
Avoiding Incorrect and Unpredictable Behaviour with
Attribute-based Crosscutting

Donal Lafferty
lafferty@engineer.com

Distributed Systems Group
Department of Computer Science

Trinity College Dublin

ABSTRACT
For consistency with component-oriented programming, the
implementation of aspect-based software product families should
be decoupled from the components that they influence. One
solution is to implement such families with language-independent
aspect-oriented programming (AOP) in combination with
property-based crosscutting. Language-independent AOP
decouples the implementation language of such a family from that
of the components to which family members are applied. Using
property-based crosscutting avoids coupling the software product
family with a specific set of components, because join points are
selected according to some implementation commonality such as
a containing type name rather than precise details of their
implementation. However, experimental evidence shows that
compiling a component’s implementation to a language
independent format can introduce new join points that match a
property-based crosscut. These matches can result in unexpected
behaviour. To assure correct and predictable behaviour when a
software product family member is applied to an application it is
better to use attribute-based crosscutting, in which join points are
selected according to the appearance of attributes, called
annotations in Java, on the join point’s implementation.

1. INTRODUCTION
The use of aspects to implement software product families has
been demonstrated by work on spontaneous containers [13].
Here, different aspects are responsible for implementing
persistence, transaction processing and access control properties
of a container. Moreover, different implementations of each
property can exist. These aspects can be assembled to create a
container that enforces network policies applied to a particular
network node. Such a product family might find practical
application in tradeshow venues [13], where services vary
according to the status of the attendee. The containers that allow
visitor PDAs to interact with each other will differ from those
provided to exhibitors. For instance, access control capabilities
may be required by exhibitors that make use of a tradeshow
registration database that is not available to visitors.
Language independent AOP and the use of property-based
crosscutting should reconcile the implementation of aspect-based
software product families with component-oriented programming.
Software components emphasize deployment and composition
characteristics that allow components provided by one
organization to be combined with components of another by a
third-party unrelated to either organization [14]. Specifically, “a
third party is one that cannot be expected to have access to the
construction details of all the components involved.” [14]. Thus,

implementation source code should not be a factor in the ability of
an aspect-based software product family member to bind with
components in an application. Language-independence addresses
this requirement by allowing aspects and components to be
written in a variety of languages and freely intermixed [9]. Using
property-based crosscutting [6], an aspect selections join points in
application according to some commonality such as a shared
containing type, some naming convention, or common parameter
types in the case of methods. Sufficiently general property-based
crosscutting allows aspects to be used with a variety of
components without the need to customize the aspect on a
component by component basis. Using language independent
AOP and property-based crosscutting should allow third parties to
treat aspect-based software product families and application
components being composed as black boxes.
The vehicle for testing this theory was Weave.NET [7], a
language independent aspect weaver that supports a pointcut-
advice mechanism [10] and allows clear-box crosscutting.
Weave.NET targets Microsoft’s Common Language
Infrastructure (CLI) [3]. The CLI simplifies the task of
implementing Weave.NET by providing a language-independent
substrate to which components, regardless of implementation
language, are compiled. The CLI standardizes the metadata
descriptions of types and type members implemented by CLI
components, regardless of implementation language, and
component behaviour is written in a language-neutral binary
format. With respect to the clear-box / black-box distinction [4],
a black-box technique manipulates components in terms of their
public interfaces, while a clear-box technique manipulates the
parsed language structures used to write these interfaces. Clear-
box techniques, such as those available with the pointcut-advice
mechanism AspectJ [15], often offer a richer set of join points,
because they provide a better representation of all the structures
of a programming language used to write the component. In the
case of components, language constructs that are expressed
directly in byte code, such as accesses to type members, can be
modified [4].
In our experiments, initially reported in [7], we applied members
of a simple diagnostics software product family to a Fibonacci
series enumerator, and we noted an inability to make strong
assurances of correct and predictable behaviour of the resulting
application. In our experiments, implementations of a recursive
Fibonacci series enumerator algorithm written in SML.NET [5],
VisualBasic.NET [12] and C# [11] were composed with logging
and profiling functionality implemented using aspects. Using
language independent AOP and property-based crosscutting, the
same logging and profiling aspects could be applied to each
Fibonacci enumerator component without change. However, we
noted that in the case of the component implemented in

SML.NET it was not possible to predict the behaviour of the final
application based on the source code of the Fibonacci algorithm.
During the translation to a language neutral format, the SML.NET
compiler introduced addition join points to the internal
implementation of component interfaces that matched the logging
aspect.
Rather than change to black box crosscutting, we avoided
inadvertent join point matches using attributed-based crosscutting
[7, 8]. The additional join points added during component
compilation did not influence the component implementation, and
so predictability could have been restored by limiting the weaver
being used. However, it was possible to restore predictability
with attribute-based crosscutting rather than by crippling the
weaver. With attribute-based crosscutting, join point selection is
written in terms of attributes. Attributes [3], also called
annotations [1], offer a programming-language mechanism for
associating additional information with the metadata descriptions
of types and their members. Language support for attributes
typically includes the ability to define new attributes and the
ability to place attribute declarations along side the definition of
types and their members. Annotation of a program element with
an attribute causes additional data to become associated with the
metadata description of that program element; however,
annotating code with attributes does not influence program
behaviour. For instance, an attribute might append the metadata
of a method with the name of the programmer implementing the
method. This information would be associated with the metadata
description of the method. Rather than using the method name in
a pointcut specification, the attribute name can be used instead.
Since an attribute applied to source code appears only once in the
compiled assembly, attribute-based crosscutting avoids
inadvertent join point selection and thus results in more
predictable behaviour.
In the remainder of this paper, we present the experimental results
that identified problems with property-based crosscutting and that
identified attribute-based crosscutting as a possible solution. In
section 2, we summarize the composition scenario in terms of the
software product family functionality being implemented and the
components to which family members are being applied. In
section 3, we present an implementation of the software product
family based on property-based crosscutting solution and evaluate
its drawbacks. In section 4, we do the same for an attribute-based
crosscutting solution, and explain what drawbacks in the previous
section are avoided. Finally, we summarize our findings in
section 5.

2. EXPERIMENTAL SCENARIO
To evaluate the usefulness of property-based crosscutting in the
context of language-independent AOP, we chose to use a software
product family that provided application diagnostics. The
software product family provides profiling and logging
functionality features, and it is written using the aspect model
provided by Weave.NET. One, the other, or both diagnostics
features can be applied to methods of an application. However, in
this paper we focus on the application of logging functionality to
components implementing a common Fibonacci series algorithm.
The algorithm enumerates series elements, and it was chosen
based on the observation that Fibonacci algorithms are a common
means of demonstrating AOP techniques [2].

2.1 Target Application
The specific algorithm targeted for our language-independence
tests is a component implementing a recursive algorithm that
enumerates members of the Fibonacci series. The algorithm,
shown in Figure 2.1, includes two methods, one that generates
elements in the Fibonacci series, and a second that reports a series
of elements generated using the former method. Components
containing these methods have been written in C#, VB.NET and
SML.NET. The C# version shown in Figure 2.1 is typical of the
algorithm, which is recursive regardless of the programming
language used.
public class FibonacciSeries {
 public void FibSeries(int seriesLen){
 for (int i = 0; i<= seriesLen; i++) {
 long result = Fibonacci(i);
 System.Console.WriteLine("Element\t"+
 i+ "\tvalue \t"+result);
 }
 }

 public long Fibonacci(int n){
 if (n > 1)
 return this.Fibonacci(n-1)
 + this.Fibonacci(n-2);
 return 1;
 }
}

Figure 2.1: C# source for algorithm to enumerate Fibonacci
series elements.

2.2 Test Aspect
Our Fibonacci algorithm lacks an explicit indication of its
complexity, but this is remedied by adding diagnostics
functionality that provides logging. This logging is implemented
via an aspect that reports the start and end of execution join
points. Logging is a fairly simple concept made simpler by
limiting the aspect to reporting the start and end of a method
execution to the application console rather than logging to a file.
A sample implementation of logging behaviour written in
SML.NET is shown in Figure 2.2. The method names in the
source allude to the kind of advice they implement. The
appearance of multiple methods with the prefix
LogAfterJoinPointXXX corresponds to the use of different
return types in the methods of the Fibonacci series algorithm.

3. LOGGING VIA PROPERTY-BASED
CROSSCUTTING
Property-based crosscutting is consistent with language
independent AOP, and it allows an aspect to be created that can
be applied to various components without the changes to the
crosscutting specification However, the crosscutting
specifications suffer the drawback of being error prone. Also,
obtaining assurances of correct program behaviour is difficult, as
program behaviour cannot be determined from inspection of
component source code.
When the logging aspect is written using property-based
crosscutting, the crosscutting specification is the same regardless
of the language implementing the Fibonacci algorithm with which
logging is woven. The logging aspect’s XML-based crosscutting
specification is shown in Figure 3.1 and it defines a named
pointcut called SomeMethodExecution that identifies method
invocations that take an integer as a parameter, regardless of the

return type. The crosscutting specifications are reusable without
modification in that they can be applied to components without
change. Reuse then relies on the component’s types being the
same, in terms of members and member signatures, regardless of
implementing language.
structure Aspect_ML_Logging =
struct
_classtype Logger() : TCD.CS.DSG.Weave.Reflect.Aspect()
 with
 LogBeforeJoinPointInt (param:int) =
 let
 val jptInfo =
valOf(this.##get_JoinPointStaticPart());
 in
 print "Join point: ";
 print (valOf(jptInfo.#toShortString())); print "\n";
 print "Execution parameter: ";
 print (Int.toString(param)); print "\n"
 end
 and
 LogAfterJoinPointLong(param:int, result:Int64.int)=
 let
 val jptInfo =
valOf(this.##get_JoinPointStaticPart());
 in
 print "Join point: ";
 print (valOf(jptInfo.#toShortString())); print "\n";
 print "Execution parameter: ";
 print (Int.toString(param)); print "\n";
 print "Execution result: ";
 print (Int64.toString(result)); print "\n"
 end
 and
 LogAfterJoinPointVoid (param:int) =
 let
 val jptInfo =
valOf(this.##get_JoinPointStaticPart());
 in
 print "Join point: ";
 print (valOf(jptInfo.#toShortString())); print "\n";
 print "Execution parameter: " ;
 print (Int.toString(param)); print "\n";
 print "Execution result: NONE!"; print "\n"
 end
 end
end

Figure 2.2: Implementation of logging behaviour written in
SML.NET

During weaving trials in which the logging aspect was applied to
each implementation of the Fibonacci algorithm, we noted that the
specification of types in XML was error prone, because mapping
from language-based type names to CLI type names must be done
manually. Writing a custom crosscutting specification in XML
involves using metadata descriptions to select join points. To
make Weave.NET aspects language independent, the crosscutting
specifications are specified in terms of CLI types, and not the
development language types with which a programmer will be
familiar. The need to map from development language types to
CLI types is acute in the case of primitive types, whose CLI
names vary considerably from those used in the source code of a
component. For example, Table 3.1 shows the mappings between
SML.NET primitive types, their C# equivalent and their CLR
name. These tables show no overlap between the programming
language type names and those used by the CLI.

<item>
 <named_pointcut>
 <modifier><public/></modifier>
 <name>SomeMethodExecution</name>
 <local_var_ref>
 <var_type>Int32</var_type>
 <var_name>data</var_name>
 </local_var_ref>
 <pointcut>
 <and>
 <pointcut><primitive>
 <execution>
 <method_signature>
 <return_type>
 <type_name>*</type_name>
 </return_type>
 <join_point_type>
 <type_name>*</type_name>
 </join_point_type>
 <method_name>*</method_name>
 <parameters>
 <parameter>
 <type_name>Int32</type_name>
 </parameter>
 </parameters>
 </method_signature>
 </execution>
 </primitive></pointcut>
 <pointcut><primitive>
 <args>
 <parameter>
<formal_parameter_name>data</formal_parameter_nam
e>
 </parameter>
 </args>
 </primitive></pointcut>
 </and>
 </pointcut>
 </named_pointcut>
</item>

Figure 3.1: A pointcut identifying method execution join
points to which logging is applied.

Table 3.1: Mapping between CLI (.NET) types and C# /
SML.NET equivalents, taken from [5].

structure App_Noninvasive_ML_Fibonacci
 : sig val main: string option array option->unit
 end =
struct
_classtype FibonacciSeries()
 with
 Fibonacci (n) =
 case(n) of
 0 => (Int64.fromInt(1))
 | 1 => (Int64.fromInt(1))
 | n => (this.#Fibonacci(n-1) +
 this.#Fibonacci(n-2))
 and
 FibSeries (n) =
 case(n) of
 ~1 => ()
 | n => (this.#FibSeries (n-1);
 print "Element\t";
 print (Int.toString (n));
 print "\t value \t";
 print(Int64.toString(this.#Fibonacci(n)));
 print "\n")
 end
 fun SelfTest (elements, times) =
 let
 val fibML = FibonacciSeries()
 in
 case(times) of
 0 => ()
 | n => (fibML.#FibSeries(elements);
 SelfTest(elements, times-1))
 end
 fun main (a : string option array option) =
 let
 val elements = 10
 val times = 1
 in
 SelfTest(elements, times)
 end
end

Figure 3.2: SML.NET implementation of application to
calculate Fibonacci Series elements.

We did experiment with making it easier to simplify type
specification by allowing the use of truncated versions of CLI
type names in which the namespace is removed. Hence, the use
of Int32 rather than System.Int32 in the XML of Figure
3.1. While these truncated versions are shorter to write, they
make mistakes easier to make. For example, in writing
“System.String”, we found the capitalization of System to
be a reminder to capitalise the ‘String’ portion. When the
namespace was removed, it was easier to forget that the CLI type
was being used, and so we reverted to using language-specific
monikers. For example, ‘string’, all lower case, was used
instead of ‘String’ with the capital first letter. These mistakes
are hard to spot, since it appears that the type is correctly written
Generally, user types present less difficulty, as their name and
namespace holds across language boundaries. There are still
quirks when user types are exported as nested classes. For
instance, class types exported by SML.NET are nested in their
respective module. Thus, a class Logger defined in module
ML_Logger would be accessed using the moniker
Aspect_ML_Logger+Logger.

Our evaluation also noted a severe problem with the accidental
selection of join points that could not be overcome using source
code analysis tools. In Figure 3.1, the regular expressions are
used in the pointcut designator’s argument to create a property-

based crosscut. However, such regular expressions can make
unexpected join point selections. Before evaluation, we made the
general assumption that these extra join points could be spotted in
source code. If this were the case, then with a careful
examination of component source could be used to predict the
behaviour of the final application and on the basis of this
prediction correct behaviour could be ascertained. However,
evaluation tests involving components written in SML.NET
indicate superfluous join points are not always visible from
source. Assemblies generated by the SML.NET compiler can
contain considerably more types than could be inferred from the
source code. For example, Figure 3.2 defines a SML module with
methods main and SelfTest at the module level and methods
Fibonacci and FibSeries in the class

Figure 3.3: Disassembler view of types contained in a
component written in SML.NET source in Figure 3.2.

FibonacciSeries. Using the directive “export
App_Noninvasive_ML_Fibonacci” to compile this source
results in a CLI component containing a surprising number of
additional types. As shown in Figure 3.3, a disassembler view of

the type definitions in the component uncovers a large number of
types for which there are no explicit declarations in the source
code. As expected, there is a type corresponding to the module
that contains the implementation of main and SelfTest, and
there is a class corresponding to the FibonacciSeries class
declaration that contains the implementations of Fibonacci and
FibSeries. The difficulty is that there are other types such as
Globals with methods such as “static char a(int32
A_0)” that would match the property-based crosscut for logging
shown in Figure 3.1.
Our tests verified that property-based crosscutting has useful
reusability characteristics, but its drawbacks make it quite
difficult to use when obtaining strong assurances of correct and
predictable behaviour is a concern. Difficulties in specifying
XML using a language independent type system made it difficult
to write crosscutting specifications by hand. While these could be
overcome with diligence, the inadvertent join point selection
could not. New join points introduced by the compiler when a
component was compiled could not be determined through source
code analysis, whether done by a human or via an automated
application.

4. LOGGING VIA ATTRIBUTE-BASED
CROSSCUTTING
To contrast attribute-based crosscutting, we revised the logging
aspect to exploit attribute types for join point selection, and
composed this new logging aspect with the Fibonacci series
algorithm implementations. Our evaluation noted the use of
attribute-based crosscutting offers a more succinct and accurate
means of applying crosscutting functionality, and attributed-based
crosscutting avoided the unexpected join point selection that
prevented application behaviour from being predicted from source
code analysis.
Attribute-based crosscutting specifications complement an
attribute type [8] that allows access to aspect functionality
through annotation of component source. In contrast to property-
based crosscutting, attribute-based crosscutting uses attribute type
names in place of join point implementation details such as types
and type member signatures. When using attribute type names,
the grammar for pointcut specifications is unchanged when it
comes to the primitive pointcut designators available, but the
parameters used for designators are changed. Rather than
signature or type name arguments, primitive pointcut designators
are parameterized with attribute tags describing the attribute type
name. In the case of the Weave.NET, these attributes are
implemented by the CLI’s custom attribute types.
The contrast between property-based and attribute-based
crosscutting can be seen in Figure 4.1. The top pane of the figure
contains the execution pointcut specification used in Figure 3.1 to
select execution join points for logging. In this pane, the selection
of method execution join points is based on a partial method
signature. In the bottom pane, the specification is revised to
select methods tagged with an attribute type with the name
Logging. This second version contains considerably fewer
terms than the first, but it is reliant on the ability to annotating
method source with an attribute type.
An example application of attribute types is shown in Figure 4.2,
where methods of the Fibonacci series algorithm are bound to

logging functionality. This example emphasizes the attribute
annotations by marking them in bold.

<execution>
 <method_signature>
 <return_type>
 <type_name>*</type_name>
 </return_type>
 <join_point_type>
 <type_name>*</type_name>
 </join_point_type>
 <method_name>*</method_name>
 <parameters>
 <parameter>
 <type_name>Int32</type_name>
 </parameter>
 </parameters>
 </method_signature>
</execution>

<execution>
 <attribute>Logging</attribute>
</execution>

Figure 4.1: Contrast between property-based crosscutting
(top) and an aspect-based crosscutting (bottom).

public class FibonacciSeries {
 [Logging]
 public void FibSeries(int seriesLen) {
 for (int i = 0; i<= seriesLen; i++) {
 long result = Fibonacci(i);
 System.Console.WriteLine("Element \t"+
 i+ "\tvalue \t"+result);
 }
 }
 [Logging]
 public long Fibonacci(int n) {
 if (n > 1)
 return this.Fibonacci(n-1)
 + this.Fibonacci(n-2);

 return 1;
 }
}

Figure 4.2: Fibonacci series enumerator annotated with
attributes to identify methods for logging.

In our tests, we noted attribute-based crosscutting provides an
alternative means of identifying CLI metadata that avoids
mistakes made with property-based crosscutting specifications
that are extremely difficult to detect. Recall that writing property-
based crosscutting involves specifying join points in terms of
metadata that is native to the CLI. There is little help available
from the weaver for detecting erroneous type specifications, as it
is hard to design a weaver that can distinguish between types that
are specified correctly and those that are specified in error. For
instance, the method parameters in Figure 4.2 are of type int.
int is the C# moniker for the CLI type System.Int32, and
thus the short form Int32 appears in the property-based crosscut
in Figure 4.1. Should the type int appear accidentally in the
crosscutting specification, one would expect the weaver to
complain. However, it is legitimate for a programmer to define a
custom CLI type by the name of int in a different namespace.
Even if we require that type names in the crosscutting
specifications include a full namespace, int is still a valid user
defined type. Attribute-based property selection avoids the issue
of detecting errors made when the language type name is mapped
to the CLI type name mappings, since the placement of attributes
on types or type members avoids the need to deal with join point

selection in terms of CLI-specific type names. In effect, the use
of attributes represents the introduction of language-independent
monikers for types and type members.
structure App_Invasive_ML_Fibonacci
 : sig val main: string option array option -> unit
 end =
struct
_classtype FibonacciSeries()
 with
 {Aspect_CS_Logging.Logging()} Fibonacci (n) =
 case(n) of
 0 => (Int64.fromInt(1))
 | 1 => (Int64.fromInt(1))
 | n => (this.#Fibonacci(n-1) + this.#Fibonacci(n-2))
 and
 {Aspect_CS_Logging.Logging()} FibSeries (n) =
 case(n) of
 ~1 => ()
 | n => (this.#FibSeries (n-1);
 print "Element\t"; print (Int.toString (n));
 print "\t value \t";
 print (Int64.toString(this.#Fibonacci (n)));
 print "\n")
 end
 ...
end

Figure 4.3: SML.NET implementation of Figure 3.2 updated
to exploit custom attributes.

Also, attribute-based property selection avoided unexpected join
point selection, since attributes follow the implementation of the
tagged method. With revisions to include attributes, the SML-
based Fibonacci series algorithm in Figure 3.2 takes on the
appearance of that of Figure 4.3, where attributes appear in bold.
Note that the definitions of main and SelfTest have been
removed for brevity. As before, additional helper types will
appear in the compiled assembly. However, an examination of
the metadata of the assembly indicates that only those methods
explicitly tagged at the source code level will have their metadata
description annotated by the logging attribute in the compiled
assembly. Thus, applying logging on the basis of attributes rather
than method signature, constrains logging to the Fibonacci and
FibSeries methods.
So, in addition to making it simpler to specify aspect-based
software product families, attribute-based property eliminated
problems with predictability that had prevented strong assurances
of correct application behaviour from being made from an
examination of component source.

5. CONCLUSIONS
In the context of language-independent AOP, attribute-based
crosscutting specifications have two important advantages over
property-based crosscutting. Use of attributes represents the
introduction of language-independent monikers for types and type
members that simplify the specification of crosscutting in a
language independent fashion. Second, attribute-based
crosscutting will not inadvertently match unwanted join points
introduced during the translation of a component source to a

language-independent substrate. This occurs because only those
component structures explicitly annotated with an attribute at the
source code level will have their metadata description annotated
by that logging in the compiled component.

6. REFERENCES
1. Bloch, J. JSR-000175 A Metadata Facility for the JavaTM

Programming Language,
http://jcp.org/aboutJava/communityprocess/review/jsr175/,
2003.

2. Costanza, P. Dynamically scoped functions as the essence of
AOP. ACM SIGPLAN Notices, 38 (8). 29 - 36.

3. ECMA International. Standard ECMA-335 Common
Language Infrastructure (CLI), http://www.ecma-
international.org/publications/standards/ecma-335.htm,
Geneva, 2003.

4. Filman, R.E. and Friedman, D.P. Aspect-Oriented
Programming is Quantification and Obliviousness Conference
on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 2000), Minneapolis, USA, 2000.

5. Kennedy, A., Russo, C. and Benton, N. SML.NET 1.1 User
Guide,
http://wwww.cl.cam.ac.uk/Research/TSG/SMLNET/smlnet.p
df, Cambridge, U.K., 2003.

6. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.
and Griswold, W.G. Getting Started with AspectJ
Communications of the ACM, 2001, 59-65.

7. Lafferty, D. Aspect-Based Properties Dept of Computer
Science, Trinity College Dublin, Dublin, 2004.

8. Lafferty, D. and Cahill, P.V., Attribute Types. in Submitted
for review to ECOOP 2005, (Glasgow, Scotland, 2005),
Springer.

9. Lafferty, D. and Cahill, V., Language-Independent Aspect-
Oriented Programming. in Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA 2003), (Anaheim, California, USA, 2003).

10. Masuhara, H. and Kiczales, G., Modeling Crosscutting in
Aspect-Oriented Mechanisms. in European Conference on
Object-Oriented Programming (ECOOP 2003), (Darmstadt,
Germany, 2003), Springer-Verlag.

11. Microsoft. Standard ECMA-334 C# Language Specification,
ECMA International - European association for standardizing
information and communication systems, 2001.

12. Microsoft. Visual Basic Development Center,
http://msdn.microsoft.com/vbasic, 2004.

13. Popovici, A., Alonso, G. and Gross, T. Spontaneous
Container Services European Conference on Object-Oriented
Programming (ECOOP 2003), Springer, Darmstadt,
Germany, 2003.

14. Szyperski, C., Gruntz, D. and Murer, S. Component Software:
Beyond Object-Oriented Programming. Addison-Wesley,
London, 2002.

15. The AspectJ Team. The AspectJ Programming Guide
(V1.0.6), http://download.eclipse.org/technology/ajdt/aspectj-
docs-1.0.6.tgz, 2002.

