient. In-
deed to ensure coherency of the application when replacing
a function, the new version f ′ should not read data writ-
ten directly or indirectly by the execution of f because in
certain cases this could lead to an incoherency. In order to
ensure this, we chose to examine statically the new function
f ′ to determine if it might use data produced by f . We use
an ad hoc source code parser to check that property.

3.1.2 Modifying data’s type definition
In this section we distinguish modifications made on basic
types from the ones made on complex types.

Two operations have to be executed on a simple type redef-
inition of a variable. First, updating the value hold by the
variable. Second, modifying the code that manipulates the
variable. When increasing the capacity of a variable with-
out changing its numerical type (eg: short → long int), no
conversion problem can occur as the new type can always
hold the current value. However, diminishing the capac-
ity of a variable (eg: long int → short), or modifying the
numerical type of the variable (eg: int → float), can only
be done if the current value can be contained in the new
type definition or if a conversion formula is provided. If it
is possible to transfer the current value of the variable, the
code manipulating it must be updated too. Indeed assembly
opcodes, registers, processor flags and exceptions triggered
may vary according to the size and type of operands to be
manipulated. Consequently, this modification may affect
surrounding instructions. In order to handle this situation
generally, our tool recompiles the entire function being mod-
ified. In certain cases this might not be sufficient. Indeed, as
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specified in the System V Application Binary Interface [14],
the responsibility of saving floating point registers belongs
to the calling function, and thus modifying a variable from
type int to float requires modifying the code of the calling
function. Nevertheless, this case is handled by Arachne and
thus modifications are always limited to the function that
accesses the modified variable.

A program’s behavior can also be altered by modifying a
variable of a complex type definition. In this paper, we
only present the addition of a new field in a structured type
as it is relevant to modifications that can be made (addi-
tion, deletion, replacement). At the processor level, alter-
ation of a structured type can modify alignment constraints
on variables of that type. Some assembly instructions can
have a different behavior and even not work at all when the
operand they manipulate does not respect these constraints
[9]. Thus, our updating process does not modify the base
program code which continues to manipulate the original
definition. Only the code added is aware of the new field
and thus is translated to access it via a hash table indexed
with the original variable’s address. This solution allows us
to ensure coherency of the base program without stopping
it, nor needing to update all the variable at once.

3.2 Patch auditing
There are two reasons for auditing patches: to ensure that
the vulnerability is really corrected, and to check that the
code added by the patch does not include a new vulner-
ability. It can also be necessary to adapt the patch to a
specific security policy. As an example, many specialists
advise inserting an alarm associated with an Intrusion De-
tection System (IDS) in addition to the patch, in order to
detect exploitation attempts [11]. The use of Arachne’s as-
pect language make it easy for the system administrator to
the add code triggering the IDS inside the patch.

Contrary to diff that gives very little information on the
modifications contained in a patch and that presents them in
a very low-level line-by-line manner, Minerve translates the
patch into Arachne’s aspect language. This more abstract
representation of the modifications lists all functions, vari-
ables and type definitions that have been altered and their
respective new version and thus eases the comprehension.

Arachne’s aspect language offers an efficient join point model
and high level constructs that allow to easily benefit from
aspect-oriented programming [4]. Nevertheless, the dynamic
patching of security violations does not make full usage of
the higher level constructs.

4. ARACHNE, DYNAMIC PATCH INJEC-
TION

In this Section, we present tools provided by Arachne that
allow compiling and injecting patches into a running appli-
cation.

4.1 Compilation and deployment
Arachne provides an aspect compiler and a run-time weaver.
The aspect compiler, acc, transforms aspect source code
into a native shared library. The run-time weaver, weave,
injects this library inside the application. In addition to

the verifications that are made by Minerve, acc ensures the
dynamic patch is syntactically correct. At injection time,
weave checks that references made to the application by the
patch exist, partially ensuring that the patch corresponds
to the right application version. Even if the patch com-
prises multiples aspects or rewriting points, the rewriting
strategies of Arachne ensure the coherency of the applica-
tion during the injection. Moreover, Arachne guarantes that
on failure of the weaving process, the application remains
unchanged.

4.2 Arachne inside
Arachne’s weaver is used via the weave command, it rewrites
application binary code at run-time in order to inject the
aspects. This section focus on the mechanisms provided by
Arachne, used by Minerve. A complete description of all of
Arachne’s mechanisms is available in previous publication
[13]. On a Pentium processor a function call is translated
into binary code as a single instruction, call, with an ad-
dress as operand. Arachne disassembles binary code in order
to find calls. To associate a function name with an address,
Arachne parses the application symbol table that has been
produced by the C compiler. At weaving time, Arachne
loads the aspect library in to the memory of the application
and rewrites previously found calls to redirect the control
path to the appropriate functions in the library. A similar
technique is used to rewrite accesses to variables in the heap.

Some considerations are problematic during the process we
just described. Indeed, the process must guarantee the co-
herency of the application during the weaving. Basically, no
added code should be executed before every aspect is fully
woven into the program. Moreover Arachne must overcome
memory isolation mechanisms and consider performance is-
sues. Arachne solves the coherency issue by the use of
locks and dynamically generated hooks that save and re-
store the program state. To circumvent the memory isola-
tion, Arachne uses debugging support to insert itself inside
the process’s memory space.

5. EVALUATION
In this section, we have evaluate of our framework. We have
applied our framework to all security advisories concerning
open source C softwares published by the CERT since 2002.
After a brief presentation of the CERT, we present our re-
sults over the whole test suite, and one complete example.

5.1 Test suite
CERT stands for ”Computer Emergency Response Team /
Coordination Center”. It was created in November 1988 af-
ter the appearance of the Morris worm. It aims at training
and warning about internet computing security. Its age and
its independence from software editors make the CERT an
international reference in security. Since 1988, it has col-
lected an accurate database of vulnerabilities reported in
softwares. We made our evaluation over all major vulnera-
bilities (CERT Advisories) reported in open source software
since 2002. This period counts a total of 67 advisories. 30%
of these concern Microsoft products, 20% other proprietary
products, 10% concern embedded softwares and finally 40%
open source softwares. In these last 14 advisories, we ne-
glected 2 because they were affecting unavailable versions of
the software.
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In the considered vulnerabilities, about half of them are
buffer overflows, 20% are format string bugs, 10% are double
free bugs, 5% are integer overflows, and finally the remaining
ones are combinations of the 4 previously cited. All these
bugs are mainly based on assertions made by the develop-
ers on the input that are not verified at execution. Thus
these vulnerabilities can be easily corrected by adding tests
on input data. We verified this when auditing the patches
provided by the developers for these security advisories. In-
deed 90% of the patches contain modifications of function
code without changing prototypes and only 10% modify type
definitions.

Our experiments show that our approach can be applied
successfully to all the security advisories considered.

5.2 Example
In this section, we present a full example from our test suite.
The vulnerability it concerns was published in June 2002
under the reference CA-2002-18 by the CERT. The software
affected is the communication server openSSH. An integer
overflow might be exploited in authentication functions of
the SSH2 protocol in versions from 2.3.1p1 to 3.3. It might
allow the execution of arbitrary code on the targeted host.

5.2.1 The source patch
The source patch provided by the openSSH development
team modifies two functions of sshd: input userauth info -

response and input userauth info response pam. The modifi-
cations only add tests on the parameter nresp. When the
parameter is invalid, the patch calls the function fatal to
terminate the program. As shown in listing 1, the patch
does not offer much information about the semantic of the
modification and useful information can only be obtained by
looking at the program source code.

5.2.2 The dynamic patch
Minerve transforms the source patch into a dynamic patch
that essentially contains a collection of aspects that are
meant to replace vulnerable functions by their safe version.
Minerve names the new and safe functions by adding the
suffix ” new” to their original name. As a function can be
called in sshd (as for any application) via a direct call or
via the use of a function pointer, it is necessary to produce
two aspects in order to replace any kind of call to the re-
placed function. The listing 2 shows this two aspects for the
original function input userauth info response.

The pointcut of the aspect ReplaceFunctionCall traps ev-
ery call made with a constant address to the old function
(line 2). The advice call the new version with the same pa-
rameters (line 3). Thus this aspect replaces every direct call
to the function with the call to its safe version. In a similar
way the second aspect, Replacepointer (line 5) traps every
read access to the address of input userauth info response

(line 6) and returns in place of it the address of the safe
version (line 7). Thus any future indirect call to input -

userauth info response will be replaced by its new version.

As shown in listing 2, patches produced by Minerve ease the
audit by describing modifications of the application in a lan-
guage close to C. Our experiments show that the framework

offers a significant reduction of the time spend to deploy
patches. Indeed, excluding network transfer time, Arachne
updates an application in less than 250µs. And because up-
dates are made in parallel on the entire network, the time
for applying the update is independent of the network size.

6. DISCUSSION AND RELATED WORK
We intended this work in order to evaluate whether Aspect
Oriented Programming in suitable for dynamic patching. It
is legitimate to wonder what is the benefit of AOP in this
field. We already pointed that during our experiments, Min-
erve did not make full use of Arachne’s aspect language con-
structs. There are two reasons for this. First, because it is a
complex task to analyze an application source code in order
to infer high level rules about the modifications made by
patches. Second, for most part, security patches are written
in emergency. Then modifications are often limited to a sin-
gle test where the vulnerability might appear, thus making
patches less crosscutting. Nevertheless, our experiment on
larger patches show an interesting potential for AOP.

To our knowledge, no other work provides both coherency
analysis and dynamic updating. Previous work has focused
on determining when in the execution flow an update may be
applied safely [7], without the ability to guarantee that such
a moment is reachable. In contrast to this, our approach
tries to determine the applicability of a patch independently
of the execution.

Dynamic patching also benefits from AOP because aspects
are far more comprehensive than patches, indeed, reason-
ing about the program execution is easier than on its code.
Also, AOP is more appropriate for dynamic patching than
binary rewriting APIs like Dyninst [1] or Vulcan [5]. First,
aspect code is far more intuitive to read than a program.
Second, when using binary rewriting APIs, the developer
is responsible to ensure the program won’t behave abnor-
mally whereas our dynamic weaver, Arachne, ensures that
modifications are made atomically.

7. FUTURE WORK
Our analysis of dynamic applicability of patches are for now
limited to simple cases, mainly due to source code parsing.
It is necessary to base our analysis on higher level represen-
tation of source code in order to avoid this limitation. Thus,
we plan to use the type propagation tool Lackwit [10].

For technical reasons our framework is limited to open source
C applications running on Linux, IA-32 architecture. Nev-
ertheless, as compiled aspects are independent of the wo-
ven program, there is no restrictions for software editors to
diffuse Arachne compiled patches to be applied on binary
distributed programs. This would permit dynamic patching
without needing the application’s source code. We also plan
to adapt our framework to integrate other languages and
platforms and to apply it to kernel code in the near future.

8. CONCLUSION
In this paper we have presented a novel approach for se-
curity updates based on a framework for dynamic software
updates. Our first tool Minerve determines whether a patch
can be deployed on the fly. The use of an aspect language
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authctxt ->postponed = 0; /* reset */

2 nresp = packet_get_int ();
+ if (nresp > 100)

4 + fatal("input_userauth_info_response : nresp too big  %u", nresp );
if (nresp > 0) {

6 response = xmalloc (nresp * sizeof (char *));
for (i = 0; i < nresp ; i++)

Listing 1: The source patch correcting the vulnerability CA-2002-18

ReplaceFunctionCall :
2 call(void input_userauth_info_response (int , u_int32_t , void *)) && args(type , seq , ctxt)

then input_userauth_info_response_new (type , seq , ctxt);
4

ReplacePointer :
6 readGlobal (void* ( input_userauth_info_response )(int , u_int32_t , void *))

then return &input_userauth_info_response_new ;

Listing 2: The aspect patch correcting the vulnerability CA-2002-18

allows administrators to validate more rapidly patches. Our
second tool, Arachne applies patches dynamically without
data loses and makes security updates effective immediately.
Moreover our framework can easily be integrated in the
static update process as it accepts standard patches pub-
lished by software developers.

Despite the potential existence of patches that might not
be translated in dynamically injectable aspects, our frame-
work is efficient enough to be applied successfully on all the
security advisories published by the CERT since 2002.

9. ACKNOWLEDGEMENTS
This work is supported by a regional grant from the Pays de
la Loire, France. The authors would like to thank Thomas
Fritz for his valuable comments.

10. REFERENCES
[1] B. Buck and J. K. Hollingsworth. An API for runtime

code patching. The International Journal of High

Performance Computing Applications, 14(4):317–329,
Winter 2000.

[2] CERT/CC. Incident and vulnerability trends, May
2003.
http://www.cert.org/present/cert-overview-trends/.

[3] Devoteam. European study on computer network
security. Technical report, XP Conseil, 2004.
http://www.devoteam.com.

[4] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud,
M. Ségura-Devillechaise, and M. Südholt. An
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Abstract 
 

Among current architectures, Service Oriented 

Architectures aim to easily develop more adaptable 

Information Systems. Most often, Web Service is the 

fitted technical solution which provides the required 

loose coupling to achieve such architectures. However 

there is still much to be done in order to obtain a 

genuinely flawless Web Service, and current market 

implementations still do not provide adaptable Web 

Service behavior depending on the service contract. 

Therefore, our approach considers Aspect Oriented 

Programming (AOP) as a new design solution for Web 

Services. Based on both Web Service Description 

Language (WSDL) and Policy contracts, this solution 

aims to allow better flexibility on both the client and 

server side. In this paper, we aim to develop an 

automaton to analyze blood plasma; Web Services are 

used for software part of the automaton. Faced by the 

lacks of Web Services, we propose a concrete solution 

based on aspects. 
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1. INTRODUCTION 
 

Companies have to communicate with distant IS, 
such as, suppliers, partners … they use to exchange 
data through workflows in heterogeneous contexts. The 
company for which we are working aims to develop 
automatons to analyze blood plasma, which means 
patient data information has to be highly reliable and 
correct. We are involved in the architecture definition 
and implementation of one of its automaton. In order to 
support consequent evolution and successive 
reutilization of the machines, this company decided to 
define and promote flexible and adaptable architecture 
according to the new emerging requirements. In this 

context, Web Service technology is asked to handle the 
same features as components from the DCOM, J2EE or 
CORBA worlds already handle. These features, such as 
security, reliability, or transactional mechanisms, can 
be considered as non-functional aspects. Obviously 
these aspects are crucial for business purposes and one 
cannot build any genuine Information System (IS) 
without consideration for them. However, managing 
these aspects is likely to involve a great loss in 
interoperability and flexibility. This effect has already 
been experienced with various middleware 
technologies. Mostly, middleware delegates these tasks 
to the underlying platform, hiding these advanced 
mechanisms from the developer, and then establishing 
a solid bond between the application and the platform. 
Thus, a great deal of work is required to make Web 
Service fully adapted for the industry. Especially, 
mechanisms in charge of handling non-functional tasks 
must preserve seamless interoperability.  

In this article, we introduce the industrial context 
and technical choices for applications integration with 
Web Services. From the limitations of this solution, we 
propose a solution based on aspects and we explain 
how to apply this solution with a concrete 
implementation. 
 

2. INDUSTRIAL CONTEXT 
 

2.1. Description of the Automaton 
Figure 1 shows some high level functional domains 

supported by the automaton, including software and 
firmware: arrows represent the communication flow. 
Application displays specific Human Machine Interface 
(HMI) according to profile and maturity level of the 
user. Access is allowed or denied according to user 
profile and protected from unauthenticated usage. 
However, it is possible to ask for analysis and to 
receive result with different media as mobile phone, 
PDA, and Web with specific passwords reserved for 
laboratory managers and doctors. Non functional 
services, such as security, reliability, persistency, 
archiving, multi tasking, and supervision, have to be 
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defined and implemented. Automaton supports some 
business functions as patient data management and 
used consumables for plasma blood analysis. Using 
automaton involves data generation that is analyzed for 
preventive maintenance. Communication between 
software and firmware with specific protocol is 
implemented by using CAN bus [14]. Automaton 
allows handling of tubes containing the blood plasma. 
Automaton arms take the blood plasma and use 
reagents to test coagulation. With this system, blood 
disorders, such as hemophilia, can be detected. 

 
Figure 1: Functional Architecture 

 
Communications between domains can be supported 

by Web services. Moreover, it might be necessary to 
exchange patient data and results between different 
hospitals or other Information Systems (IS). 
Infrastructures might be based on heterogeneous 
technologies. For instance, a laboratory uses IBM J2EE 
technologies and hospital uses Microsoft technologies. 
Thus, we invoke Web Services developed by different 
platforms supporting different technologies. 

 

 
Figure 2: Technical Architecture 

 

2.2. Using Web Services 
DCOM, J2EE or CORBA don't scale to the Internet: 
their reliance on tightly coupling the consumer of the 
service to the service itself implies a homogeneous 
infrastructure. Web services use industry standard 
protocols to guaranty interoperability between IS. In 
order to provide the missing business features required 
to leverage Web Service technology, a first set of tools 
has emerged. Built on top of .NET and J2EE platforms, 
Microsoft and IBM have implemented their own 
toolkits based on the Web Service specifications. Web 
Services Enhancements for Microsoft .NET (WSE) [7] 
is a supported add-on to the Microsoft .NET 
framework providing developers the latest advanced 
Web Services capabilities such as security, security 
policy, addressing, routing, and attachments.  

The Emerging Technologies Toolkit (ETTK) [8] is 
a software development kit for designing, developing, 
and executing emerging autonomic and Web Service 
technologies. It provides an environment in which to 
run emerging technology examples that showcase 
recently announced specifications and prototypes from 
IBM's emerging technology development and research 
teams. Based on Axis [9], ETTK processes messages 
through handlers in chain. One particular chain enables 
developers to insert their own message managers, such 
as security handlers. A MessageContext object is 
included in outgoing messages and is extracted from 
incoming messages. The handlers in charge of the 
transformations are specified in a Web Service 
Deployment Descriptor (WSDD) file. These toolkits 
look quite similar in the sense that they operate and 
compute messages. SOAP Engines are composed of 
filters (SOAP handlers) whose main role is to perform 
transformations on the SOAP message [6], depending 
on parameters included in the header. The SOAP 
headers are in charge of delivering the context of the 
message (authentication tokens, reliable messaging 
properties, etc.). 

Our technical approach to current Web Service 
solutions enabled us to notice two major facts which 
are at the root of Web Service’s lack of flexibility. 
First, there is no dynamic mechanism to bind policies 
and Web Service handlers. Secondly, there is no clean 
separation of concerns [5] between the functional and 
the non-functional code as well as between SOAP logic 
and non-functional logic within handlers, as figure 3 
shows. Once the client or service is coded and the 
handlers are deployed, the Web Service cannot handle 
new features and, because the different logics are 
tangled up, it is not easy for another developer to reuse 
the application in a different context.  

laboratory hospital 

Owner
31



 

3. USING ASPECTS 
 

3.1. Discovering aspects 

Consequently, an appropriate way to deal with 
these crosscutting concerns [2] would be to use 
different units of modularization to encapsulate these 
logics [4]. Moreover, if these units of modularization 
could be managed by a dynamic mechanism, then the 
whole system would be able to dynamically reconfigure 
itself depending on the policies [1]. 

SOAP logic Business logic

SOAP Engine

string valueX =

message.Header.GetE lementsByTag

Name("valueX ")[0].InnerText;

      if (IsL im itReached(valueX))

      {

         V ia ws1 = new Via(new

Uri("http://localhost/ws1.asmx"));

         outgoingPath.Fwd.Insert(0,

ws1);

ReqContext.Security.E lements.Add

(new EncryptedData(tok));

X509SecurityToken x509token =

RetrieveX509C lientToken();

ReqContext.Security.Tokens.Add(x

509token);

ReqContext.Security.E lements.Add

(new Signature(x509token));

service.CallInventory(amount,

item );

Non functional

aspects handling

logic

Client or Service

    

Figure 3: Tangled Logic within SOAP Services 

These requirements lead us to consider Aspects 
Oriented Programming (AOP), in the first step, as an 
answer to Web Services reusability issues [3]. AOP is 
one of the most promising solutions to the problem of 
creating clean, well-encapsulated objects without 
extraneous functionality. It allows the separation of 
crosscutting concerns into single units called aspects, 
which are modular units of crosscutting 
implementation. With AOP, each aspect is expressed in 
a separate and natural form, and can be dynamically 
combined together by a weaver. As a result, AOP 
widely contributes to increased reusability of the code 
and provides mechanisms to dynamically weave 
aspects [4]. 

Considering Web Services, non-functional aspects 
handling logic should be encapsulated within multiple 
aspects. Each aspect would be in charge of certain 
features, such as security, and would deal directly with 
well-defined objects like Kerberos tokens (security) or 
Shipping forms (reliable messaging). Pushing the non 
functional handling logic inside aspects means that 
handler’s role has to be redefined, as they will only 
contain SOAP logic then. The idea is to replace the 
multiple specific handlers, which used to process 
SOAP messages depending on their own 
implementations, by a global handler whose role will 
be restrained to extracting non-functional data 

contained in incoming messages, and pushing it inside 
outgoing messages. 

3.2. Weaving Process 
At this point, we need to define where, when and 

how the aspects should be weaved. Let us answer these 
questions by considering the different opportunities for 
each of them. First, aspects could be weaved to the 
global handler, to the stub or to the service 
implementation itself. In fact, considering the global 
message path and process, choosing any of these 
entities does not really influence the mechanism. 
However, we found it more convenient to weave 
aspects to the stub since it provides a natural meta 
object to focus on the service itself [15]. Secondly, 
there are multiple choices for when to weave aspects. It 
could occur during compile time, deployment time, 
load time or run time. If the weaving were to happen at 
compile time or deployment time, it would not be 
possible to handle policy changes dynamically. 
Conversely, there is no need to weave aspects at 
runtime since the policy document will most likely not 
be changed after the service starts running. Thus, the 
ideal solution is to weave aspects when the service is 
loaded to enable one single yet sufficient analysis of 
the policies document for each new instance [11]. 
Thirdly, the weaver should be an application capable of 
reading the policy document, interpreting the policies, 
selecting the relevant aspects and finally mixing them 
with the plain stub, as can be seen on figure 4.  

Transaction

Aspect

Security

Aspect

Messaging

Aspect

Policies

Stub

SOAP Service
Enhanced

Stub

Service or

Client

Policy

Engine

 

Figure 4. Aspects weaving at load time. 

Transmitting non-functional data to aspects weaved to 
the stub at load time is one possible solution to achieve 
genuinely flexible Web Services. This mechanism 
allows Web Services to be reused more easily since 
each non-functional aspect is detached from both the 
service implementation and the handler. The Policy 
Engine inserts these aspects depending on the service 
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contract requirements [16][7], which means that 
interoperability is preserved if, for instance, 
requirements from different clients vary. 

We have seen how AOP can help to gain 
flexibility through a cleaner separation of logics and 
which mechanism can help to provide policy awareness 
among Web Services. We shall now present our 
concrete implementation of these concepts. 

 

4. A CONCRETE SOLUTION 
 

4.1. Structure of Axis 
In our solution, we take advantage of multiple 

open source solutions already available for Java 
therefore we modify and assemble them easily. This 
way, we can start with a ready-to-use platform that we 
need to complete in order to obtain flexible Web 
Services. Thus, the Web Server and the SOAP Engine 
are constituted by the famous open source duo Tomcat-
Axis. Basically, Axis plugs into the Tomcat Servlet 
Engine, meaning that it can be considered the same as 
any other Web Application. Web Services are hosted 
and managed by Axis in a transparent way for Tomcat 
as shown in figure 5. Axis is based on the concept of a 
chained message. The MessageContext object is a 
wrapper object for the request and the responses 
message and for contextual information about process, 
request, response, etc. In figure 5, Request and 
Response are handlers that manipulate the 
MessageContext.  

Web Service

.class File

Connector

Container

AxisServlet

AxisEngine
Message

Context

Request

Response

SOAP Service

Tomcat

Engine

AXIS

 

Figure 5. Axis Server-side Architecture. 

Since these handlers can easily manipulate this 
object, it is quite natural to select these handlers to act 
like basic SOAP logic handler. For instance, if an 
incoming SOAP header contains data that says the 
body message is encrypted, then the Request handler 
needs to decrypt the body. But the genuine non-
functional logic is hosted by the aspects, and non-
functional data used by these aspects is transmitted by 

the provider. The provider is another handler that, 
when invoked, calls the stub corresponding to the 
service invoked. Once processed and transformed into 
appropriate objects, these data will be passed to the 
stub weaved with aspects. 

4.2. Stub Bytecode Modifications 
Let us now see how aspects are weaved to the 

stub. First, we need to understand how class loading 
works in Tomcat. Indeed, if we can modify the 
bytecode of the stub object when it is loaded into the 
Java Virtual Machine (JVM), then it will be possible to 
weave the aspects at load time. Tomcat uses multiple 
class loaders, which are java objects aiming to load 
resources (class or jar files). With Java 2, class loaders 
follow a delegation model, which means that if a class 
is asked to be loaded by a class loader, then this class 
loader will first ask its parent class loader to do so. If it 
cannot load the class, the initial class loader will search 
inside its own resources. All Tomcat class loaders 
follow this rule except Web Application class loaders, 
which are responsible for the loading of each class of 
the Web Application they are in charge of. 
Consequently, the idea is to modify the class loader in 
charge of Axis Web Application so we can reach any 
Web Service stub anytime it is loaded. To obtain such a 
class loader, we just need to reuse the code of the Axis 
regular WebAppClassLoader and specify that Tomcat 
has to use the ModifiedClassLoader when it loads Axis 
Web application, via the server.xml configuration file. 

<Context docBase="C:\axis-1_1\webapps\axis" 
path="/axis"> 

    <Loader loaderClass = 
"org.apache.catalina.loader.ModifiedClassLoader"/> 

</Context>             

The next step is to use a tool which allows 
both introspection and reflection - the former to inspect 
the stub code when it is loaded and the latter to achieve 
the weaving of aspects. One particularly convenient 
answer to these requests is brought by Javassist [1]. 
Javassist is a class library for enabling structural 
reflection in Java, which is performed by bytecode 
transformation at compile time or load time. In order to 
modify bytecode at load time, Javassist performs 
structural reflection by translating alterations of 
structural reflection into equivalent bytecode 
transformation of the initial class file. After the 
transformation, the modified class file is loaded into 
the JVM by a special class loader. To bring this 
mechanism into our solution, the ModifiedClassLoader 
must adhere to three rules. First, it must encapsulate a 
Javassist.ClassPool object, which will act as a 
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container for objects containing class files to be loaded. 
These objects derive from the CtClass class which is a 
convenient handle for dealing with class files (methods 
or fields adds or renames, etc.). Next, when the 
ModifiedClassLoader constructor is called, this 
ClassPool object must be instantiated with the Web 
Application class path so it can get the scope of the 
classes it can handle. Finally, whenever a class is to be 
loaded, the findClassInternal (String name) method is 
called and must contain the transformation logic which 
will affect the stub object anytime it is loaded. The 
code below shows these modifications inside of what 
used to be the regular WebAppClassLoader class. 

 
public class ModifiedClassLoader extends URLClassLoader { 

   protected ClassPool pool = null; 

   public WebappClassLoader() { 

      pool = ClassPool.getDefault(); 

      pool.insertClassPath(new LoaderClassPath(this)); 

   ...} 

   /* Method called whenever a class is to be loaded */ 

   protected Class findClassInternal(String name) { 

      ResourceEntry entry = findResourceInternal(name, classPath); 

      Class clazz = entry.loadedClass; 

      /* Javassist loader is invoked to get an easily modifiable CtClass 
*/ 

      CtClass cc = pool.get(name); 

      /* Class modifications according to the PolicyEngine */ 

      if(isStubClass("name")) 

         PolicyEngine.Process(cc); 

      byte[] b = cc.toBytecode(); 

      clazz = defineClass(name, b, 0, b.length); 

      ... 

      return clazz; 

   }… 

4.3. Policy Engine as a Weaver 
Eventually, we shall define how the Policy 

Engine works. As explained before, Policies constitute 
the Service Contract and, thus, describe the 
requirements to establish communication. For instance, 
the <wsse:SecurityToken> element, as shown below, is 
used to describe which security tokens are required and 
accepted by a Web service. It can also be used to 
express which security tokens are included when the 
service replies. 

<SecurityToken wsp:Preference="..." wsp:Usage="..." > 

   <TokenType>...</TokenType> 

   <TokenIssuer>...</TokenIssuer> 

   <Claims>...Token type-specific claims...</Claims> 

   ...   (TokenType-specific details) 

</SecurityToken> 

Once the PolicyEngine.Process(…) method is 
called, the engine gets a CtClass object containing the 
code of the stub. Because the name of this class is 
related to the name of the service itself, it becomes easy 
for the Policy Engine to locate the Policy contract and 
thus it can access the policy’s requests. The next step 
for the engine is to fulfill each of these requests by 
inserting the appropriate aspects within the methods of 
the stub. This mechanism is almost equivalent for both 
client and service side. Eventually, the Policy Engine 
adds fields to the stub so it can obtain and set the non-
functional data that the provider manages. At this point, 
the new “SOAP messages process” is effective and can 
be used to dynamically handle each of the functional 
aspects declared in the Policy document. Figure 7 
below illustrates the global mechanism at runtime. 
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Figure 7. Functional, non-functional and SOAP logics. 

 

5. RELATED WORKS 
 
The Web Service Management Layer (WSML) 

[10] is an aspect based platform for Web Services 
allowing a more loose coupling between the client and 
server sides. The idea of this technology is to transfer 
the Web Service related code from the client code to 
this new management layer. The advantages are the 
dynamic adaptation of the client to find the most fitted 
Web Service, and it also deals with the non functional 
properties like Traffic Optimization, Billing 
Management, Accounting, Security, and Transaction. 
This work looks very similar to the solution we provide 
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in the sense that it aims to gather the scattered code in 
aspects. However, our solution especially aims to target 
the norms of the Web Service Architecture, which are 
described in the policies. The Web Services Mediator 
(WSM) [11] is a middleware layer that sits above 
standard Web Services technologies such as Simple 
Object Access Protocol (SOAP) Servers. It aims to 
decouple an application from its consumed Web 
Service, and to isolate the application’s characteristics 
(e.g., reliability, scalability, latency etc). Aspect-
Oriented Component Engineering (AOCE) [12] has 
been developed to capture the cross-cutting concerns, 
such as transaction, co-ordination and security. To 
achieve this solution, the WSDL grammar has been 
extended by enriching it with aspect-oriented features 
so that it becomes better characterized and categorized. 
However, there are no universally accepted standards 
of the terminologies and the notations used in AOCE. 
On the whole, AOCE and our work seem to offer very 
similar approaches but, although just using the policies 
to select aspects might be restrictive, our strategy does 
not require developers to understand any vendor 
specific standard. The Web Service Description 
Framework (WSDF) [13] consists of a suite of tools for 
the semantic annotation and invocation of Web 
Services, by mixing both Web Service and Semantic 
Web communities. Instead of establishing a hard wired 
connection between the client and the service, by 
specifying the Web Services through addresses, WSDF 
enables the developer to formally specify a service 
using rules and ontological terms. 
 

6. CONCLUSION 
Service Oriented Architectures require loose 

coupling to access the services which will most likely 
be implemented with emerging Web Service 
technology. Using current SOAP toolkits, we noticed 
that interoperability between client and Web Service is 
damaged by non-functional aspects required by 
businesses (such as security, transaction, reliable 
messaging, etc). In fact, they require establishing a 
strong coupling between the service logic, the non-
functional handling logic, and the SOAP logic. On top 
of this, there is no dynamic adaptation mechanism to 
bind the service contract requirements to the Web 
Service and client abilities. These facts significantly 
reduce Web Service flexibility and affect the loose 
coupling ability offered by Services. The solution that 
we are providing aims to offer a dynamic mechanism to 
compute the service contract on the fly, enabling Web 
Services to become fully aware of the business 
requirements. The main principle consists of using 
computational reflection [15] as a means to achieve 

separation of concerns and dynamic adaptability. Our 
new SOAP Service design provides a cleaner 
separation between the multiple logics weaved at load 
time. After analyzing the policies requirements, a 
Policy Engine is in charge of selecting the appropriate 
aspects to handle business mechanism like security, 
transactions, etc. This mechanism allows Services to 
gain in loose coupling. 

Future works will consist of widening the 
application scope of this solution and validating the 
Web Services behavior in concrete Service Oriented 
Architectures. The main tasks will be to implement a 
library to handle the multiple WS-* norms and then 
develop a policies fully compliant Policy Engine. 
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ABSTRACT
Aspect-orientation enables an approach where tangled code
can be addressed in a modular fashion. However, the design
of interworking between object-oriented baseline architec-
ture and aspects attached on top of it is an issue, which has
not been solved conclusively. For industrial-scale use, guide-
lines on what to implement with objects and what with as-
pects should be derived. In this paper, we introduce a way
to reflect the use of aspect-orientation to production test-
ing software of mobile systems. Such piece of infrastructure
software is used to smoke test the proper functionality of a
manufactured device. The selection of suitable implementa-
tion technique is based on variance of devices to be tested,
with aspects used as means for increased flexibility.

Keywords
Production testing, variability, aspects

1. INTRODUCTION
Aspect-oriented approaches provide facilities for sophisti-
cated dealing with tangled and cross-cutting issues in pro-
grams [2]. With aspects, it is possible to weave new oper-
ations into already existing systems, thus creating new be-
haviors. Moreover, it is possible to override methods, thus
manipulating the behaviors that already existed.

With great power comes great responsibility, however. The
use of aspect-oriented features should therefore be carefully
designed to fit the overall system, and ad-hoc manipulation
of behaviors should be avoided especially in industrial-scale
systems. This calls for an option to foresee functionalities
that will benefit the most from aspect-oriented techniques,
and focus the use of aspects to those areas. Unfortunately
case studies on the identification of properties that poten-
tially result in tangled or scattered code in a certain problem
domain have not been widely available. However, under-

standing the mapping between the problem domain and its
solution domain, which includes both conventional objects
as well as aspects, forms a key challenge for industrial-scale
use.

In this paper, we address domain-specific identification of
types of properties that lend themselves to aspect-oriented
methodology. The domain we will use as an example is
that of production testing of a family of mobile devices,
where common and device specific features form different
categories of requirements that can be used as the basis
for partitioning between object-oriented and aspect-oriented
techniques. The way we approach the problem is that the
common parts are included in the object-oriented base im-
plementation, and the more device-specific ones are then
woven into that implementation as aspects.

The rest of this paper is structured as follows. Section 2
gives an overview of production testing of mobile devices.
The section also introduces a production-testing framework
for Symbian OS based mobile devices. Section 3 discusses
how we relate the problem domain and its aspect-oriented
solution domain in this particular case. Section 4 provides
an evaluation of aspect-orientation in this setting, and Sec-
tion 5 concludes the paper with some final remarks.

2. PRODUCTION TESTING
Production testing is a verification process utilized in the
product assembly to measure production line correctness
and efficiency. The purpose is to evaluate devices’ assem-
bly correctness by gathering information on the sources of
faults and statistics on how many errors are generated with
certain volumes. In other words, production testing is the
process of validating that a piece of manufactured hardware
functions correctly. It is not intended to be a test for the
full functionality of the device or product line, but a test for
correct composition of device’s components. With volumes
typical to modern mobile terminals, the production testing
involves software support that must be increasingly sophis-
ticated, versatile, cost-effective, and adapt to great variety
of different products. In software the most successful way of
managing such variance is to use product families [1].

2.1 Overview
Individual design of all software for all mobile device con-
figurations results in an overkill for software development.
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Figure 1: Production-testing framework.

Therefore, product families have been established to ease
the development of mobile devices. In such families, im-
plementations are derived by reusing already implemented
components, and only product specific variance is handled
with product specific additions or modifications. In this pa-
per, we will focus on a product family where Symbian OS [3]
is used as the common implementation framework. Symbian
OS is an operating system for mobile devices, which includes
context-switching kernel, servers that manage devices’ re-
sources, and rich middleware for developing applications on
top of the operating system.

The structure of the production-testing framework in Sym-
bian environment follows the lines of Figure 1 and consists
of three subsystems: user interface, server and test proce-
dures. Test procedure components (Test 1, Test 2, etc.)
implement the actual test functionalities and together form
the test procedures subsystem. These components form the
system’s core assets by producing functionality for basic test
cases. Furthermore, adding specializations to these compo-
nents produces different product variants hence dedicating
them for certain specific hardware, functionality, or system
needs. In other words, the lowest level of abstraction created
for production testing purposes is composed of test proce-
dure components that only depend on the operating system
and used hardware. As a convenience mechanism for exe-
cuting the test cases, we have implemented a testing server,
which is responsible for invoking and managing the tests.
This server subsystem implements the request-handling core
and generic parts of the test cases, which are abstract test
procedure manifestations as test proxies. Finally, a user in-
terface is provided that can be used for executing the test
cases. The user can be a human user or a robot that is able
to recognize patterns on the user interface, for instance. The
user interface subsystem implements the communication be-
tween the user and the production-testing system.

2.2 Variability management
From the viewpoint of production testing, the most impor-
tant pieces of hardware are Camera, Bluetooth, Display and
Keyboard. In addition, also more sophisticated pieces of
equipment can be considered, like WLAN for instance. The
test software on the target is then composed of components

for testing the different hardware and device driver versions,
which are specific to actual hardware. When composing the
components, one must ensure that concerns related to a cer-
tain piece of hardware are taken into account in relevant
software components as well. For instance, more advanced
versions of the camera hardware and the associated driver,
allow higher resolution than the basic ones, which needs to
be taken into consideration while testing the particular con-
figuration. Since the different versions can provide different
functional and non-functional properties, the testing soft-
ware must be adapted to the different configurations. For
example, the execution of a test case can involve compo-
nents for testing display version 1.2, Bluetooth version 2.1
and keyboard version 5.5. The particular display version
may suggest using a higher resolution pictures as test data
than previous versions, for instance. To further complicate
matters, the composition of hardware is not fixed. All the
hardware configurations consist of a keyboard and a color
display. However, some configurations also include a cam-
era or Bluetooth, or both. Then, when testing a Symbian
OS device with a camera but without Bluetooth, for in-
stance, Bluetooth test procedure components should be left
out from the tester software.

To manage the variability inherent in the product line, the
production testing software is assembled from components
pertaining to different layers as follows. Ideally, the ba-
sic functionality associated with testing is implemented in
the general testing components that only depend on the
Symbian OS or certain simple, common test functionality
of generic hardware. However, to test the compatibility of
different hardware variants, more specialized test procedure
components must be used. Moreover, to cover the particu-
lar hardware and driver versions, suitable components must
be selected for accessing their special features. Thus, the
test software is assembled from components, some of which
provide more general and others more specific functionality
and data for executing the tests.

3. APPLYING ASPECT-ORIENTED TECH-
NIQUES TO PRODUCTION TESTING

In the following we assess the possibilities of applying aspect-
oriented techniques to production-testing by identifying the
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most important advantages of the technique in this problem
domain.

3.1 Identifying tangling
Strive for high adaptability and support for greater vari-
ability implies more complex implementations and a large
amount of different product configurations. Attempts to
group such varying issues and their implementations into
optimized components or objects using conventional tech-
niques make the code hard to understand and to main-
tain. This leads to heavily loaded configuration and large
amounts of redundant or extra code, and complicates the
build system. Thus, time and effort are lost in performing
re-engineering tasks required to solve emerging problems.
Hence, for industrial-scale systems, such as production-
testing software, this kind of tangled code should be avoided
in order to keep the implementation cost-effective, easily
adaptable, maintainable, scalable, and traceable.

Code tangling is evident in test features with long historical
background. The need for maintaining backwards compat-
ibility causes the implementation to be unable to get rid
of old features, whereas the system cannot be fully opti-
mized for future needs due to the lack of foresight. After
few generations the test procedure support has cluttered
and complicated the original simple implementation with
new sub-procedures and specializations. As an example con-
sider testing a simple low-resolution camera with fairly small
photo size versus a mega-pixel camera with an accessory
flashlight. In this case the first generation of production-
testing software had fairly simple testing tasks to perform,
perhaps nothing else but a simple interface self-test. How-
ever, when the camera is changed the whole testing func-
tionality is extended, not only the interface to the camera.
In addition to new requirements regarding the testing func-
tionality, also some tracing, monitoring or other extra tasks
may have been added. While the test cases still remain the
same, the test procedure becomes heavily tangled piece of
code.

Another typical source of tangling code is any additional
code that implements features not directly related to test-
ing but still required for all or almost all common or special-
ized implementations. These are features such as debugging,
monitoring or other statistical instrumentation, and special-
ized initializations. Although the original test procedure
did not require any of these features, apart from specialized
products and certainly should be excluded in software in
use in mass production, they provide useful tools for soft-
ware and hardware development, research, and manufactur-
ing. Hence, they are typically instrumented into code using
precompiler macros, templates, or other relatively primitive
techniques.

In object-oriented variation techniques, such as inheritance
and aggregation, the amount of required extra code for
proper adaptability could be large. Although small inheri-
tance trees and simple features require only a small amount
of additional code, the amount expands rapidly when in-
troducing test features targeted for not only one target but
for a wide variety of different, specialized hardware vari-
ants. Redundant code required for maintaining such in-
heritance trees and objects is exhaustive after few gener-

ations and hardware variants. Hence, the conserved derived
code segments should provide actual additional value to the
implementation instead of gratuitous repetition. Further-
more, these overloaded implementations easily degrade per-
formance. Hence, the variation mechanism should also pro-
mote light-weighted implementations, which require as little
as possible extra instrumentation.

Intuitively, weaving the aspects into code only after prepro-
cessing, or pre-compiling, does not add complexity to the
original implementation. However, assigning the variation
task to aspects does only move the problem into another
place. While the inheritance trees are traceable, the aspects
and their relationships, evolution and dependencies require
special tools for this. Hence, the amount of variation imple-
mented with certain aspects and grouping the implementa-
tions into manageable segments is the key asset in avoiding
tangling with at least tolerable performance lost.

3.2 Partitioning to conventional and aspect-
oriented implementation

The Symbian OS provides more abstract interfaces on upper
and more specialized on lower layers. Hence, Symbian OS
components and application layers provide generic services
while the hardware dependent implementations focus on the
variation and specializations. In order to manage this lay-
ered stucture in implementation a distinction between con-
ventional and aspect-oriented implementation is required.
Separating features and deciding which to implement as as-
pects and which using conventional techniques is, however,
a difficult task. On the one hand, the amount of required
extra implementation should be minimized. On the other
hand, the benefits from introducing aspects to the system
should be carefully analyzed while there are no guidelines or
history data to support the decisions.

We propose a solution where aspects instrument product
level specializations into the common assets and hence, pro-
vide linking time binding into the system. Furthermore,
the common product specific and architecture and system
level test functionalities comply with conventional object-
oriented component hierarchy. However, certain common-
alities, such as tracing and debugging support, should be
instrumented as common core aspects and hence, optional
for all implementations. Thus, we identify two groups
of aspects: test specialization aspects and general-purpose
core aspects. The specialization aspects embody product-
level functionalities and are instrumented into the lowest,
hardware related abstraction level. Secondly, the common
general-purpose aspects provide product-level instrumenta-
tion of optional system level features.

In this solution we divided the implementation on the ba-
sis of generality: Special features were to be implemented
using aspect-oriented techniques. These are all special,
strictly product-specific features for different hardware vari-
ants clearly adding special dedicated implementations rele-
vant to only certain targets and products. On the contrary,
however, the more common the feature is to all products,
it does not really matter whether it is implemented as part
of the conventional implementation or as a common aspect.
The latter case would benefit from smaller implementation
effort but suffer from lack of maintainability. Hence, com-
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Figure 2: An aspect capturing specialization concern in production-testing framework.

mon aspects are proposed to include only auxiliary concerns
and dismiss changes to core implementation structures and
test procedures.

3.3 Camera example
We demonstrate the applicability of aspect-orientation in
production-testing domain with a simple example of an
imaginary camera specialization. In this example, an ex-
traordinary and imaginary advanced mega-pixel camera
with accessory flashlight replaces a basic VGA-resolution
camera in a certain product in our product family. Since
this unique hardware setup is certainly a one-shot solution,
it is not appropriate to extend the framework of the prod-
uct family. Evidently, changes in the camera hardware di-
rectly affect the camera device driver and in addition to
that, require also changes to the production-line’s test cases.
New test procedure is needed for accessory flashlight and
camera features and the old camera tests should be varied
to take into account the increased resolution capabilities.
Hence, enhanced camera hardware has an indirect effect on
the production-testing software, which has to support these
new test cases and algorithms by providing required testing
procedures. Hence, camera related specialization concerns
affect four different software components, which are all lo-
cated on different levels of abstraction: the user interface,
request handler, related test procedure component, and the
device driver. Components requiring changes compared to
the initial system illustrated in Figure 1 are illustrated in
Figure 2 as grey stars.

From the figure it is apparent that the required specializa-
tion cuts across the whole infrastructure and is likely to be
difficult to maintain using conventional techniques. In this
case, that is how to comply with the extraordinary setup. In
practice this could involve new initialization values, adapta-
tion to new driver interface, and, for example, introduce new
algorithms. With conventional techniques, such as object-
orientation, this would entail inherited specialization class
with certain functionalities enhanced, removed or added.
Furthermore, a system level parameter for variation must
have been created in order to cause related changes also in
the server and the user interface level, which is likely to
bind the implementation of each abstraction level together.

Hence, a dependency is created not only between the hard-
ware variants but also between the subsystem variants on
each abstraction level. These modifications would be toler-
able and manageable if parameterization is commonly used
to select between variants. However, since this enhancement
is certainly unique in nature, a conventional approach would
stress the system adaptability in an unnecessary heavy man-
ner.

However, the crosscutting nature of this specialization con-
cern makes it an attractive choice for aspects that group
the required implementation into a nice little feature to be
included only in the specialized products. These aspects,
which are illustrated in Figure 2 as a bold black outline,
would then implement required changes to user interface,
request handler, testing component, and device driver with-
out intruding the implementation of the original system.
Hence, the actual impact of the special hardware is neg-
ligible to the framework and the example thus demonstrates
aspect-orientation as a sophisticated approach of incorpo-
rating excessive temporary fixes.

4. EVALUATION
In order to gather insight into the applicability of aspects
to production-testing system, we assessed the technique
against the most important qualities for such system. These
include system’s adaptability, variability, reliability and ro-
bustness, and performance. In addition, major concerns are
the traceability and maintainability of the implementation.

Since the production-testing system is highly target-oriented
and should adapt easily to a wide variety of different hard-
ware environments, the system’s adaptability and variabil-
ity are the most important qualities. We consider that by
carefully selecting the assets to implement as aspects could
extend the system’s adaptability with still moderate effort.
A convincing distinction between the utilization of this tech-
nique and conventional ones is fairly dependent on the scope
of covered concerns. While the technique is very attractive
for low-level extensions, it seems to lack potential to provide
foundation for multiform, large-scale implementations.

Including aspects in systems with lots of conventional imple-
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mentations has drawbacks in maintenance and traceability.
Designers can find it difficult to follow whether the imple-
mentation is in aspects or in the conventional part. As the
objects and aspects have no clear common binding to fea-
tures, following the implementation and execution flow be-
comes more complex and difficult to manage. Aspects can be
considered as a good solution when the instrumented aspect
code is small in nature. In other words, aspects are used to
produce only common functionalities, for example tracing,
and do not affect the internal operation of the functions.
That is, aspects do not disturb the conventional develop-
ment. However, these deficiencies may be caused by the
immaturity of the technique and hence reflect designers’ re-
sistance for changes. Also the lack of good understanding of
the aspect-oriented technology and proper instrumentation
and development tools tend to create skeptic atmosphere.
However, the noninvasive nature of aspect-oriented tech-
niques makes it superior technique in incorporating tracing
and debugging features.

Production-testing software should be as compact and effec-
tive as possible in order to guarantee highest possible pro-
duction throughput. Hence the performance of the system
is a critical issue also when considering aspects. Although
the conventional implementation can be very performance
effective, the aspects provide interesting means to ease the
variation effort without major performance drawbacks.

5. DISCUSSION
In this paper, we have described an approach for assembling
production-testing software from components that provide
test functionality and data at various levels of generality.
To implement this product line architecture, we have de-
scribed a solution based on aspects. The solution depends
on the capability of aspects to weave in new operations into
already existing components, possibly overriding previous
ones. Thus, the solution provides functionality that is spe-
cialized for the testing of the particular hardware configura-
tion.

One practical consideration in mobile setting is the selection
between static and dynamic weaving. While dynamic weav-
ing adds flexibility, and would be in line with the solution
of [4], static weaving has its advantages. The prime moti-
vation for advocating static weaving is memory footprint,
which forms an issue in mobile devices. Therefore, available
tool support [5] is technically adequate for our purposes.

Unfortunately, tool support for weaving is not the only
source of problems in our case. The tool chain of the Sym-
bian development is built around GCC version 2.98, with
some manufacturer specific extensions needed in mobile set-
ting [6]. Our first attempts indicate that using tools en-
abling aspects in this setting is not straightforward but re-
quires more work. While in principle we could circumvent
the problem by using mobile Java and AspectJ [7] to study
the approach, hiding the complexities of the implementa-
tion environment would not be in accordance to the spirit
of the problem, where specialized hardware and tools are
the important elements.

So far we have not tried out our approach in actual produc-
tion testing, mainly due to the aforementioned problems.

Thus, it remains as future work. We would also like to in-
vestigate more on the possibilities aspects could have in con-
junction with product family architectures. Especially, the
compositionality of aspects in the setting where platform-
specific tools are needed is an open issue.
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ABSTRACT
A number of researchers have proposed an aspect-oriented
approach for integrating concerns with component based ap-
plications. With this approach, components only implement
a functional interface; aspects such as security are left unre-
solved until deployment time. In this paper we present the
latest version of our declarative language, GlueQoS, used
to specify aspect deployment policies. Our work is focused
on automating the process of configuring cooperating re-
mote aspects using a client-server handshake. During the
handshake the two parties agree on aspect configuration by
using mixed integer programming. A security example is
presented as well as initial performance observations.

1. INTRODUCTION
Extending component interfaces directly with information
about non-functional concerns limits the reusability of an
interface. Each component implementing the interface must
be prepared to handle these concerns appropriately. Fur-
thermore, it also limits customizability, for example, the
ability of local security officers to tailor policy enforcement
code to suit their settings.

To address this shortcoming, a number of researchers have
proposed an aspect-oriented approach for integrating con-
cerns with component based applications [18, 6, 8, 11, 14,
19]. With this approach, components only implement a
functional interface; aspects such as security are left un-
resolved until deployment time. A pointcut specification,
written by a deployment expert, can be used to weave as-
pects and the original components. As presented, the ap-
proach does not consider the issue of matching client-side
aspects to the deployment on the server. This is important
when client and server-side aspects must cooperate [19, 13],
security or fault-tolerance aspects being prime examples.

This inflexibility limits the use of the approach in new,
emerging application areas such as service-oriented archi-
tectures (SOA). In a SOA, client applications and server
applications from the same product family are not always
consistently deployed across a wide-area. This may yield
variation in the features1 of client and server software. We
propose to provide dynamic and symmetric reconciliation
between the (potentially different) features (implemented as
aspects) of two communicating processes. However, different

1We use the term feature to denote an artifact of software
requirements and aspect to denote an artifact of software
implementation.

aspects can interact in various ways, and this complicates
reconciliation.

We use the term interaction [21] to reflect how aspect com-
binations affect each aspect’s ability to function as it would
separately. Interactions can be complex, subtle, and very
difficult to identify. Finding such interactions is outside the
scope of this paper. In addition, aspect configuration is a
matter of deployment policy and can vary.

In this paper we present the latest version of our declarative
language, GlueQoS, used to specify aspect deployment poli-
cies. A middleware-based resolution mechanism uses these
specifications to dynamically find a satisfying set of aspects
that allow a client and server to inter-operate. We have
presented a previous version of this work in [20]. The mo-
tivation and example we present are an update of our pre-
vious work. However, this paper additionally describes a
completely revised language design and implementation.

The remainder of this paper is organized as follows: Section
2 presents the GlueQoS language, Section 3 presents an ex-
ample, Section 4 presents the COTS solver we used, Section
5 presents implementation, Section 6 reviews related work
and finally we conclude in Section 7.

2. POLICY LANGUAGE
Policies are specified in the GlueQoS policy language. The
language provides a set of built in operators to specify ac-
ceptable aspect configurations, as well as the ability to ex-
tend the system with functions to measure operating con-
ditions (such as load, available energy, and bandwidth). A
configuration includes which aspects should be used as well
as what their operating parameters should be.

Each client to server session is associated with a set of
adaptlets [19]. An adaptlet conceptually encapsulates a pair
of client and server aspects. This includes the provided and
required interfaces of client and server aspects. This scop-
ing of aspects can be viewed in analogy to the “aspect per”
scoping of AspectJ but based on a client/server negotiated
session. The adaptlet abstraction serves to properly type the
“connection” between cooperating aspect instances. Our
work is focused on automating the process of configuring
these instances using a client-server handshake. During the
handshake the two parties agree on a set of adaptlets to
use, as well as the values of any parameters they expose.
In this section we detail the constructs in GlueQoS used
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to automate this handshake including support for boolean
constraints, linear constraints, and run-time monitoring.

2.1 Boolean Constraints
Aspect agreement can range from a very simple problem
(e.g., when all aspects are orthogonal (non-interacting)), to
a very hard problem (e.g., when aspect interactions are ar-
bitrary). Since aspect-oriented middleware systems are not
widely deployed, we draw on work in other areas [5, 21, 1]
in order to hypothesize what an ideal framework requires.
Therefore, our description is highly expository in nature
rather than purely prescriptive.

Each host (client or server) will need to include in their
policy a set of statements to impose some requirements on
the adaptlets used in a session. If an adaptlet is used in
a session, we say the adaptlet’s status is on (true) for that
session; otherwise, the adaptlet’s status is off (false).

Due to the nature of interactions, sometimes one adapt-
let may be dependent on another adaptlet. Also, adaptlets
might conflict: viz, they cannot be used together. Finally,
since hosts do not have a priori knowledge of which adaptlets
are supported by a peer, it is useful to provide choices amongst
a number of adaptlets, in order to meet some requirement.
Here we present the encoding of these constraints in Glue-
QoS, whose syntax follows from boolean logic:

• Dependency: The deployment of an aspect, A, de-
pends on the deployment of another aspect, B. This
can be encoded as an implication, (A implies B).

• Conflict: Two aspects conflict if their combination has
a negative effect on the behavior of the entire applica-
tion. The deployment of one aspect should exclude the
deployment of the other. The decision that an effect is
negative is application dependent but may include ef-
fects such as introducing deadlock, putting data in in-
consistent states, or degrading performance. Conflict
is encoded by, not(A and B).

• Choice: Either aspect or both can be chosen to meet
some requirement. This is encoded as (A or B).

Based on these examples, it is straightforward to encode
other requirements such as those stemming from three-way
interactions. Now, given that in a SOA agreement may
need to be performed at run-time, one can see it is desirable
to provide for efficient computation of aspect status based
on host policies. However, even deciding status for poli-
cies of Choice and Conflict is not easily computable (i.e.,
not tractable) in general. The important question that we
address in the remainder of this section is, “Is there a rea-
sonable restriction of arbitrary boolean constraints that is
tractable?”. We believe the answer is no, so we have opted
not to impose any restrictions on boolean constraints.

One way to answer this question would be list all known
tractable restrictions [7] and argue why each one is not
reasonable. We believe this is possible, however the list
in lengthy, and contains relatively few restrictions actually
used in any practical setting. Noteworthy examples from

the list are 2-SAT and Horn-SAT. Instead, we describe a
minimal restriction of boolean constraints which is still in-
tractable, yet we argue is reasonable. By minimal we mean
that it is difficult to imagine how one could usefully restrict
it further.

We start with 2-SAT. It requires that dependencies be of the
form (A implies B). For instance, ((A and B) implies C)

is not allowed. This seems reasonable since software depen-
dencies are usually cast in terms of binary relationships.
Now, conflicts are required to be of the form, not(A and

B). For instance, not(A and B and C), is not allowed. This
seems reasonable since it is difficult to imagine a case where
two software packages don’t conflict until a third is present.
Finally, choices are required to be of the form (A or B).
For instance, (A or B or C) is not allowed. Our argument
rests on the fact that we believe this restriction seems un-
reasonable. So, relaxing 2-SAT slightly to allow multiple
choice gives us our restriction which is reasonable yet in-
tractable. An equivalence reduction between 3SAT (a clas-
sical intractable problem) and this relaxation of 2-SAT is
straightforward. This is by no means a formal proof, but we
hope it gives the reader insight into our language design.

Since no shortcuts seem likely, we appeal to brute force pro-
vided by a COTS constraint solver. In terms of language
design, we have traded off scalability for expressiveness. Ar-
bitrary interactions are supported but can only be reasoned
over efficiently if the total number of aspects on a given
system is limited. From our initial experiments we believe
support for up to 50 aspects should be easily manageable.

2.2 Linear Constraints
Now that we have addressed the motivation and interpre-
tation for policies regarding acceptable adaptlet status, we
turn to the matter of adaptlet parameter constraints.

Every adaptlet may need to be configured according to a set
of parameters. This is analogous to Component Oriented
Programming [16]. For example, in the Java Beans com-
ponent model every bean may expose a set of attributes for
deployment time configuration. However, in our scenario we
must allow for joint agreement, between client and server,
of the session-time parameters.

For this purpose, we allow the representation of linear con-
straints [15, 4] over adaptlet parameters. For example, a
linear constraint could be used with two adaptlets imple-
menting a service-level agreement,

−2.0 ∗ PayFeature.price + 1.0 ∗QoS.guarantee = −100.0

This constraint sets the price of a connection at fifty dollars
plus half the amount of bandwidth reservation. Graphically,
this allows clients and servers to negotiate a choice of the
two aspect parameters (referenced as fields of the aspects)
anywhere along the line defined by the equation.

In contrast to systems of non-linear constraints, linear sys-
tems are decidable and tractable. Thus far we have not
explored support for non-linear constraints. Modern solvers
are usually based on the Simplex [4] algorithm due to Dantzig.
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2.3 Run-time Policy Adaptation
Recall that hosts execute in an environment that is continu-
ously changing; they might need to be configured according
to a dynamic deployment context. Rather than force de-
ployment experts to constantly update policies manually,
our policy language includes constructs to reflect these en-
vironmental changes. The constructs are of two types: user-
defined value functions and user-defined predicate functions.

The values of coefficients or constants in linear constraints
can be input through user-defined value functions. Evalu-
ation of these functions occurs periodically throughout the
execution of client and server applications. Before policy res-
olution occurs, a “snapshot” of the client and server policies
is taken to reflect their current states. A similar approach
is used in QuO [11], however, not in the context of aspect
agreement. For example, we can update the example given
as,

−2.0 ∗ PayFeature.price + 1.0 ∗QoS.guarantee =
{cpuLoad() ∗ 100.0− 100.0}

Graphically, this allows the expression of a line which is
shifted vertically based on the current value of the user-
defined function cpuLoad.

Likewise, requirement of a particular adaptlet in an accept-
able configuration may also depend on the state of the ex-
ecution environment. A security feature, for example, may
only be required for certain types of network connections
e.g.,
Password and (Encryption when { linkType(“mobile”) }).

Here, the required configuration varies between using the
Password feature alone and using both the Password and
Encryption feature. This variation is based on evaluation of
the linkType user-defined predicate using our when keyword.

We have shown that the acceptable feature configurations
may vary dynamically. The actual policies expressed depend
on the moment when resolution occurs. We have provided
two constructs in our language to express this variation.

2.4 Special Functions
In addition to the language elements we have laid out so
far, two special types functions are supported. These are
the Supports and Preference functions.

Our client/server scenario must account for the fact that
client and server policies are written in isolation. There-
fore, the sets of adaptlets mentioned in each policy might
not be the same. We chose the semantics that any adaptlet
not mentioned in both policies would be assumed to have
its status forced to off. This default assumption can be
suppressed by adding a Supports clause. For example, the
clause Supports(A) can be interpreted as adding the tautol-
ogy (A or not(A)) to the set of constraints.

Assuming the client is given some Choice (as in Section
2.1) between adaptlets to meet a particular requirement, the
Preference function provides a way to instruct the COTS
solver which adaptlet to choose. Optimization methods based
on linear programming allow for computation of a solution

which maximizes some utility function over the constraint
variables. Leveraging this utility function we can support
preferences over the configuration of aspects from any pos-
sible configurations. Currently the Preference function is
only available to clients because the asymmetry in our hand-
shake protocol (see Section 5.1) cannot provide proof that
any server Preference functions would be respected. We
plan to revisit this restriction in future work.

In the following section we demonstrate a possible usage of
the language elements laid out in this section.

3. SECURITY EXAMPLE
Consider deployment of a client/server application in an en-
vironment where two security adaptlets are required. The
first is authentication. The server must protect certain ser-
vices from unauthorized access; so client requests must be
preceded or accompanied by an authentication step involv-
ing the presentation of credentials in order to gain group
membership for those services. Credentials can be based
on a password, or on public-key signatures. In this case,
an aspect on the server side is responsible for checking cre-
dentials, and the corresponding aspect on the client-side is
required to present the appropriate credentials.

The second adaptlet, the client-puzzle protocol (CPP) [5], de-
fends against denial-of-service (DoS) attacks. A DoS attack
occurs when a malicious client (or set of malicious clients)
overloads a service with requests, hindering timely response
to legitimate clients. Certain components of the server may
be prone to DoS attack because of the amount of compu-
tation required by the components. CPP protects a com-
ponent by intercepting client requests and refusing service
until the client provides a solution to a small mathematical
problem.

CPP and Authentication interact in interesting ways. For
example, suppose the server’s only requirement is to pre-
vent DoS attacks. If we trust authenticated clients not
to mount DoS attacks, then the authentication and client-
puzzle adaptlets are equivalent and one can be substituted
for the other; it would be redundant to use both. However,
sometimes authentication may not imply a decreased risk of
DoS attacks, so these adaptlets would be viewed as orthogo-
nal. In other situations, we may require both authentication
and DoS defense.

Client-side preferences must also be considered when select-
ing the adaptlets that govern a client-server interaction. A
client may consider CPP and Authentication to be equiva-
lent, and express a policy that it can use either. A client
with a performance requirement, however, would naturally
prefer to employ authentication to avoid computing puzzle
solutions. A client who values its privacy would prefer to
expend CPU cycles in order to not have to reveal their iden-
tity; this client may prefer to use CPP rather than provide
identity-revealing credentials.

Figure 1 is a realization of the security policy as expressed
in GlueQoS. The first policy is shown for the server.

Each line (1, 2, and 3) represents a different configuration
constraint. The first is an implication between the status
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Server:
(1) (Authentication implies (CPP.size = { cpuLoad()*8 }));
(2) (CPP when { cpuLoad() > .5 });
(3) (Authentication or (CPP.size = { cpuLoad()*16 }));

Client1:
(4) Authentication;

Client2:
(5) Supports(CPP,Authentication);
(6) Preference(not(Authentication),Authentication);
(7) (CPP.size <= 4);

Figure 1: Security Example

of the Authentication adaptlet and a constraint on the size
parameter of the CPP adaptlet. It states that with Au-
thentication, the size of puzzles varies linearly from 0 to 8
depending on CPU load. Another constraint (line 2) uses
a predicate (cpuLoad() > .5) to determine whether CPP
is required. When CPU load is less than .5, the server al-
lows Authentication to be used without the CPP; otherwise
just CPP, with the largest puzzle size, can be used. This
shows how run-time conditions can dynamically adapt the
acceptable adaptlet combinations expressed by hosts.

The first client policy is shown on line 4. This client will
only use the Authentication adaptlet (perhaps because of
software availability, or because it is too performance-limited
for CPP). Therefore, this client can only create a session
with the server when the server’s load is less than 0.5.

The second client policy (lines 5-7) uses parameter con-
straints to choose between two adaptlet combinations. Note
that the Preference semantics in our language denotes a
preference for the first alternative. Consider a situation
where this client wishes to maintain its anonymity by not
using the Authentication feature. However, it also has a per-
formance requirement that takes precedence. Perhaps the
client is on a mobile device with low computing power. Line
6 expresses the client’s preference to maintain anonymity.
However, in order to keep performance at a certain thresh-
old the client will also use Authentication if it will keep the
puzzle size low. By comparing to the sample server’s policy
(lines 1 and 3 in particular): if this client contacts the server
when the server’s CPU load is 25 percent or lower the client
can maintain its anonymity by using CPP only (from line 3
and 7, 16∗ .25 <= 4). However, if it contacts the server and
the server’s CPU load is between 25 percent and 50 percent
it will agree to reveal its identity to maintain higher perfor-
mance (from line 1 and 7, 8 ∗ .5 <= 4). When the server’s
load passes 50 percent the client will be not be able to find
a solution to the constraints imposed by the policy.

4. MIXED INTEGER PROGRAMMING POL-
ICY MATCHING

In Section 2, we described our policy language for express-
ing adaptlet configurations. We have made some informed
design decisions and arrived at an implementation based on
mixed integer programming. Pragmatically, the best choice
for these decisions would be based on best practices observed
over a number of years. Certainly this is difficult as aspect-
oriented middleware is not widely deployed in practice.

Mixed Integer Programming has been used widely in the
area of Operations Research [4] for decades. Here we apply
this technique for automating the configuration of aspect-
oriented software in a client/server setting.

Mixed Integer Programming extends the theory of linear
programming. In a mixed integer program (MIP) a subset
of variables can be constrained to integer values. Hence, the
“mixed” denotation refers to a mix of real and integer vari-
ables. A popular strategy for solving a MIP is based on the
Branch-and-Bound [15] algorithm. In this paper we view the
MIP algorithm as a COTS component that is utilized for the
purpose of resolving policies. This is achieved by modeling
adaptlet status as 0/1 integers and adaptlet parameters as
integer or real variables.

5. IMPLEMENTATION
Our prototype implementation builds on the existing DADO
dynamic AOP middleware [19] and the Lindo API [10] for
mixed integer programming. This involves attaching poli-
cies to applications, maintaining a run-time representation
of policies, and finally deploying the properly parameterized
resolved aspects.

A deployment expert considers local requirements and as-
pect interactions to design a policy. The policies are asso-
ciated with CORBA interface types, before an application
is executed. Our implementation currently does not sup-
port policies on a per-method basis; a single policy can be
assigned to each interface type. At application load-time
the GlueQoS middleware builds a data-structure represent-
ing these policies. Now we describe the overall set-up as in
Figure 2.

Client
Stub

Server
Object

MIP

1

2

3

4

56

Policy

Policy

Figure 2: The overall flow of the GlueQoS runtime,
including client stub, server stub, and the Mixed
Integer Programming (MIP) runtime component

The figure represents the client and server runtime using our
GlueQoS middleware, separated on the left and right sides
respectively. The dotted-line boxes represent the boundary
between middleware related functionality and the black-box
MIP component.
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Inside the dotted lines are three pieces. First, the large
circles represent the client stub and server object to which
the session based aspect agreement applies. Second, the
tree of nodes represents the policy data-structure. Third, a
separate thread, shown as the curved line, is responsible for
updating this data-structure based on the values retrieved
from user-defined functions. Now we focus on the interaction
defined by the numbered flow of the diagram.

5.1 Client/Server Interaction
The GlueQoS middleware at each end of an interaction de-
termines adaptlet configuration for each application session.
These aspects and their operating parameters remain fixed
for the lifetime of the session. In the future, we plan to
investigate support for continuous adaptation of operating
parameters.

When a client locates a server, it sends a policy request (1)
to the server object to initiate a session. Policy requests are
implemented as a CORBA operation that is transparently
introduced to all IDL interfaces. This is performed by a
compiler that is part of our DADO toolset.

The server creates a session for the client in the form of a
cookie. Now, the server serializes the policy data-structure,
associates it with the newly created session and returns the
serialization to the client. Note that at this point, all run-
time adaptation functions have been evaluated out of the
policy, creating a static policy based on the current environ-
ment. This means that in the example, the server does not
have to reveal the fact that policy is based on current cpu
load.

Now, the client must match its own policy with the server
and choose an adaptlet configuration acceptable to both.
First, client and server data-structures are merged. Now,
a client matches policies by carrying out the mixed integer
program resolution. The merged data-structure and a vector
representing the client’s preferences are passed to the Lindo
API. It will return a satisfying assignment for all variables or
signal unsatisfiability (3). These results are used to control
the execution of aspects. In the case of unsatisfiability, an
exception is thrown to the application to signal incompatible
policies.

The configuration chosen by Lindo is used in the creation of
aspects which implement the adaptlet collaboration. These
aspects are instantiated using the Java Reflection API. The
parameter values chosen are passed to the aspect’s construc-
tor. The signature of the constructor and parameters for
each aspect are part of the adaptlet type. The values can
then be used by the advice to configure aspect execution. In
this way the resolved aspects are activated and configured
according to the policies of both client and server.

The setup chosen by the client is then serialized and sent
to the server (4). This message is piggybacked on a sub-
sequent application request to the server. The server must
verify that the setup chosen by the client actually satisfies
its own policy. This requires only a simple linear time check
of constraint satisfiability (5). The values for the variables
are plugged into the policy which was associated with the
client’s session. If verification is successful, the server can

discard the associated policy and create aspects in the man-
ner described for the client side. On subsequent requests,
the cookie from the client is used to execute aspects and
advice on a per-client basis. If verification is unsuccessful
an exception is thrown back to the client (6).

5.2 GlueQoS Prototype
Our GlueQoS implementation has been tested on the ex-
ample presented in this paper and a previous version on an
example in a related paper [17].

To understand some of the performance impact induced
by the GlueQoS software we measured the overhead of the
GlueQoS handshake phase (Figure 2, steps 1 - 5) on the
example of Figure 1 with the second client policy. Our ex-
periments showed that the overhead is dominated by the
communication costs of steps 1 and 2 in Figure 2.

An important detail missing from this experiment is the
fact that only a single example policy was used. Since the
policy solver of step 3 grows exponentially with the number
of integer variables required in the policy encoding, it will
be important to repeat the experiments for a range of policy
sizes. We could draw from the approach described in [12].
This work shows how to generate random 3-SAT instances
of a desired size and difficulty (i.e., time required to solve the
instance). In the future it may be possible to extend that
work for generating random policies of varying difficulty that
can be used for further experiments.

6. RELATED WORK
Aspect-Oriented middleware is motivated by the need to
provide flexible customization with a simplified deployment
process, combining the benefits of reflective middleware with
container based deployment.

Recently, the open-source JBoss [9] application server an-
nounced aspect-oriented deployment of container services
using the Javassist [2] byte code editing toolkit. A simi-
lar approach is used in the Java Aspect Components (JAC)
framework [14] that also utilizes load-time byte code weaving
(using BCEL [3]) in Java. New services can be constructed
by implementing aspect-specific interceptors. Deployment
takes place using the notion of pointcuts from the AspectJ
language. In JAC, aspects can be un-deployed/re-deployed
dynamically using a standardized API.

The Quality of Objects (QuO) [11] project aims to provide
consistent availability and performance guarantees for dis-
tributed objects in the face of limited or unreliable com-
putation and network resources. QuO defines an abstrac-
tion known as the operating region for processes (client or
servers) cooperating in a distributed object environment.
Changes in perceived run-time conditions move a process
into different operating regions. Advice that is bound to a
particular operating region or region transition is the main
vehicle by which adaptation is achieved.

The aspect-oriented middleware presented in this section
achieve both flexible customization and simplified deploy-
ment. This is made possible by a clear separation between
adaptation programming and deployment. Deployment is
facilitated by pointcut based descriptions which map adap-
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tation behavior to application events. Our work on Glue-
QoS could be used to simplify run-time deployment of co-
operating aspects in client-server applications. Previously,
we have presented the notion of an adaptlet collaboration
which serves to properly type client and server aspect roles.

7. CONCLUSION
GlueQoS is middleware software to support dynamic adjust-
ment of aspects between clients and servers. Configuration
preferences are specified in the GlueQoS policy language.
These policies are exchanged at binding time between sys-
tems interacting in an ad-hoc setting. The polices are then
matched up, and resolved by the middleware. The resolved
aspects are then deployed and executed. GlueQoS has been
implemented in the context of adaptlets.
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