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ABSTRACT 
For consistency with component-oriented programming, the 
implementation of aspect-based software product families should 
be decoupled from the components that they influence.  One 
solution is to implement such families with language-independent 
aspect-oriented programming (AOP) in combination with 
property-based crosscutting.  Language-independent AOP 
decouples the implementation language of such a family from that 
of the components to which family members are applied.  Using 
property-based crosscutting avoids coupling the software product 
family with a specific set of components, because join points are 
selected according to some implementation commonality such as 
a containing type name rather than precise details of their 
implementation.  However, experimental evidence shows that 
compiling a component’s implementation to a language 
independent format can introduce new join points that match a 
property-based crosscut.  These matches can result in unexpected 
behaviour.  To assure correct and predictable behaviour when a 
software product family member is applied to an application it is 
better to use attribute-based crosscutting, in which join points are 
selected according to the appearance of attributes, called 
annotations in Java, on the join point’s implementation. 

 

1. INTRODUCTION 
The use of aspects to implement software product families has 
been demonstrated by work on spontaneous containers [13].  
Here, different aspects are responsible for implementing 
persistence, transaction processing and access control properties 
of a container.  Moreover, different implementations of each 
property can exist.  These aspects can be assembled to create a 
container that enforces network policies applied to a particular 
network node.  Such a product family might find practical 
application in tradeshow venues [13], where services vary 
according to the status of the attendee.   The containers that allow 
visitor PDAs to interact with each other will differ from those 
provided to exhibitors.  For instance, access control capabilities 
may be required by exhibitors that make use of a tradeshow 
registration database that is not available to visitors. 
Language independent AOP and the use of property-based 
crosscutting should reconcile the implementation of aspect-based 
software product families with component-oriented programming.  
Software components emphasize deployment and composition 
characteristics that allow components provided by one 
organization to be combined with components of another by a 
third-party unrelated to either organization [14].  Specifically, “a 
third party is one that cannot be expected to have access to the 
construction details of all the components involved.” [14].  Thus, 

implementation source code should not be a factor in the ability of 
an aspect-based software product family member to bind with 
components in an application.   Language-independence addresses 
this requirement by allowing aspects and components to be 
written in a variety of languages and freely intermixed [9].  Using 
property-based crosscutting [6], an aspect selections join points in 
application according to some commonality such as a shared 
containing type, some naming convention, or common parameter 
types in the case of methods.  Sufficiently general property-based 
crosscutting allows aspects to be used with a variety of 
components without the need to customize the aspect on a 
component by component basis.  Using language independent 
AOP and property-based crosscutting should allow third parties to 
treat aspect-based software product families and application 
components being composed as black boxes. 
The vehicle for testing this theory was Weave.NET [7], a 
language independent aspect weaver that supports a pointcut-
advice mechanism [10] and allows clear-box crosscutting.  
Weave.NET targets Microsoft’s Common Language 
Infrastructure (CLI) [3].  The CLI simplifies the task of 
implementing Weave.NET by providing a language-independent 
substrate to which components, regardless of implementation 
language, are compiled.  The CLI standardizes the metadata 
descriptions of types and type members implemented by CLI 
components, regardless of implementation language, and 
component behaviour is written in a language-neutral binary 
format.  With respect to the clear-box / black-box distinction [4], 
a black-box technique manipulates components in terms of their 
public interfaces, while a clear-box technique manipulates the 
parsed language structures used to write these interfaces. Clear-
box techniques, such as those available with the pointcut-advice 
mechanism AspectJ [15], often offer a richer set of join points, 
because they provide a better representation of all the structures 
of a programming language used to write the component.  In the 
case of components, language constructs that are expressed 
directly in byte code, such as accesses to type members, can be 
modified [4]. 
In our experiments, initially reported in [7], we applied members 
of a simple diagnostics software product family to a Fibonacci 
series enumerator, and we noted an inability to make strong 
assurances of correct and predictable behaviour of the resulting 
application.  In our experiments, implementations of a recursive 
Fibonacci series enumerator algorithm written in SML.NET [5], 
VisualBasic.NET [12] and C# [11] were composed with logging 
and profiling functionality implemented using aspects.  Using 
language independent AOP and property-based crosscutting, the 
same logging and profiling aspects could be applied to each 
Fibonacci enumerator component without change.  However, we 
noted that in the case of the component implemented in 



SML.NET it was not possible to predict the behaviour of the final 
application based on the source code of the Fibonacci algorithm.  
During the translation to a language neutral format, the SML.NET 
compiler introduced addition join points to the internal 
implementation of component interfaces that matched the logging 
aspect. 
Rather than change to black box crosscutting, we avoided 
inadvertent join point matches using attributed-based crosscutting 
[7, 8].  The additional join points added during component 
compilation did not influence the component implementation, and 
so predictability could have been restored by limiting the weaver 
being used.  However, it was possible to restore predictability 
with attribute-based crosscutting rather than by crippling the 
weaver.  With attribute-based crosscutting, join point selection is 
written in terms of attributes.  Attributes [3], also called 
annotations [1], offer a programming-language mechanism for 
associating additional information with the metadata descriptions 
of types and their members.  Language support for attributes 
typically includes the ability to define new attributes and the 
ability to place attribute declarations along side the definition of 
types and their members.  Annotation of a program element with 
an attribute causes additional data to become associated with the 
metadata description of that program element; however, 
annotating code with attributes does not influence program 
behaviour.  For instance, an attribute might append the metadata 
of a method with the name of the programmer implementing the 
method.  This information would be associated with the metadata 
description of the method.  Rather than using the method name in 
a pointcut specification, the attribute name can be used instead.  
Since an attribute applied to source code appears only once in the 
compiled assembly, attribute-based crosscutting avoids 
inadvertent join point selection and thus results in more 
predictable behaviour. 
In the remainder of this paper, we present the experimental results 
that identified problems with property-based crosscutting and that 
identified attribute-based crosscutting as a possible solution.  In 
section 2, we summarize the composition scenario in terms of the 
software product family functionality being implemented and the 
components to which family members are being applied.  In 
section 3, we present an implementation of the software product 
family based on property-based crosscutting solution and evaluate 
its drawbacks.  In section 4, we do the same for an attribute-based 
crosscutting solution, and explain what drawbacks in the previous 
section are avoided.  Finally, we summarize our findings in 
section 5. 

2. EXPERIMENTAL SCENARIO 
To evaluate the usefulness of property-based crosscutting in the 
context of language-independent AOP, we chose to use a software 
product family that provided application diagnostics.  The 
software product family provides profiling and logging 
functionality features, and it is written using the aspect model 
provided by Weave.NET.  One, the other, or both diagnostics 
features can be applied to methods of an application.  However, in 
this paper we focus on the application of logging functionality to 
components implementing a common Fibonacci series algorithm.  
The algorithm enumerates series elements, and it was chosen 
based on the observation that Fibonacci algorithms are a common 
means of demonstrating AOP techniques [2]. 

2.1 Target Application 
The specific algorithm targeted for our language-independence 
tests is a component implementing a recursive algorithm that 
enumerates members of the Fibonacci series.  The algorithm, 
shown in Figure 2.1, includes two methods, one that generates 
elements in the Fibonacci series, and a second that reports a series 
of elements generated using the former method.  Components 
containing these methods have been written in C#, VB.NET and 
SML.NET.  The C# version shown in Figure 2.1 is typical of the 
algorithm, which is recursive regardless of the programming 
language used. 
public class FibonacciSeries { 
  public void FibSeries(int seriesLen){ 
    for (int i = 0; i<= seriesLen; i++) { 
      long result = Fibonacci(i); 
      System.Console.WriteLine("Element\t"+ 
                       i+ "\tvalue \t"+result); 
    } 
  } 
 
  public long Fibonacci(int n){ 
    if (n > 1) 
      return this.Fibonacci(n-1)  
            + this.Fibonacci(n-2); 
    return 1; 
  } 
} 

Figure 2.1:  C# source for algorithm to enumerate Fibonacci 
series elements. 

2.2 Test Aspect 
Our Fibonacci algorithm lacks an explicit indication of its 
complexity, but this is remedied by adding diagnostics 
functionality that provides logging.  This logging is implemented 
via an aspect that reports the start and end of execution join 
points.  Logging is a fairly simple concept made simpler by 
limiting the aspect to reporting the start and end of a method 
execution to the application console rather than logging to a file.  
A sample implementation of logging behaviour written in 
SML.NET is shown in Figure 2.2.  The method names in the 
source allude to the kind of advice they implement.  The 
appearance of multiple methods with the prefix 
LogAfterJoinPointXXX corresponds to the use of different 
return types in the methods of the Fibonacci series algorithm. 

3. LOGGING VIA PROPERTY-BASED 
CROSSCUTTING  
Property-based crosscutting is consistent with language 
independent AOP, and it allows an aspect to be created that can 
be applied to various components without the changes to the 
crosscutting specification However, the crosscutting 
specifications suffer the drawback of being error prone.  Also, 
obtaining assurances of correct program behaviour is difficult, as 
program behaviour cannot be determined from inspection of 
component source code. 
When the logging aspect is written using property-based 
crosscutting, the crosscutting specification is the same regardless 
of the language implementing the Fibonacci algorithm with which 
logging is woven.  The logging aspect’s XML-based crosscutting 
specification is shown in Figure 3.1 and it defines a named 
pointcut called SomeMethodExecution that identifies method 
invocations that take an integer as a parameter, regardless of the 



return type.  The crosscutting specifications are reusable without 
modification in that they can be applied to components without 
change.  Reuse then relies on the component’s types being the 
same, in terms of members and member signatures, regardless of 
implementing language. 
structure Aspect_ML_Logging = 
struct 
_classtype Logger() : TCD.CS.DSG.Weave.Reflect.Aspect() 
 with  
  LogBeforeJoinPointInt (param:int) = 
  let 
   val jptInfo = 
valOf(this.##get_JoinPointStaticPart()); 
  in 
   print "Join point: "; 
   print (valOf(jptInfo.#toShortString())); print "\n"; 
   print "Execution parameter: "; 
   print (Int.toString(param)); print "\n" 
  end 
 and 
  LogAfterJoinPointLong(param:int, result:Int64.int)= 
  let 
   val jptInfo = 
valOf(this.##get_JoinPointStaticPart()); 
  in 
   print "Join point: ";  
   print (valOf(jptInfo.#toShortString())); print "\n"; 
   print "Execution parameter: ";  
   print (Int.toString(param)); print "\n"; 
   print "Execution result:    ";  
   print (Int64.toString(result)); print "\n" 
  end 
 and 
  LogAfterJoinPointVoid (param:int) = 
  let 
   val jptInfo = 
valOf(this.##get_JoinPointStaticPart()); 
  in 
   print "Join point: ";  
   print (valOf(jptInfo.#toShortString())); print "\n"; 
   print "Execution parameter: " ;  
   print (Int.toString(param)); print "\n"; 
   print "Execution result:    NONE!"; print "\n" 
  end 
 end 
end  

Figure 2.2:  Implementation of logging behaviour written in 
SML.NET 

During weaving trials in which the logging aspect was applied to 
each implementation of the Fibonacci algorithm, we noted that the 
specification of types in XML was error prone, because mapping 
from language-based type names to CLI type names must be done 
manually.  Writing a custom crosscutting specification in XML 
involves using metadata descriptions to select join points.  To 
make Weave.NET aspects language independent, the crosscutting 
specifications are specified in terms of CLI types, and not the 
development language types with which a programmer will be 
familiar.  The need to map from development language types to 
CLI types is acute in the case of primitive types, whose CLI 
names vary considerably from those used in the source code of a 
component.  For example, Table 3.1 shows the mappings between 
SML.NET primitive types, their C# equivalent and their CLR 
name.  These tables show no overlap between the programming 
language type names and those used by the CLI. 

<item>   
  <named_pointcut> 
    <modifier><public/></modifier> 
    <name>SomeMethodExecution</name> 
    <local_var_ref> 
      <var_type>Int32</var_type> 
      <var_name>data</var_name> 
    </local_var_ref> 
    <pointcut> 
      <and> 
        <pointcut><primitive> 
          <execution> 
            <method_signature> 
              <return_type> 
                <type_name>*</type_name> 
              </return_type> 
              <join_point_type> 
                <type_name>*</type_name> 
              </join_point_type> 
              <method_name>*</method_name> 
              <parameters> 
                <parameter> 
                  <type_name>Int32</type_name> 
                </parameter> 
              </parameters> 
            </method_signature> 
          </execution> 
        </primitive></pointcut> 
        <pointcut><primitive> 
          <args> 
            <parameter> 
<formal_parameter_name>data</formal_parameter_nam
e> 
            </parameter> 
          </args> 
        </primitive></pointcut> 
      </and> 
    </pointcut> 
  </named_pointcut> 
</item> 

Figure 3.1:  A pointcut identifying method execution join 
points to which logging is applied. 

Table 3.1:  Mapping between CLI (.NET) types and C# / 
SML.NET equivalents, taken from [5]. 

 
   



structure App_Noninvasive_ML_Fibonacci 
 : sig val main: string option array option->unit 
    end =  
struct 
_classtype FibonacciSeries() 
 with  
  Fibonacci (n) = 
    case(n) of 
      0 => (Int64.fromInt(1)) 
    | 1 => (Int64.fromInt(1)) 
    | n => (this.#Fibonacci(n-1) + 
           this.#Fibonacci(n-2)) 
 and  
  FibSeries (n) = 
    case(n) of  
     ~1 => () 
    | n => (this.#FibSeries (n-1);  
           print "Element\t"; 
           print (Int.toString (n));  
           print "\t value \t";  
       print(Int64.toString(this.#Fibonacci(n))); 
           print "\n" ) 
 end 
 fun SelfTest (elements, times) = 
  let 
   val fibML = FibonacciSeries() 
  in 
   case(times) of 
          0 => () 
        | n => (fibML.#FibSeries(elements); 
               SelfTest(elements, times-1)) 
  end 
 fun main  (a : string option array option) = 
  let   
    val elements = 10 
    val times = 1 
  in  
    SelfTest(elements, times) 
  end 
end  

Figure 3.2:  SML.NET implementation of application to 
calculate Fibonacci Series elements. 

We did experiment with making it easier to simplify type 
specification by allowing the use of truncated versions of CLI 
type names in which the namespace is removed.  Hence, the use 
of Int32 rather than System.Int32 in the XML of Figure 
3.1.  While these truncated versions are shorter to write, they 
make mistakes easier to make.  For example, in writing 
“System.String”, we found the capitalization of System to 
be a reminder to capitalise the ‘String’ portion.  When the 
namespace was removed, it was easier to forget that the CLI type 
was being used, and so we reverted to using language-specific 
monikers.  For example, ‘string’, all lower case, was used 
instead of ‘String’ with the capital first letter.  These mistakes 
are hard to spot, since it appears that the type is correctly written 
Generally, user types present less difficulty, as their name and 
namespace holds across language boundaries.  There are still 
quirks when user types are exported as nested classes.  For 
instance, class types exported by SML.NET are nested in their 
respective module.  Thus, a class Logger defined in module 
ML_Logger would be accessed using the moniker 
Aspect_ML_Logger+Logger. 

Our evaluation also noted a severe problem with the accidental 
selection of join points that could not be overcome using source 
code analysis tools.  In Figure 3.1, the regular expressions are 
used in the pointcut designator’s argument to create a property-

based crosscut.  However, such regular expressions can make 
unexpected join point selections.  Before evaluation, we made the 
general assumption that these extra join points could be spotted in 
source code.  If this were the case, then with a careful 
examination of component source could be used to predict the 
behaviour of the final application and on the basis of this 
prediction correct behaviour could be ascertained.  However, 
evaluation tests involving components written in SML.NET 
indicate superfluous join points are not always visible from 
source.  Assemblies generated by the SML.NET compiler can 
contain considerably more types than could be inferred from the 
source code.  For example, Figure 3.2 defines a SML module with 
methods main and SelfTest at the module level and methods 
Fibonacci and FibSeries in the class 

 
Figure 3.3:  Disassembler view of types contained in a 
component written in SML.NET source in Figure 3.2. 

FibonacciSeries.  Using the directive “export 
App_Noninvasive_ML_Fibonacci” to compile this source 
results in a CLI component containing a surprising number of 
additional types.  As shown in Figure 3.3, a disassembler view of 



the type definitions in the component uncovers a large number of 
types for which there are no explicit declarations in the source 
code.  As expected, there is a type corresponding to the module 
that contains the implementation of main and SelfTest, and 
there is a class corresponding to the FibonacciSeries class 
declaration that contains the implementations of Fibonacci and 
FibSeries.  The difficulty is that there are other types such as 
Globals with methods such as “static char a(int32 
A_0)” that would match the property-based crosscut for logging 
shown in Figure 3.1. 
Our tests verified that property-based crosscutting has useful 
reusability characteristics, but its drawbacks make it quite 
difficult to use when obtaining strong assurances of correct and 
predictable behaviour is a concern.  Difficulties in specifying 
XML using a language independent type system made it difficult 
to write crosscutting specifications by hand.  While these could be 
overcome with diligence, the inadvertent join point selection 
could not.  New join points introduced by the compiler when a 
component was compiled could not be determined through source 
code analysis, whether done by a human or via an automated 
application. 

4. LOGGING VIA ATTRIBUTE-BASED 
CROSSCUTTING 
To contrast attribute-based crosscutting, we revised the logging 
aspect to exploit attribute types for join point selection, and 
composed this new logging aspect with the Fibonacci series 
algorithm implementations.  Our evaluation noted the use of 
attribute-based crosscutting offers a more succinct and accurate 
means of applying crosscutting functionality, and attributed-based 
crosscutting avoided the unexpected join point selection that 
prevented application behaviour from being predicted from source 
code analysis. 
Attribute-based crosscutting specifications complement an 
attribute type [8] that allows access to aspect functionality 
through annotation of component source.  In contrast to property-
based crosscutting, attribute-based crosscutting uses attribute type 
names in place of join point implementation details such as types 
and type member signatures.  When using attribute type names, 
the grammar for pointcut specifications is unchanged when it 
comes to the primitive pointcut designators available, but the 
parameters used for designators are changed.  Rather than 
signature or type name arguments, primitive pointcut designators 
are parameterized with attribute tags describing the attribute type 
name.  In the case of the Weave.NET, these attributes are 
implemented by the CLI’s custom attribute types.   
The contrast between property-based and attribute-based 
crosscutting can be seen in Figure 4.1.  The top pane of the figure 
contains the execution pointcut specification used in Figure 3.1 to 
select execution join points for logging.  In this pane, the selection 
of method execution join points is based on a partial method 
signature.  In the bottom pane, the specification is revised to 
select methods tagged with an attribute type with the name 
Logging.  This second version contains considerably fewer 
terms than the first, but it is reliant on the ability to annotating 
method source with an attribute type. 
An example application of attribute types is shown in Figure 4.2, 
where methods of the Fibonacci series algorithm are bound to 

logging functionality.  This example emphasizes the attribute 
annotations by marking them in bold. 

<execution> 
  <method_signature> 
    <return_type> 
      <type_name>*</type_name> 
    </return_type> 
    <join_point_type> 
      <type_name>*</type_name> 
    </join_point_type> 
    <method_name>*</method_name> 
    <parameters> 
      <parameter> 
        <type_name>Int32</type_name> 
      </parameter> 
    </parameters> 
  </method_signature> 
</execution> 

<execution> 
  <attribute>Logging</attribute> 
</execution> 

Figure 4.1:  Contrast between property-based crosscutting 
(top) and an aspect-based crosscutting (bottom). 

public class FibonacciSeries { 
  [Logging] 
  public void FibSeries(int seriesLen) { 
    for (int i = 0; i<= seriesLen; i++) { 
      long result = Fibonacci(i); 
      System.Console.WriteLine("Element \t"+ 
                       i+ "\tvalue \t"+result); 
    } 
  } 
  [Logging] 
  public long Fibonacci(int n) { 
    if (n > 1) 
      return this.Fibonacci(n-1)  
           + this.Fibonacci(n-2); 
 
    return 1; 
  } 
} 

Figure 4.2:  Fibonacci series enumerator annotated with 
attributes to identify methods for logging. 

In our tests, we noted attribute-based crosscutting provides an 
alternative means of identifying CLI metadata that avoids 
mistakes made with property-based crosscutting specifications 
that are extremely difficult to detect.  Recall that writing property-
based crosscutting involves specifying join points in terms of 
metadata that is native to the CLI.  There is little help available 
from the weaver for detecting erroneous type specifications, as it 
is hard to design a weaver that can distinguish between types that 
are specified correctly and those that are specified in error.  For 
instance, the method parameters in Figure 4.2 are of type int.  
int is the C# moniker for the CLI type System.Int32, and 
thus the short form Int32 appears in the property-based crosscut 
in Figure 4.1.  Should the type int appear accidentally in the 
crosscutting specification, one would expect the weaver to 
complain.  However, it is legitimate for a programmer to define a 
custom CLI type by the name of int in a different namespace.  
Even if we require that type names in the crosscutting 
specifications include a full namespace, int is still a valid user 
defined type.  Attribute-based property selection avoids the issue 
of detecting errors made when the language type name is mapped 
to the CLI type name mappings, since the placement of attributes 
on types or type members avoids the need to deal with join point 



selection in terms of CLI-specific type names.  In effect, the use 
of attributes represents the introduction of language-independent 
monikers for types and type members. 
structure App_Invasive_ML_Fibonacci  
  : sig val main: string option array option -> unit 
    end =  
struct 
_classtype FibonacciSeries() 
 with  
  {Aspect_CS_Logging.Logging()} Fibonacci (n) = 
    case(n) of 
      0 => (Int64.fromInt(1)) 
    | 1 => (Int64.fromInt(1)) 
    | n => (this.#Fibonacci(n-1) + this.#Fibonacci(n-2)) 
 and  
  {Aspect_CS_Logging.Logging()} FibSeries (n) = 
    case(n) of  
     ~1 => () 
    | n => (this.#FibSeries (n-1); 
            print "Element\t"; print (Int.toString (n)); 
            print "\t value \t";  
            print (Int64.toString(this.#Fibonacci (n))); 
            print "\n" ) 
 end 
      ... 
end  

Figure 4.3:  SML.NET implementation of Figure 3.2 updated 
to exploit custom attributes. 

Also, attribute-based property selection avoided unexpected join 
point selection, since attributes follow the implementation of the 
tagged method.  With revisions to include attributes, the SML-
based Fibonacci series algorithm in Figure 3.2 takes on the 
appearance of that of Figure 4.3, where attributes appear in bold.  
Note that the definitions of main and SelfTest have been 
removed for brevity.  As before, additional helper types will 
appear in the compiled assembly.  However, an examination of 
the metadata of the assembly indicates that only those methods 
explicitly tagged at the source code level will have their metadata 
description annotated by the logging attribute in the compiled 
assembly.  Thus, applying logging on the basis of attributes rather 
than method signature, constrains logging to the Fibonacci and 
FibSeries methods. 
So, in addition to making it simpler to specify aspect-based 
software product families, attribute-based property eliminated 
problems with predictability that had prevented strong assurances 
of correct application behaviour from being made from an 
examination of component source. 

5. CONCLUSIONS 
In the context of language-independent AOP, attribute-based 
crosscutting specifications have two important advantages over 
property-based crosscutting.  Use of attributes represents the 
introduction of language-independent monikers for types and type 
members that simplify the specification of crosscutting in a 
language independent fashion.  Second, attribute-based 
crosscutting will not inadvertently match unwanted join points 
introduced during the translation of a component source to a 

language-independent substrate.  This occurs because only those 
component structures explicitly annotated with an attribute at the 
source code level will have their metadata description annotated 
by that logging in the compiled component. 
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