

Proceedings of the Second AOSD Workshop on
Aspects, Components, and Patterns for

Infrastructure Software

March 17, 2003

Held in conjunction with the Second International Conference on

Aspect-Oriented Software Development (AOSD 2003)

Boston, Massachusetts

College of Computer and Information Science

NU-CCIS-03-03

Yvonne Coady, Eric Eide, and David H. Lorenz (Eds.)

Northeastern University

Boston, Massachusetts 02115

360 Huntington Avenue, 161CN

The Second AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software (ACP4IS)

March 17, 2003

A one-day workshop held in conjunction with the
Second International Conference on Aspect-Oriented Software Development (AOSD 2003)

March 17-21, 2003, Boston, Massachusetts

Aspect-oriented programming, component models, and design patterns are modern and actively
evolving techniques for improving the modularization of complex software. In particular, these
techniques hold great promise for the development of "systems infrastructure" software, e.g.,
application servers, middleware, virtual machines, compilers, operating systems, and other
software that provides general services for higher-level applications. The developers of
infrastructure software are faced with increasing demands from application programmers needing
higher-level support for application development. Meeting these demands requires careful use of
software modularization techniques, since infrastructural concerns are notoriously hard to
modularize.

Building on the ACP4IS meeting at AOSD 2002, this workshop aims to provide a highly interactive
forum for researchers and developers to discuss the application of and relationships between
aspects, components, and patterns within modern infrastructure software. The goal is to put aspects,
components, and patterns into a common reference frame and to build connections between the
software engineering and systems communities.

Organizing Committee

Yvonne Coady (University of British Columbia)
Eric Eide (University of Utah)
David H. Lorenz (Northeastern University)

Acknowledgments

Many thanks to Maja D'Hondt and Jeff Gray,
the Workshop Co-Chairs at AOSD 2003; to
Richard van de Stadt, the author of
CyberChair; and to Matthew Flatt, Carsten
Pfeiffer, and Jan Wloka for external
reviewing.

Program Committee

Elisa Baniassad (Trinity College)
Don Batory (University of Texas at Austin)
Yvonne Coady (University of British Columbia)
Pascal Costanza (University of Bonn)
Krzysztof Czarnecki (University of Waterloo)
Eric Eide (University of Utah)
Dawson Engler (Stanford University)
Andy Gokhale (Vanderbilt University)
Stephan Herrmann (Berlin Technical University)
Wilson Hsieh (University of Utah)
David H. Lorenz (Northeastern University)
Renaud Pawlak (University of Lille)
Mario Südholt (École des Mines de Nantes)
Jan Vitek (Purdue University)
Jonathan Walpole (OGI)

Table of Contents

Lock Inference for Systems Software
John Regehr, Alastair Reid (University of Utah) .. 1

Evolving an OS Kernel Using Temporal Logic and Aspect-Oriented Programming
Rickard A. Åberg (École des Mines de Nantes), Julia L. Lawall (DIKU, University of Copenhagen),
Mario Südholt, Gilles Muller (École des Mines de Nantes) ... 7

Speed vs. Memory Usage - An Approach to Deal with Contrary Aspects
Wolfgang Schult, Andreas Polze (Hasso-Plattner-Institute at the University of Potsdam) 13

Managing Complexity in Middleware
Adrian Colyer (IBM UK Limited), Gordon Blair, Awais Rashid (Lancaster University)......................... 21

The Aspect-Oriented Interceptors' Pattern for Crosscutting and Separation of Concerns Using
Conventional Object Oriented Programming Languages
John Zinky, Richard Shapiro (BBN Technologies)... 27

Invasive Composition Adapters: An Aspect-Oriented Approach for
Visual Component-Based Development
Wim Vanderperren, Davy Suvée, Viviane Jonckers (Vrije Universiteit Brussel) 33

Aspect Component Based Software Engineering
Pedro J. Clemente, Juan Hernández (University of Extremadura) .. 39

Learning from Components: Fitting AOP for System Software
Andreas Gal, Michael Franz, Danilo Beuche (University of California, Irvine) 43

AOP Support for C#
M. Devi Prasad (Manipal Academy of Higher Education),
B.D. Chaudhary (Motilal Nehru National Institute of Technology).. 49

Idioms for Building Software Frameworks in AspectJ
Stefan Hanenberg (University of Essen), Arno Schmidmeier (AspectSoft).. 55

Lock inference for systems software

John Regehr Alastair Reid
School of Computing, University of Utah

{regehr, reid}@flux.utah.edu

ABSTRACT
We have developed task scheduler logic (TSL) to automate reason-
ing about scheduling and concurrency in systems software. TSL
can detect race conditions and other errors as well as supporting
lock inference: the derivation of an appropriate lock implementa-
tion for each critical section in a system. Lock inference solves a
number of problems in creating flexible, reliable, and efficient sys-
tems software. TSL is based on a notion of asymmetrical preemp-
tion relations and it exploits the hierarchical inheritance of schedul-
ing properties that is common in systems software.

1. INTRODUCTION
Embedded systems, operating systems, and Internet servers are fun-
damentally concurrent because they must respond to external events
in real time. For people developing these systems, critical sections
can be considered to be a functional aspect of software: they are
used to maintain high-level program invariants. The implemen-
tation of critical sections, on the other hand, is a non-functional
aspect — it affects response time and throughput.

In this paper we take the position that locks in systems software,
which are usually named by referring to an instance of a partic-
ular lock implementation, should be specified at a higher level of
abstraction. At system build time a whole-program analysis should
be used to infer an appropriate lock implementation for each critical
section. This has a number of benefits that can lead to the creation
of robust, reusable systems software:

• Developers need not learn the complex rules that govern lock-
ing in systems software. For example, threads synchronize
with interrupts by disabling interrupts, interrupts must not
block, and non-preemptive event handlers are implicitly syn-
chronized.

• Code maintenance and modification is made easier and less
prone to bugs. For example, if an event handler is broken
out into a preemptive thread to ensure that its response-time
requirements can be met, resources that it shares with other
handlers, which previously did not need protection by a lock,
must now be protected. These resources can be automatically
detected be TSL.

• In many cases a generic component, which implements cor-
rect locking, is instantiated in such a way that its locks serve
no useful purpose, e.g., because it is accessed only by a sin-
gle thread or because a component higher in the call graph
provides sufficient serialization. In this case the locks can be
dropped as an optimization.

• When the analysis finds a critical section where no available
lock implementation works, a race condition has been de-
tected and this should be brought to a developer’s attention.

• Locks can be selected in such a way that their global side ef-
fects are desirable. For example, in a system where through-
put is important, it might be the case that all locks should be
implemented by disabling interrupts since this is very effi-
cient. In another system where real-time deadlines must be
met, it may be unacceptable to disable interrupts for more
than a few microseconds because this delays unrelated, time-
critical processing.

• Software components can be developed that are agnostic with
respect to the execution environments in which they are in-
stantiated. This is desirable because the environments in
which a component executes depend on the call graph for
a particular system. In effect, the execution environments in
a system cross-cut its traditional modular decomposition.

These benefits are provided by task scheduler logic (TSL), a novel
formalism for integrated reasoning about scheduling and concur-
rency in systems software. The key idea behind TSL is that the
hierarchical inheritance of scheduling properties, when combined
with modular specifications of schedulers and locks, can be used to
formalize the rules that govern locking in systems software. These
rules — previously informal and unchecked — are caused by com-
plex relationships between multipleexecution environments: soft-
ware contexts such as kernel-supported threads, user-level threads,
interrupts handlers, and event loops. Furthermore, as a side effect
of deriving and checking rules about synchronization, it becomes
possible to performlock inference: the derivation of an appropriate
lock implementation for each critical section.

Lock inference can be viewed as the top of a stack of useful ca-
pabilities for manipulating and analyzing concurrency aspects of
systems software. At the bottom of the stack is externally visible
and parameterizable locking — lock analysis and inference are dif-
ficult if locks are hard-wired into code. Many component systems,
such as our Knit [10], have this capability. In the middle of the
stack is the capacity to detect concurrency errors, which depends
on a model of resources and concurrency as well as a mechanism
for tracking the call graph. Many systems have done this, but TSL
is the first we are aware of that can find concurrency problems in
systems software where there are diverse execution environments.
Finally, at the top of the stack is the ability to automatically infer
an appropriate implementation for each critical section in a system.
This is the primary contribution of TSL.

1

disk_bh
CPU

IRQ

low

mouse
disk

high clock

process

high

low

network

p3
p2
p1

FIFO
net_bh

Figure 1: A generic UNIX scheduling hierarchy

2. BACKGROUND
This section describes the hierarchical scheduling concepts that un-
derlie TSL, the difficulties of creating component-based systems
that motivate our work, and the lightweight program analysis that
is a prerequisite for using TSL.

2.1 Hierarchical Scheduling
At a coarse granularity, the flow of control in a software system
is determined by its schedulers. In this paper a task is a schedu-
lable flow of control and a scheduler is any piece of software (or
hardware) that controls the order of execution of tasks. Proper-
ties are imparted to a task by each scheduler that it runs under.
For example, an interrupt handler cannot block and it is preemp-
tively scheduled at higher priority than any user-mode code. If an
event-processing loop is run in interrupt context, then event han-
dlers scheduled by the loop inherit event properties, such as non-
preemptive execution relative to other event handlers, in addition
to all interrupt properties. The schedulers in a system create a vari-
ety of execution environments, each of which has its own rules for
structuring code, sequencing operations, and interacting with other
environments.

Figure 1 depicts the scheduling hierarchy for a typical UNIX-like
operating system. The top-level scheduler, CPU, is implemented in
hardware; it runs interrupts whenever possible and user-mode code
otherwise. The IRQ scheduler preemptively schedules hardware
interrupt handlers based on their priorities, as well as a software
interrupt handler at the lowest priority. The software interrupt han-
dler runs a FIFO scheduler that runs deferred bottom-half handlers
disk bh and netbh with run-to-completion semantics. The process
scheduler is the standard preemptive UNIX timesharing scheduler;
it runs processes p1..p3.

We have found the hierarchical scheduling notation shown in Fig-
ure 1 to be quite useful and general for describing the execution
environments provided by systems. For example:

• Linux, Windows 2000 [12], and most real-time operating
systems are minor variations on the same theme.

• RTLinux [13] adds an additional level of scheduling above
the CPU scheduler by virtualizing the interrupt handling struc-
ture of Linux.

• TinyOS [6] has no thread or process scheduler: its scheduling
hierarchy includes only interrupts and an event loop.

HTTPD

Ethernet MemPool

MonitorTCP/IP

Figure 2: A simple component-based monitoring system

• Internet servers, Java virtual machines, and other application-
level systems software extend the scheduling hierarchy by
implementing event loops, thread pools, and user-level threads.

TSL provides a uniform notation for modeling these and other col-
lections of execution environments.

2.2 Component Based Systems Software
Figure 2 depicts the software for an embedded application that is
designed to (1) monitor a system such as a pumping station on a
remote section of an oil pipeline and (2) make information about
the system available to HTTP clients. Upon request theHTTPD
component retrieves data from theMonitor component and sends
it out on the network using theTCP/IP andEthernet compo-
nents. All components make use of a memory allocator.

Although TSL applies generally to systems software, and makes
no assumptions about the underlying component model, it is es-
pecially useful for analyzing component-based systems software.
First, component software tends to expose interfaces for locking,
making it easier to analyze and parameterize synchronization be-
havior. Second, component-based software is often hard to under-
stand due to its many indirect connections between software mod-
ules. This complexity interacts poorly with the multiple execution
environments that are created by a hierarchy of schedulers such
as the one in Figure 1. For example, assume that theMemPool
component in Figure 2 reports an out-of-memory condition using
a logging interface that is connected to a storage component (not
shown). The storage component uses a thread mutex to protect
its internal data structures. SinceMemPool can be called by the
Ethernet component while executing in interrupt context, the in-
terrupt handler can indirectly attempt to acquire the mutex, leading
to a system crash because interrupts are not permitted to acquire
mutexes. This bug will not be obvious to a developer who sim-
ply wants to reuse these components and who does not have a de-
tailed understanding of their internals. Furthermore, this bug will
be very difficult to expose through testing since the allocator rarely
runs out of storage. In our experience, creating correct systems us-
ing components like the ones in this example requires near-expert
knowledge about component internals. Clearly there is room for
improvement.

2.3 Analyzing Systems
TSL requires static identification of tasks, schedulers, resources,
critical sections, and the call graph for a program or system. There

2

are well-known techniques for obtaining this information; in prac-
tice we expect that a combination of annotations and language-
based program analysis will be used. For example, in our proto-
type implementation (see Section 6) we learn about resources us-
ing annotations and obtain an approximation of the call graph by
analyzing the component linking graph.

3. TASK SCHEDULER LOGIC
This section provides an overview of TSL.

3.1 Tasks and Schedulers
Tasks are sequential flows of control through a system; they are the
fundamental unit of reasoning in TSL. Each task has a well-defined
entry point and many tasks also finish by returning control to the
scheduler that invoked them. Other tasks encapsulate an infinite
loop and these never finish — control only returns to their scheduler
through preemption. Throughout this paper the variablest, t1, etc.
range over tasks.

Schedulers are modeled in a modular way by specifying the pre-
emption relations that the scheduler induces between tasks that it
schedules. Preemption relations are represented asymmetrically:
we writet1 t2 when taskt2 can preempt taskt1. That is, ift2 can
start to run aftert1 begins to execute but beforet1 finishes.

The simplest scheduler, a non-preemptive event scheduler, does not
permit any child to preempt any other child. For any two children
t1 andt2 of such a scheduler,¬(t1 t2) ∧ ¬(t2 t1).

On the other hand, a preemptive scheduler, such as a UNIX time-
sharing scheduler, potentially permits each child task to preempt
each other child task. That is, for any two children of such a sched-
uler, t1 t2 ∧ t2 t1.

A third type of scheduler commonly found in systems software is a
strict priority scheduler such as the interrupt controller in a typical
PC. It schedules a number of taskst1..tn and it is the case that
tj ti wheni < j.

3.2 Resources, Races, and Locks
At each program point a task is accessing some (possibly empty) set
of resources. The variablesr, r1, etc. range over resources, and we
write t → r if a taskt uses a resourcer. Resources represent data
structures or hardware devices that must be accessed atomically.

A race condition may occur if taskt1 can be preempted byt2 at
a point where both tasks are accessing a common resource. Prob-
lematic preemption relations can be eliminated using locks; at each
program point a task holds a (possibly empty) set of locks. We write
t1 L t2 if parts of a taskt2 that hold a set of locksL can start to
run while a taskt1 holdsL. For example, consider two threads that
can usually preempt each other. If holding a thread locklk blocks
a taskt2 from entering critical sections int1 protected bylk, then
(t1 ∅ t2) ∧ ¬(t1 lk t2).

Every lock is provided by some scheduler; the kinds of locks pro-
vided by a scheduler are part of its specification. We writet (l if
a schedulert provides a lockl, and require that each lock be pro-
vided by exactly one scheduler. There are two common kinds of
locks. First, locks that resemble disabling interrupts: they prevent
any task run by a particular scheduler from preempting a task that
holds the lock. Second, locks that resemble thread mutexes: they

only prevent preemption by tasks the hold the same instance of the
type of lock.

Locks satisfy three important properties. First, ift1 can be pre-
empted while holding a set of locks, thent1 can be preempted while
holding fewer locks:

t1 L1 t2 ∧ L1 ⊇ L2 ⇒ t1 L2 t2

Second, ift1 can be preempted byt2 while holding either a set of
locksL1 or a set of locksL2, thent1 can be preempted byt2 while
holding both sets of locks.

t1 L1 t2 ∧ t1 L2 t2 ⇒ t1 L1∪L2 t2

Finally, preemption is a transitive relation: ift1 can be preempted
by t2 andt2 can be preempted byt3, thent1 can be preempted by
t3.

t1 L1 t2 ∧ t2 L2 t3 ⇒ t1 L1∩L2 t3

The definition of a race condition is as follows:

race(t1, t2, r)
def
= t1 →L1 r
∧ t2 →L2 r
∧ t1 6= t2
∧ t1 L1∩L2 t2

That is, a race can occur if two taskst1 andt2 use a common re-
sourcer with some common set of locksL1 ∩ L2, and if t2 can
preemptt1 even whent1 holds those locks. For example, if some
taskt1 uses a resourcer with locks{l1, l2, l3} and another taskt2
usesr with locks{l2, l3, l4} then they hold locks{l2, l3} in com-
mon and a race occurs ifft1 {l2,l3}t2.

3.3 Hierarchical Scheduling
Each scheduler is itself a task from the point of view of a sched-
uler one level higher in the hierarchy. For example, when an OS
schedules a thread, the thread is considered to be a task regardless
of whether or not an event scheduler is provided by the thread. We
write t1 � t2 if a schedulert1 is directly above taskt2 in the hier-
archy;� is theparentrelation. Similarly, theancestorrelation�+

is the transitive closure of�.

TSL gains much of its power by exploiting the properties of hier-
archies of schedulers. First, the ability or lack of ability to preempt
is inherited down the scheduling hierarchy: if a taskt1 cannot pre-
empt a taskt2, thent1 cannot preempt any descendent oft2. A
consequence is that if thenearest common schedulerin the hierar-
chy to two tasks is a non-preemptive scheduler, then neither task
can preempt the other. This is a useful result when showing, for
example, that a lock is not necessary to protect a resource that is
accessed by a particular composition of components.

When a task that is the descendent of a particular scheduler requests
a lock, the scheduler may have to block the task. It does this not
by directly blocking the task, but by blocking its currently running
child, which must be transitively scheduling the task that requested
the lock. If a task attempts to acquire a lock that is not provided
by one of its ancestors in the scheduling hierarchy then there is
no child task for the scheduler to block — an illegal action has
occurred. Using TSL we can check for a generalized version of the
“blocking in interrupt” problem by ensuring that tasks only acquire
blocking locks provided by their (possibly transitive) parents in the

3

scheduling hierarchy. We formalize this generalization as follows:

illegal(t, l) def
= ∃ t1. t1 (l

∧ ¬(t1 �+ t)
∧ t →L r
∧ l ∈ L
∧ blocking(l)

3.4 Using TSL
Software developers, who compose systems using new and existing
components, do not need to directly interact with TSL. Rather,
they create software as usual, but in addition to protecting critical
sections with locks, they have the option of using avirtual lock
that is a cue for TSL to infer an appropriate lock implementation.
Developers who create new schedulers will need to specify their
properties in TSL, but we expect that these programmers will be in
the minority: most will reuse an existing scheduler and its attached
TSL specification.

4. LOCK INFERENCE
Many of the benefits of TSL are provided by its ability to infer
an appropriate lock implementation for each critical section. Re-
call that a lock assignment is legal if the lock is not a blocking
lock or if it is provided by an ancestor of the task that contains the
critical section. A brute-force algorithm for synchronization infer-
ence is to enumerate all legal assignments of locks to critical sec-
tions; the enumeration can stop once an assignment is found that
eliminates all race conditions. If no such assignment exists, then
there is a genuine race condition and the system cannot be built.
No special algorithmic support for the elimination of unnecessary
synchronization is required because synchronization inference sub-
sumes synchronization elimination. It suffices to ensure that one of
the locks available to each critical section is the “null lock” that has
no effect on preemption relations and is implemented as a NOP.

We currently use the brute-force algorithm to assign lock imple-
mentations to critical sections. Although it is tractable for systems
that we have analyzed, we expect that we will want to develop
improved algorithms. One avenue for improvement is to exploit
qualities of the domain. For example, the search space can be nar-
rowed by observing that it is probably not useful to attempt to use
a different kind of lock, or a different instance of the same kind of
lock, to protect different critical sections that access the same re-
source. In addition, for each resource the set of legal locks should
be tried in an intelligent order, probably starting with a “strong”
lock, like disabling interrupts, that eliminates many preemption re-
lations. Another way to improve performance might be to cast the
lock inference problem as an instance of the boolean satisfiability
problem, for which very fast solvers exist [8].

Once a lock assignment that eliminates all races is found it may
be desirable to optimize the choice of locks. Such optimization is
outside the scope of TSL, which has no mechanism for preferring
one lock assignment over another as long as both of them produce
a system that is free of race conditions. In general, there is a ten-
sion between choosing an efficient lock for each critical section
and picking locks that avoid unnecessarily delaying the execution
of unrelated tasks.

5. REAL-TIME CONCERNS
Since lock choice has a pervasive effect on system performance,
we plan to integrate synchronization inference with SPAK, a real-
time scheduling tool that we have developed [9]. The negative ef-

fects that locks have on real-time tasks can be quantified by adding
blocking terms— periods of time during which certain scheduling
decisions cannot be made — to the schedulability analysis equa-
tions [11]. If a lock resembles disabling interrupts, it contributes
blocking terms to all tasks run by the scheduler providing the lock.
On the other hand, a lock that resembles a mutex contributes block-
ing terms only to tasks that may attempt to acquire the same lock.
Blocking terms, like preemption relations, are inherited down the
scheduling hierarchy.

Besides returning a binary result about overall system schedulabil-
ity, SPAK can perform several useful functions that interact well
with TSL. First, it can evaluate therobustnessof a software sys-
tem under timing faults: tasks that run for longer than their nomi-
nal worst-case execution times. This is useful because it can help
TSL avoid creating systems that are brittle in the sense that a small
perturbation in task execution will cause real-time deadlines to be
missed. Second, SPAK has the capability to map a large number
of design-time tasks onto a smaller number of run-time threads;
this is useful for resource-constrained embedded systems because
it reduces the amount of memory devoted to thread stacks and the
amount of CPU time spent performing context switches. Synchro-
nization inference and thread minimization interact favorably be-
cause strongly coupled collections of tasks, when aggregated into a
single thread, will enable many locks to be eliminated. These tasks
should be preferred targets for thread minimization when compared
to collections of tasks that permit few locks to be eliminated.

6. APPLYING TSL
We have implemented a prototype TSL checker based on a forward-
chaining evaluator: it takes a specification for a system and derives
all possible consequences of the TSL axioms. Systems specified in
TSL are finite; there are a limited number of tasks and preemption
relations between tasks.

Our test environment is based on the Knit [10] component language
and the OSKit [4], a library of systems software components. We
extended Knit slightly to accommodate annotations about resources
and locks, and we used Knit’s component linking graph to generate
a safe (though crude) approximation of the call graph.

Figure 3 provides a more detailed look at the embedded, web-based
monitoring system from Figure 2. The scheduling hierarchy for
the system is shown on the left side of the figure and application
components are shown on the right side. For simplicity we have
omitted many infrastructure components. The full system consists
of 190,000 lines of code, 116 components, 1059 functions, 5 tasks,
and 2 kinds of locks.

Before we can analyze the system with TSL we must label all the
tasks (we name themh1, h2, t, e, andm), label all the schedulers
(we name themCPU , thread, IRQ, andFIFO), and generate
a TSL specification for each scheduler (not shown). We must also
add resources (namedrh, rb, rt, re, rmon, andrmem) and add
their uses into the callgraph, add locks (namedcli andlk), attach
locks to the scheduler that provides them, and label edges in the
callgraph with locks acquired before the calls are made. Figure 3
shows these labels and relations. The example includes some errors
in the use of locks that we shall discover using TSL. The schedulers
are, of course, also components, but to keep the example to a rea-
sonable size we do not show their resources, locks used to protect
those resources, calls to the functions they export, etc.

4

low
cli

lk

TCP/IP

Ethernet

re

rb

rt

HTTPD

h2

h1

t

cli

cli

lk

e

lk lk

cli

MemPool

Monitor

rmon

cli
cli

rmem

cli

lk

cli

rh
lk

m

CPU

IRQ

FIFO

thread

high

low

high

Figure 3: A simple component-based monitoring system (right) and its scheduling hierarchy (left)

6.1 Checking for illegal locking
To detect cases of illegal locking our implementation computes a
list of all the resources accessed by each task with a given set of
locks. For example, from the callgraph and locks shown in the
figure we generate the following table:

h1, h2 →lk {rh, rt, rb, rmem}
h1, h2 →lk,cli {re, rmem}
h1, h2 →cli {rmon, rmem}

m →cli {rmon, rmem}
t →lk {rb}
e →lk {rb}
e →cli {re, rmem}

Given this table and the knowledge thatlk is a blocking lock, it is
straightforward to apply the definition ofillegal to generate a list of
all the illegal lock uses:

illegal(t, lk)
illegal(e, lk)

Both problems are caused by using the locklk to protect the re-
sourcerb which is accessed by hardware and software interrupts.
They can be resolved by changing the lock tocli.

Although these errors can be easily found by inspecting Figure 3,
the real system has many more components and interconnections
and is difficult to debug by inspection.

6.2 Checking for races
A race occurs when two tasks may access a resource simultane-
ously. TSL provides a list of potential race conditions and can be
used to examine the scheduler hierarchy and call chain to diagnose
the cause of problems.

For example, from the scheduler hierarchy we can deduce that the
following preemption relations hold:

h1, h2, m ∅ h1, h2, m
h1, h2, m ∅ t

t ∅ e

Combining this with resource use and the definition ofrace, we
obtain the following race conditions.

race(h1, h2, rmem) race(h2, h1, rmem)
race(h1, m, rmem) race(h2, m, rmem)
race(h1, e, rmem) race(h2, e, rmem)

These can be fixed by acquiring thecli lock when calling from
TCP/IP to MemPool.

6.3 Synchronization elimination and inference
The system in Figure 3 does not contain any redundant locks. How-
ever, consider what would happen if, due to memory constraints,
the developer could only instantiate a single thread for theHTTPD
component. In this case the locks protectingrh could be safely
eliminated as could the thread lock providing atomic access to the
top half of theTCP/IP component.

All locks in our example refer to specific implementations. How-
ever, if thecli locks in theMonitor component in Figure 3 were
declared as virtual locks then TSL would inform us that acceptable
lock implementations arecli andlk.

7. APPLICABILITY AND LIMITATIONS
TSL applies to static systems where tasks, schedulers, critical sec-
tions, and the call graph are known in advance. Although this is
a good match for most embedded software we would like to ex-
tend TSL to handle systems with dynamic components. One way
to do this would be to use static analysis or dynamic checking to
bound the behavior of the dynamic part of the system. For example,
if we guarantee that a particular resource cannot be accessed by a
dynamic part of the system, then it is permissible to remove locks
protecting this resource provided that this is otherwise a valid opti-
mization. In general, tighter bounds on the behavior of the dynamic
part of a system permit more effective analysis and optimization of
the static part.

Although TSL cannot yet be used to check systems for risk of dead-
lock, we are exploring ways to permit this. If locks were rep-
resented as an ordered multiset, rather than as an unordered set,
then TSL could be used to enforce an ordering on lock acquisi-
tions, leading to a system that is guaranteed to be free of deadlock.

5

Furthermore, this would permit TSL to check for recursive lock ac-
quisition — this is legal for some lock implementations but not for
others.

8. RELATED WORK
Model checkers such as SPIN [7] and Bandera [1] represent a promis-
ing approach to bringing the benefits of concurrency theory to de-
velopers. Model checkers are more powerful than TSL in that they
can reason about deadlock and liveness. However, TSL adds value
over model checkers by specifically supporting the hierarchical in-
heritance of scheduling properties that occurs in systems software
— this permits effective reasoning across multiple execution envi-
ronments. Also, model checkers provide no support for lock infer-
ence.

The trend towards inclusion of concurrency in mainstream lan-
guage definitions such as Java and towards strong static checking
for errors is leading programming language research in the direc-
tion of providing annotations [2, 5] or extending type systems to
model locking protocols [3]. These efforts are complementary to
our work on reasoning about concurrency across execution envi-
ronments; we believe that TSL and extended type systems would
be a very powerful combination.

Early versions of our Knit toolchain [10] had a primitive mecha-
nism for tracking top/bottom-half execution environments. It did
not model locks and locking, but could check for the “blocking
in interrupt” error that is particularly easy to make in component
based systems. In the earlier version of Knit we could move com-
ponents from one environment to another and check the resulting
systems, but we could not add new execution environments or even
model all of the environments in systems that we built.

9. CONCLUSION
TSL is a new logic that supports integrated reasoning about schedul-
ing and concurrency; it supports lock inference as well as the de-
tection of concurrency errors and elimination of redundant locking.
Binding critical sections to lock implementations too early is the
source of many problems in developing flexible, reliable, and ef-
ficient systems software. We believe that TSL, or something like
it, is necessary to create next-generation software systems where
components can be flexibly and correctly instantiated in a variety
of execution environments.

Acknowledgments
The authors would like to thank Eric Eide, Jay Lepreau, and the
reviewers for providing valuable feedback on drafts of this paper.

This work was supported, in part, by the National Science Foun-
dation under award CCR-0209185 and by the Defense Advanced
Research Projects Agency and the Air Force Research Laboratory
under agreements F30602-99-1-0503 and F33615-00-C-1696.

10. REFERENCES
[1] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn

Laubach, Corina S. Pasareanu, Robby, and Hongjun Zheng.
Bandera: Extracting finite-state models from Java source
code. InProc. of the 22nd Intl. Conf. on Software
Engineering, Limerick, Ireland, June 2000.

[2] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. Extended static checking. Research Report
159, Compaq Systems Research Center, Palo Alto, CA,
December 1998.

[3] Cormac Flanagan and Martin Abadi. Types for safe locking.
In S.D. Swierstra, editor,ESOP’99 Programming Languages
and Systems, volume 1576 ofLecture Notes in Computer
Science, pages 91–108. Springer-Verlag, March 1999.

[4] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau,
Albert Lin, and Olin Shivers. The Flux OSKit: A substrate
for kernel and language research. InProc. of the 16th ACM
Symp. on Operating Systems Principles, pages 38–51,
Saint-Malô, France, October 1997.

[5] Aaron Greenhouse and William L. Scherlis. Assuring and
evolving concurrent programs: Annotations and policy. In
Proc. of the 24th Intl. Conf. on Software Engineering, pages
453–463, Orlando, FL, May 2002.

[6] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David
Culler, and Kristofer Pister. System architecture directions
for networked sensors. InProc. of the 9th ASPLOS, pages
93–104, Cambridge, MA, November 2000.

[7] Gerard J. Holzmann. The Spin model checker.IEEE Trans.
on Software Engineering, 23(5):279–295, May 1997.

[8] Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient
SAT solver. InProc. of the 39th Design Automation
Conference, Las Vegas, NV, June 2001.

[9] John Regehr. Scheduling tasks with mixed preemption
relations for robustness to timing faults. InProc. of the 23rd
IEEE Real-Time Systems Symp., Austin, TX, December
2002.

[10] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and
Eric Eide. Knit: Component composition for systems
software. InProc. of the 4th Symp. on Operating Systems
Design and Implementation, pages 347–360, San Diego, CA,
October 2000.

[11] Lui Sha, Ragunathan Rajkumar, and John Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization.IEEE Transactions on Computers,
39(9):1175–1185, September 1990.

[12] David A. Solomon and Mark E. Russinovich.Inside
Microsoft Windows 2000. Microsoft Press, third edition,
2000.

[13] Victor Yodaiken. The RTLinux manifesto. InProc. of The
5th Linux Expo, Raleigh, NC, March 1999.

6

�������� �� 	
 ��
��� ����� �����
�� ����� ���

�������	
������ �
��
�������

������� �	
����
�� ����� �	 ��������� ����� ���������� ��� ������ �������

������� ���	

��
��� ��� ����� �� ������������
����� ������ ����� � !���
�
����������	
��
����������������

��"�#$
$��%�����& �' ��
��(����
)*�� ��
��(���� + "��,��-
������	����	�

��������

������ �����	
�� �
�	��� ���� �� �
��� ��� ������
������� �
���� �� ���	���� 	��	 ��� �
Æ���	 	� �������
���� ���� 	�� ���
���	
��� ������ 	� �� �
�	���
�	
�� �� 	�
� ������ �� ����
��� 	�� ������� �� ������

�� �
��� 	� ������	 	�� ����� ��������� ��� ������
���� ����������	� �� 	�
� ���������� � ��� ���������
������	� 	� 	�� ������ ��
�� ����	� 	��	 ��� ������
�	�� �	 ����
�� ��������	
 ���	
�� ��
�� ��� ���		����
	��������	 	�� ������� � ��	���	� 	�� �����	
�� ��
�
��� 	� ������	 ������ �� ��� �� �����	 	��	 ���
���
��� ��� 	�
��	�����	 	�� ������ �
	� ����	 ����
���	
��� �
� �����	 ���� ����� 	��	 ���
 �� 	�����
��� ���
� 	�
���	
�
 	�� ���	����!�� ���	��	�
� ��
��
	�� �����	 ������ ����
� �� 	�
� ������ �� ������	
�������� �� ����� 	��	 �
���
��	 	�� ���	���� �� ���
���������

� 	
����
����

�����
� � ��������� �
��� �	 �
���
�

�� 	�� ���
��
�� ������������ ���������� �� 	��	 �� ����
��	
�� ����
������� ��� ������� ����
�� �������
�� ���
�
�� �
	��
��	 �����	������ �����	
�� �
�	�� "#$% ��������� &'(�
) ����� �������
�� ���
�

� ��
		��
� � *���
� $���
�
�� �������� 	��	 ����
	� �
�������� ����	
 �������
	
�� 	� �� �	�	
����
 ���
��� &'+(� �� ���
�

� ����
�
���
�	� � , ��� 	��	
� �
	��� �
���� �	�	
����
 �
	�
	�� ������ ��
��	����� �
���
����
 �� � ������ ����
���� � ���
��� ��������� �������
	
� 	�� ���
�

�
������	�� 	� 	�� ������ ��
�� ����	� "����� ������� ����
�	
��� 	���
��	
�� ��� ��-�����
��% 	��	 ��� ������

�������� �� 	�
������
�
� ��� ���
�� ���� �
����
�
�
�������� �
��
������ ��� 	������� �
� �������������� �
������
���	��� ��� !� "
��
�� #�� #���� $%� ��� & '��� �
�� ���
��
��
��� �� ���� () #���
�
�� ����� �
������ ��� *$�+&

�	�� �	 ����
�� ����	
���� ��������	
 ���	
��
� �����

��� ������ ����
��� ��� ��
����� ���� ����	� ��� 	�����
�
		�� 	� 	�� �������
�� ���
�
 �
 	�� ����� ���	
��
�
�	���

����� ��� ���� ��������� �
	� 	�� ���� ��
�������
����� ���� 	�� ������� ��� ��� ����
�������	��
�
����
��� +�+ ��� +�. �� �
���� ,�����	�
� �� #$ ����
���
� �������� ��� ��� �
	� ����� �
 �������
 	�����

�� ���� �������
�� ��
�	� ������
�� 	�
��������
�
����
��� ������	
��� ���
��	�����	
�� 	���� ��������

�� ��
�	� �
	� ����� 	� ������ 	��	 ������	� �����
����	�� /��� 	����� 	�
� ������
����
�� ����� 	� ��
���� ���
 ���� ��� � �
��� ������� �������
�� 	�
�
	��� �������

� 	��
��� ��� ������������ �� ������
���� �� 	�� �
��� +�. ������ ������� '00��� �� ����
���	
�	����	
�� �� �����
�	� 	�
� ����
�� �� �
���

������� ���� 100 ����	 ������	
��� ��� ������	� +23
�� 	�� ���
����� �
�	�� ����
��� ��� '23 �� 	�� ���
��
���� ��
�����

 �� �
�� �
�	�
��	
�� �� �������
�� ��
�	� ������
	�� ������
��
��	�� 	��	 �������
�� �� � ������� ������
��	� #$ ������ ���� ��� 	��)����	�#�
��	�� 4���
�����
�� ")#4% ������ �� ������ 	� ��	���	� 	��

�	����	
�� �� �����
�	� �� ��
�	
�� ������� 5�����
	������� ������)#4 	����
6��� &+� 7(� ����� ��
��
�	�����	
�� ����	
�� ���� ��� ��	��� ��
�	�� ��� ��	
��Æ�
��	 ���
��	�����	
�� ������ ���� �
	� �����
����	 ��	
���	
���� 8����� ���
�� ������	
��� ����
�

� ����
�� ��6����� ��
��	���	
��� 	� ����
 ��	 ��������

�� ��	
���� ��� ����� ����	 ��	
���	
��� ���	 ��

����	�� �	 	�� ����� �� 	����
��	���	
���� 9��	����
����� 	�� ���
�� �� ����	�
� ��	�� ��	���
��� �
 	��
�	���	��� �� �� ��	
�� ���� ��6����� ��
��	���	
���
��	��� 	��� �
 � �
���� �����	
��� �
� ������	�� ���
�� ����
��	
�������
�� 	���������	
�� �
�	�� 	��	 ���
������� 	�� �	���	��� �� ������ �����

�� 	�
� ������ �� ������	 ����
�
���
 ���� �� �� ���

7

� ��� ������� ��	��
��
� ���������������

� ����� �����	
�
 �
�
�������������
� 	�� �	�� �����
��� !"#�$!��� ��	 ���� �	��% ��	����

& ��� ��' (�"
�� !"#�$% �� !"#�$!���� (�"% �%)*����� �+)����
��

� ����� ����� ������� ������	
�
 �
�
�������������
, ��-���"�
��

. �-�"�
��/ ��	�
�� !"#�$% 01�)*��)���
)*����� �+)����
��

2 � 01�)*��)��� ��
3� 4

5 �6
��/�	" (�����/
��������� 4

7 ���8	" 9 ������

: '��	;�

�< =

� ����� ����� �����
 �

������	
�
 �
�
�������������
�� ��-���"�
��

�� =

�& ��/ �����
�� !"#�$% 01�)*��)���
)*����� �+)����
�% <��

�, ���>8� �	�� �����
��� !"#�$!��� ��	 ���� �	��% ��	����

9
���� ': /�����	 �� 	�� 4,��
�� ��
��� ��	�� �����
��	�����	�	
��
����	��

���	 �
�	�� 	��	 ������ ���
�� 	� �� ����� �	 	�� �����
�� ��������
	
 ��6�
��� ��� 	��
�	����	
�� �� �����
�
�� #$ ������� #�� ��������
�
� 	�� ��
�
	 �� /���	�
�����)#4 &.(�
� ��
�� �������	� ��� ������
� 	����
�� ��	� ���
	���
 ����	� 	��	 ����� ���
�� �������
�����	
�� ��� 	�� ����	
��� ��	���� ���� ����	�� 	���
�������
;
��)����	<=� ��
�	��	�� #�� ��
� ���	�
���
	
�� ����
�	� �� �� �����	 ��� ������
��	�����	�	
��
��������� �� � ��	 �� 	���������	
�� ����� 	��	 ���
�������� �� 	������� ���
� 	� ����
���
 �����
�� 	�� ���
6������ �� ������ ����
��	���	
��� 	� ��
�� 	�� �����
����
�
 �� ���	 �� 	�
� �����
� �	���	���� �� �������: $���

	
�� + �
��� ����������
������	
�� �� �������
��

� �
��� ��� ����������
�� ����� ����	�� $��	
�� 1
����� ��� ����� ������
��	�����	�	
�� ��� �� ���
���� ��
�� ����
	� ����� ����� �� 	������� ���
�� $���
	
�� . ������	� ����	�� ���� ��� $��	
�� 2 ����������

� ��

� �����
��
� ���
��

 �� ����	 �� �������
��
� �
���
� 	�� ����	
��
���������	� ��
�� ������	� 	�� ����
�� ������� ���
����	� � ��� ������� ���� ����� 	���� 	��	 ��� ����
���	�
 ����
� �� 	�
� ������ �� ����� �� 	�
� �������
	
�� �� 	�� ����
�� �������� ��	����� ��� ��������

� ����
����� 	� �	��� �������
�� ��	
���� �� ���
���	 �� ������	
�� ������� �� 	�� ������	 �	�	� ��
	�� ������	�� �������� ���� �	�	�� ��� �������

�����
��
 �������
��
��	�� 	��	 	�� ������� ���
��
�� ����
�
��
 ��
�����
���� ���
��
 �����

�����
����
��
��	� 	��	 	�� ������� ������ ��	
�
����
�
	�
 ���������) �������
� 	�� �	�	�
��
 ���

�����
���� ��� ���� �� �������� �
 � 	
��� �� �
�
����� �� ���	
������
� � �
����
� ����
�� ��� 	��
������� �	 	�� 	
�� �� 	�� ���� 	� ���������	� � ����

����
� 	�� �	�	�
��
 ��
�����
���� ���� ��	 �����
�	 ���>
	 ����
�� ����
 �� ��� � �������
� 	�� �	�	�

��
 �������� ������� �	�	� ������ �����	
��� ���
����� 	� ���������	 ��	�
�!����� ��� � ��� �������

� ����	��� �� ����
��� ��	� �
��� �� �����	
��� 	� ��
�������
�� ��
�	��

��� ����� �	�
�� �

�
��

 �
����	��	� 	�� ������� ��
�	����	
�� �����
�	� ���

�	
�� ������ ����� �� ��� �� ��	���	 �� 	�� ���� ���
�	�����	� �///'17. 4,��
�� ��
��� ��� �
��� +�.�'?�
�� �����
� 9
���� ' "���� ����� ��� �����
� �����

�
	��
��%� �
��� '�. ����� 	�� ����
�� ������� 	�
����� ��	
� 	�� �������� �����
�	�� �
	� 	�� ��
	
6���� ������������� ��� ��� !��� ������� ���
��
����� �� ���� ��	���� �
��� 2 ��� '+ ������ 	�� ����
�
�� ������� 	� �����	���
 ����� ��	
�
	 ����
��� �
�
���� �� 	�� ����
	
�� �� 	�� !���� ����
� �� ������
��	
����� �
� ���� ���	�
�� 	���� �������
�� ��
�	�:
	�� ��		
�� �� 	�� �	�	� �� 	�� ����
�� ������� 	�
��
�
��
�����
����
� �
�� '� ��� 	�� ����� 	� ���������	

� �
��� . ��� ''�

�� �
���� 	�� ��		
�� �� 	�� �	�	� �� � �������
	�
��
 ��
�����
���� �����	� 	� � �������	
��
	��	 	�� ������� ������ ����� �	 	�� ���	 ���� 	�
���������	� ������ 	����
� � ����
�� �
����� �
��
���� 	�� ����� ���
�
 	��	 	�� ������� ������ ������
��
����	 � ��� �� 	�� �"��� ��"#
����� �	 	�
� ��
�	
"9
���� '� �
�� �%�

 �� 	���	���	 �� � ���� 	� ���������	 ������� ��
	�� ������	 �	�	� �� 	�� ����
�� ��������)	 	�� ����
	� ���������	
� �
�� .� 	�� �	�	�
� ����� 	� ��

��
 ��
�����
����� �� 	�
� ����� ��
����	 � ���
�� 	�� �"��� #$�#
 ���%��� ����������� "9
���� '�
�
�� �%� �
� ����� ������ ���	��� 	����
� � �
����

8

����
�� ��� 	�� ����
�� �������>
� ���
� ��	��	��
	�� ���
�

�
������� 	��	 	�� ������� ������ ����
�
����
 �	 	�� ���	 ���� 	� ���������	�)	 	�� ���� 	�
���������	
� �
�� ''� 	�� �	�	� �� 	�� ����
�� ����
����
�
��
 �������> 	�
�
� 	�� �	�	� �� � ������� ��
��	��� ���� � ���� 	� ���������	 "�����
� �
�� . �� �
��
''% ��� 	����
� ��
�	�����
�� ������� �	�	� �������
�� 	�
� ����� ��
����	 � ��� �� 	�� �"��� &���% �&��

�' �''�%��
� ����� "9
���� '� �
�� �%� ��
��
��
����� 	�� ���
�
 	� ������� 	� ������	 	�� ����
��
������� ���� 	��	 	�� ������� ����
�� ����
�

 �� ����� ����	� �� ��	 �@��	 	�� �����
	�� ���
������� �
 	�� 4,��
�� ��
��� ����� ���	���� 	��

����� 	�� ����� �������
�� ���
�
 �� 	�� �	�	� �� 	��
����
�� �������� �� 	��	 	�� ���
�
 ��� ��� 	�
�
�����
��	
�� ����
	 ���	 ����	� � ��� ��������

��� ��������
�
�
�� �
������
���

���

A� ��� ����
��� ����
����� 	��	 ��
��
� ��	���	�

�� 	��
��	�����	�	
�� �������� #�� ����
�
� �� 	��
�
��� ������ ���� ������	� 	��	 ��
�	������������
����
�
�
� ��Æ�
��	 	� ��	��	 ��		���� �� �������
��
��
�	�� 9��	��������
� ���� ���� ����� � ������ 	�
� ������� �	�	� ������� ���� ��		����� 	�� �@��	�� ����
����
� 	�� ����
�� �������� ���� �� �� ��	 ���� 	�
��	��	 ��
���� ��	���� ������� ����������� �� ����
���� ��		���� �� ����
��� ����
� ������
� ��� ��
���
 � ��� ���� ������ 9�� �������� 	�� ��		
�� ��
	�� ������� �	�	�
� ��������� �
 �
	��� 	�� �
���	
���
�����	 �� � ����	��	 �	�	� ����� 	� 	�� �����

���� �� 	�� �������� �� �
 ��� �� � ������ ���� ��
��� �� ��� ������ 	��	 ��� 	�� ���� �@��	�� ����
� ��	�!�� ����
�
�
� ��	 ������� #������� 	���� �����
��	
��
���
 	��	 ��	���	
�
��	�����	�	
�� ���� ��	
�� ����
�
	
���
 ������
���

/���
 ���������� ��
��
 ��
�����
���� ������ 	�
��
��	�����	�� �
	� �"��� ��"#
� ���� � 	��������
��	
�� ���� 	��	 ���
 ����
���
��
�
����
��	���	
���

� ��Æ�
��	
� 	�
� ����� ��
��	�����	�	
�� �� �
���� 	� ���������	� �������� ������� �� 	�� �	�	� ��
	�� ����
�� �������� ��
��
� 	��� ������� �� 	��
��	 �� ����	�� 	� 	�
� �	�	� 	��	 ��� ����� 	�� ���� 	�
���������	�) �	�	
� ����
�
� 	� ��	���
�� 	�� ��	 ��
���� ����	�� ���	 ��	��	
���
 	��� ���

��	���	
���

�	� ������	� ��� 	����
��	���	
��� ��� ������ ��	�
������ ��� ��	�� 	�� �
��� ���� 	� ���������	� 9��
�������� 	���	���	 �� 	�� ���� 	� ���������	
� �
��
'' �� 9
���� ' ��6�
��� ����
���
�� ��	� ����
���
��
	�� ���� ������
�� 	�� !���� ���� ��� 	�� ��	
�� ����

��� ���� ������ �� ������ ���� ��� ������� ��	�� �� �,��)�
����&

true

false

if(signal_pending(current))

schedule();

while(...)

add_wait_queue();

schedule();

set_current_state(TASK_INTERRUPTIBLE);

reg_write();

remove_wait_queue();

retval=−EINTR;

run_sub_pcl();

n

9
���� +: ,9B ��� ������	 �� 4,��
�� ��
���

���
� A� 	��� ����� ��� � !�������
	
�� ��	��� 	�
������� �������	��

� ��������
� ������
��
��
�

�������� �����

 ������� ���
�
� � ���
� 	��	
� �������
 ���� 	� ���
����� ������	
�� �� ��6������ �� ����	�� �
� ���
�
�
��	�� ���� 	� ����� ������	
�� ���
����� ��
�� �����
�����
�� &?(� ��� ��� ���� ����� 	� �� ������ ��� ���
���
�
�� ��	��
� ���	����!�� ������
� ����� 	� ��
��
����
��� ��	
�
;�	
��� &'0(� 9�����
�� 	�� ��		�� �����
��
�������	 �� �����	 ��� �����
�	����	
�� �� �
������	
�� �� ����
	� ����� 	��	 ��� 	������� ���
� 	�
�����
�� ����
	
��� ����� ��
�� ����� ����	 ��	
����
	
��� ������ ��
����	��
� ������ �����

��� ������� �����

A� ������� 	� ����� ����
	� ����� ����� �� ���	����
!�� ������ ",9B�%� ����� ������
� ��
�� ����� ����
�����	 �	�	����	� ��� ���
�
�� ��
�	� �� 	�� �������
��� ����� ������	 ����� 	��	 ��� �� �����	��
� ���
6������ 9
���� + ����� 	�� ,9B ��� 	�� ���� ������	
�� 9
���� '�

A� ��� ����
	� ����� �� 	�� ����:

��� � ��� �' ����	
	��

9

����� ���
� � ��		��� 	� ��	�� ���
��	 ,9B ������
��� �����
��� 	�� ���� 	��	 ������ ������� 	�� ����
��������	�� �
 	�� �
��� ���� ���� 	�
� ��	�� ����
������ ��� ��	��
��	 �����
��� 	�� ����
	
��� �����
��
�� 	�
� 	���������	
�� ������ 	��� ������
)� ������� �� ���� � ����
�:

� . /��
 ������
 �
�
������ ������ !��"#�$%0 �
&�% "'��� "#'(���� �����������
$%)

 �� ���	����� �
�� �� 	�
� ���� ��	���� � ���� ������
���	
�� 	�� �	�	����	 ��� �� ��� ������
��
 ���

�����
����	 ��� ������ 	�
� ���� �� �� �
��	�����
�
�� �� 	�� ����
��
��	�� 	��	 	�� ��	���� �	�	����	
������ �� �������� �
 � ��6����� ����
�	
�� �� 	�� ��
��

��� �	�	����	 ��� ������	
�� �� � �"��� ��"#
 ����	�
)� �����
���
� $��	
�� +�+� 	�
� ���� ����
�� ��������
	�� �	�	� �� 	�� ����
�� �������
� ��	 	�
��
 ��
���

���
����� ��� 	��� �� ����
	
��
� �������

��� ����������

 � �
���
�
 	�� ������	�	
�� �� 	�� ����
	� ������ ��
����� ���� ����
��	�� 	��	 �����
�� �������	 ����
�	���	�
� 	�� ������ ��������
 �� ����
��	� ����"�% ����� �� ��
 ���� ������

���	
�� � �	�	����	 �� 	�� ���� �� �� ����
��	�
����"�% "�� ����"�%% ����� �� ��
 ���� ��������	
�� 	��
	��	 ���	
�� �� � ����
	
���� �	�	����	� ����� 	��
	��	
� 	�� �������
�� � ��� 	�� ������	 ���	����!��
��	�
������� 	�� 	��� "�� �����% ������ �� 	�� 	��	�

�
��� �������� ��� ��������������	�� ��
�� �����
�	 ��
 ���� ��������	
�� � ���� 	� ���������	� ���
�������(���)�����(��� ���	�� ��
�� �����
��� 	��
��
���� �� � 	��	 ��� � ����
�� �
���� ��� 	�� ������	
�������� �� ����
��	� 	
����� ����� �� 	�� ���� ����
�����	
�� 	�� ��	�
 ��
�	 �� 	�� ������	 ����	
���
 � ����� 	�
��	���	
��� 	��	 ��	 	�� �������

�	�	� 	� � ����
�� ������ �� ��� 	�� ����
��	�
�
� ����
��� ����� �
� 	�� ���� �� � �
��� �������
�	�	�� 9�� �������� �
� ����
�
��
 ��
�����
�����
��	���� ��� �� ��� ������
��
 ��
�����
����	�
#	��� ����
��	�� ��	�� ���� ������� ��	� �� �	�	�
�����
�� �����	
���� �� ����
��	� ���
�
 �� ������
�
��� ����� �� � ���� ��������	
�� � �	�	����	 	��	
��	� 	�� �	�	� �� 	�� ����
�� ������� 	�
��
��	�
	��	 	�� ������� ������ ������ /�������
������
��� �� ��� ������
��
 ��
�����
����	 ��� ����

�� ��� ������
��
 ����
�����
����	� $
�
����
�
���
�
 �� ��

�
��� ����� �� � ���� ��������	
�� �
�	�	����	 	��	 ��	� 	�� �	�	� �� 	�� ����
�� ������� 	�

��
��	� 	��	 	�� ������� ������ ����
� ����
� /����
����
������ ��� �� ��� ������
��
 �������	 ���
���������	� 9
����
� �� ����� ���
�
 �� ����
�� 	� ��
���
�
 �� ������
��� � ���
�
 �� ��

�
����

��� ��������
� ��
���� �
� !��"�

 �� ����
	
���
� ��� ����
	� ����� �����
�� ������	
��
�� 	�� ����� ����� � ������	
�� �� ��	��
� � ,9B� 9��
	�
� �������� �� ��� C������	� �� 	�� ����: � � �

����� �
� � ���� �� 	�� ,9B ��� �
� � ������� ��
	������� ���
� "����
�����
� � ���
��	 �� , � &'0(%�
9�������
� 	�
� ���
� ��� �� �������:

� ::D � � �� � �� � �� � �� � ��
� �"�� � ��% � �"�� � ��%
� ��"�� � ��% � ��"�� � ��%
� �	"�% � �	"�% � �	�"�% � �	�"�%

 �� ������� �
� ��
 ������
	
��� �� �����	��� ��
�� ��� � ��� ������ ��
� ������
	
���� ���
�� ��
����
�
�� �������� �����
�� ��
�������
 ��� ��
�	���
	
���
 6���	
��� ������	
��� �� ��	��� A�
����	��	� 	��
�����	
�� �� 	���� �������� �
 ���������
) C������	 �� 	�� ���� � � �"�� � ��%
� ��	
��

���
� ��� ���� ��	� ���
��
�� �	 �� ����
 ���� �����
	�� ��	� ��	
���� �� �	
�� � ���� �� ��	
��

�� ��
�
�������� �� 	�� ��	� �����
���
	��
 ��� ����
 ����

� 	�� ��	� ��	
���� ���

� �� ���� �� ���� ��	 ��	
��

��� 9�� ������ �� ��� ��
���
�

�	����	��
� ����
;
��
����� ����� �����	
�� �������� � ���� 	� ���������	�
��� 	��� �� ����
��� ��	�� 	��	 ���� ��	��� 	��� ���
�
�� �	 	�� �
��� ���� �� $��� � ��������� ������
�
��������� �
 	�� �����	�� �> 	���� �� 	
�
����
 ���
C������	� �� 	�� ���� � � ��"�� � ��% ��	��� 	���
� � �"�� � ��%�
#�� ����
�
� �� 	��
��	�����	�	
�� �� �
��� ���

����� "$��	
�� +�'% ������	� 	��	 �� ����� �
�� 	� ���
��� � ����
�� 	���	���	 �� ���������	 	��	 ������
����
 ���� 	�� �	�	� �� 	�� ����
�� �������
� �����
	� ��� ��
��
��
 ��������) ��������
 ����
	
��
�
	��	 ����
 ���	����!�� ��	� ���
��
� 	�� ���� �

��������	
�� 	�� �
��� ���� 	� ���������	 �������
	�� �	�	� �� 	�� ����
�� ������� 	�
��
 ������� ��
������� 	�� ��	�
 ��
�	 �� 	�� ����	
��� A� �������
	�
� ����
	
�� �� �������:

� � ��"��
� � "����	�
� �
����	�� � ��
����00

 �� ������
	
�� ���� ����� �	 ��
 ����� �� ������
�
	
�� ���
�
 �� ��

�
��� � 	
����� ����� �	 ��
 ����
��		
�� 	�� �	�	� �� 	�� ����
�� ������� 	�
��
 ����

���� �� ���� �� �	 	�� ��	�
 ��
�	 �� 	�� ����	
��� ��
������	� ������� 	��� ������ 	��	 �� ���
�����	 ��
	�� �	�	� 	�
��
 ������� �������� �	 ���� ����
���
���� ��� ��	 ��	� �� ����
	
��� �� 	�� ����� ��	����
� ��� ���
 �� �������� �"�� � ��% ��� ��"�� � ��% ���

��������� 	� �"�� � ��% ��� ��"�� � ��% ��	 ���

�'�������,,)� �� ��� ��� -����. �
��
� ���� � ��!&

10

��6�
�� 	�� ��
�	���� �� � ��	� ����� ����� ��	
��
 	��
������������ E���� �������� ����
��
� ��	 �������>
	�� ��	� ���	 ���	�
� � ���� 	��	 ��	
���� ���)� ��
�������� 	� ������� 	��	 	���� ����
� � �������� ��	�
���� ���� �� 	��	 ����	����
 ������� � ���� ��	
��

��
���
�
 �� ��

�
��� � 	
������ �� ��� 	�� C������	:

� � ��"��
� � "����	�
� �
����	�� � ��
����00

�� ���� ������ 	�� ����
�
� ������ �	��	 �	 ��� �� 	��
����� ������
�� 	�� �
��� ���� �� �
�
� ���������
�
 	�� ������� �	�"�%� ��
�� ����
��� 	��	 ��� �
���	
������������ �� 	�� ������	 ���� ���	 ��	
��
 �� ��
������
�� C������	 �	�	�� 	��	 ��� ��������� ��	��
�	��	
�� ���� ���� �� 	�� ����� ������
�� � ����	����

����� � ���� ��	
��

�� ���
�
 �� ��

�
��� � 	
�����:

� � �	�"��"��
� � "����	�
� �
����	�� � ��
����000

 �� ������ ������
� 9
���� + ��������	 	�� ��	��
����� ����� ��� 	��	��
� �����
�� 	�
� C������	
�
	� ������	 	� 	�� ���� ��������	
�� 	�� ���� 	�
���������	�
	�
� 	�� !���� ����� �	�"�%� �	"�%�
��� �	"�% ��� ������ ����������
�

��# $
������
��
� ����� �� ���������	

)� � ���	 ������� �� � ���� ��
�� 	���� 	������� ���
���	���� �� ����
��� 	��
��	�����	�	
�� �� � ���� 	�
���������	 ���� 	�� �	�	� �� 	�� ����
�� �������
�
����� 	� ��
��
 �������� �� 	�
� ����� � ��� �� �"��
�� &���% �&�
�' �''�%��
� ������ ��
����	�� ���
���� 	�� ���� 	� ���������	� �� 	���������	
��
	����

� ��������� �� �������:

� . /��
�	����$%0 �
&"'��� *��#+ �*���, �,,�+������� �����������
$%�)

 � ������	� 	�� ����� �� ���	 ������� 	�� ����
�
	
��� ����� ��
�� 	�
� 	���������	
�� ����
��:

� $	��	
�� ���� 	�� ������������ �� � ����
 �����
����� ��	� ������ ���� �
	��� 	� � ���� 	��	 ��	�
	�� ������� �	�	� 	�
��
 �������� "����� �����
���
�
 �� ��

�
���
� 	���% �� 	� 	�� ���	
��	����
	
�� �� 	�� ������	 ����	
���

� #� 	���� ��	�� 	���� ������ ��	 �� ��

�	�����
�
�	� ������ �� 	�� ������� �	�	� "����� ���
�
 ���
����
�� ������ �� ����� �	 ���� ���� ������ 	��
��� �� ���� � ��	�%�

A� ������� 	���� ����
	
��� �� �������:

� � �	�"��"�����	� �� �
�
��� �
/����	�
� �
����	��� ��
����000

A� ���	 ����
���
��	�����	�	
�� �� � ���� 	� �����
�����	 ���� 	�� �	�	� �� 	�� ����
�� �������
�
����� 	� ��
��
 ��
�����
����� ��
	
� ����
���
	��	 � �
����
� ����
�� ��� 	�� ����
�� ��������
�"��� #$�#
 ���%��� ������ ������ ��
����	�� ���
���� 	�� ���� 	� ���������	� �� 	���������	
��
	����

� ��������� �� �������:

� . /��
�	����$%0 �
&"'��� (-�(� !��+��. ��.��#��� �����������
$%�)

 � ���
�
 	��	 	�� �	�	� �� 	�� ����
�� �������
�

��
 ��
�����
����� �� ��� 	�� ������
�� ����
	
��:

� � ���/��/�����	� �� �
�
��� �
��
 �
�
������ ������ !��"#��00

 � ���
�
 	��	 � ����
�� �
����
� ����
���� �� ����
����� 	��	 	����
� ���� ���	����!�� ��	� 	� 	�� ����
	� ���������	 �� ��
�� � 	��	 ��� � ����
�� �
����
��� ��	 ������
 ���� ���������:

� � ���/��/������������ /��	����������
$� �
/�
�
���
�	����$%� � ��
����000

�	
� �	��
��	������� 	� ��� 	��	 	�
� ���� ����
�� 	�
	�� ���� 	� ���������	 ������ 	�� !���� ����
� 9
����
+� ����
�	����	
���
� �� ������� 	��	 	�� ���� ����
��	 ����
 	� 	�� ���� 	� ���������	
� 	�� ���
 ��
	�� !���� ����� $���
�����
� 	�� ���	 ����
	
�� ��
���
/���
 ��������� ��	� ���� 	�
� ���� 	� ���������	

�
	��� ����� �� ����	����
 ����� 	� 	�� ��		
�� �� 	��
�	�	� �� 	�� ����
�� ������� 	�
��
 ��
�����
�����
��	 ���� ��������
�� ��	� ���	�
�� 	�� ���	 ���� 	�
���������	� ��
�� �������� � ������ �� �	�	�� �
�
������� 	���
����	��	�� 	�� ���������� �� 	�������
���
�
� 	�
� ��		
���

� ������� ��!

)����	,
� �� �����	 �
�	�� 	����	�� 	������ , ����
��� ��� ���� ���� 	�
�������	 ���
��� #$ ��������
&+� 1(� �� 	�
� ����� 	�� �*�+! ����	���	 ��)����	<
��� ���� ����� ������ 	� �����
�� 	�� ��	 �� ����	
���
	��	 ������ ������ �� 	�� ���� �	���
� �� �����	
� 	�
����
� A����� ��� �����
 ���� ���	��� �������� 	�
����
��� ������� ��6������ ��	��� 	��� �
���
 ��	� ��
����
�� ����� &'.(� A�
�� 	�� ����� �� �����	
���
�
�����	
�� 	� ��� ������ ��� ����� ������ �� ��6����
��
��
��
�
����
��	���	
��� ��	��� 	��� ���	�� ����	
��
������ 9��	�������� �*�+! �����
��� �
���
� ���	���
!��� ������� � ����
�� ����� ����	 ��	
���	
�� ���
�
�����	 ��� ����� �� ������ �	�	
����
� ����
�� 	� ����
�Æ�
��	 ���� 	��� � �
���
� ����	
���

11

 ���� ���� ���� ������� ���� �� ���
�
� ����
�

��
��������� ������	
��
� ������� 	���������	
�� ������
����
 ��� �� ���� �������� 	� ��� 	������� ���
�
	� �����
�� ����
	
��� �� ����
	� ����� &'0(� A� ����
��� 	��
� �������� ����� $����6���	 ���� �
 ����

�
 ��� ������ ��� 	� ����� 	�� ������	���� �� �	������
����
��� ��	
�
;�	
��� ����� �� 	�
� �������� &''(�
*���� �
 ��� ���� ��������� � ���
��	 �� ���
� ����
�����
�� 	��	 ����
	� 	� ������
��	�
 ������� �����
�� 	�� ���� �� ���� ���� ���� &2(� 5����	������� 	��
�
	����	
� �5/ ��	��� 	��� ������ , �����
��	��
� � �������� ��� ��
	
�� �	�	
� ��������� 	��	

��� 	��� �����	�� ��
�� 	�� ���� �	�	
� ����
�
� ���
�
�� &F(� ��	�� �������� ���� ���� ���� 	� ��� ���

����
� �
��� ��� #����$* &G(�)�	����� 	�� ���� ��
��	�� ��� ����
� 	� ����� ������	
��� ���� ����
���
���� ����	
��� ��� ���
�

�� 	�� ���	���	 �
�	�� 	���
	��	 ����� ����
��
 �� ���� ��� ������� 	����������
	
��� �� ��
� �
@������ ��	���� ��	�� ��� ��� ���
������
�
� 	�� ������

�� ���
� 	��	
� ����� ��	��

� �����	
���
 � �������� ��� �����
�
�� �	�	� ����
����
A�
�� ���
	���
 , ���� ��� ��
������� 	��� ��	����

�� 	�� �������
������ �� 	�� ��������� 	�
� ���� ���	
�� �������
 ���
��� 	� ��	
��
 	��
����������� ���
��	���
���
 ����
	
���
������ �
 ����� ������� ���
����� ���
 �� ��
�	��	
�� ��� ��
������ 6���	
���	
��
���� ��	��� ��� �����	 �� ���������
� ��	�� �
	���	
�����	
�� 	� 	�� ��� �� , ����� �
 �������
�� ��� �����
������	��
 �
	�
� � �
���� ���
�� �� ��� ������� 	��	
	�� ����� ��� ������������ 9��	�������� �� ��� ����	
���� � ����� ���
 �� �������� �� ������	���
�� ���

�������	
�� 	������� ���
�� ��� ��� ����� ����� ��
�� �����
����� ���� �� �������	�	
���

" ��
��
���

�� 	�
� ������ �� ���� ������	�� ��)#4������ 	�����
�����	
�� �
�	�� ��� ������
����
�� �� ��
�	
�� #$
������ 	� ������	 	�� ����� ���������� �� �����	
������ ����� 	��	 ��� 	�� 	������� ���
� , � 	� ���
��� ����
	
��� ���
��	�����	
�� 	�� ��
�
��� �������
)	 	�� ������	 �	�	� �� ��� ����� �� ���� ������

� ��	 �� '2 ����� 	��	 ��� ��Æ�
��	 	� ����
 ��	 	��

��	�����	�	
�� �� 	�� �
��� +�. ������ 	��	 �� ����
�
����
 ��������� �
 ����� 4���
�
���

�����	
�� ��
	�� ����
�
�� �
��� ���� ���� ��	 ������ ��

�����
	��	 	���� ����� �� ��	 �������� A� ��� ������	�

��
������	
�� ��� �������� ��
�� 	�� ,��
�����	���	����
��������� �
 5����� �
 ��� &'1(� �
�
�������	�	
��
�
�� ��	� 	�������� ���� 	��	 ��	
���� 	�� ����� ���
���� 	�� ���� ����	 ����	
�
��	�� ��		���� �� ��������

�� ��
�	��
�� 	�� ������ 	���� �� ���� 	� ���	 ����� 	� �	���

#$��� ���� �� �$* ��� A
������ ��� 	� ����
 	��
����� �������� 	� �	��� �
�	�� ����
���� A� ��	
��

��	� 	��	 �����	� ������ �� ������ 	�
�	����	� 	��
��������� �
	� 	�� #$
� 	���� ��		
��� �� �����
 �� ����� ���	�	
��
� ���
����� �	

���),--!!!.���.* -����*+-/+����

��#���
���
��� �� ��		
��
 �� ����
	
 �� ������
 ��� �� ����� � �	��
��	�

��	 ����������� �
 �
!
����
�� �� �
	�
� �"
���
	�# �
����
��� �
	��	���"

!��������� $
" ��"�� %
��	� &�'(')*+,

-."��
 �
� ���
� �
 *���
�
 ��	� �&&��

��� /� 0����
 �� ��"1��
�
 �� +

�
�
 ��� �� 2������ 3���� ��4
�
"�0 �� ���	�!
 �
 ������	��� �� ��� 4��
"�5" "������1�4
���� �� ��
	����� ����
� "��
�)� ��������� �	
��
��	���

��	 �� ���
���� �	��	����	� ������
������
 ���
� ((67(

8�
���
 ����	��
 2
��� �&&��

�9� /� 0����
 �� ��"1��
�
 �� 2� ,��
 �� :�	5
��
 ��� �� +

�
��
�	����
 ����
�� ���� ;	
�� 6 ��� ;
��# 0�� ���
"�4�	�
��
� �	�4
�	������
��<)� ��������	�� ��
�� ��	
� �� �!"#��
�������	 $��%����
 ���
� =76(>
 2�� .������
 +	��"

 2
���
�&&��

�?� %� @��
�"

 ,� ���
�
�
 ��� �� 2A�� ���� � ��	��� �
5��4
���� �� "	���"����)� ��������	�� ��
�� &�� !	
'(��	����	��
�	 �
�'�)�' �����
��
���� �	� ������
��	 �� �������

�	�
��	���	�
 !����
 ��7� �� *��
��� +�
�� �	 �����
�� ����
�	��
 ���
� �=&6�(>
 �����
 �����
 2
��� �&&��

�B� 2� @	��

 ,� �
 ���	
 ��� �� 2����������� $	�����	���� �

�*.$ ���
	�
����
 �������
 ����� ��� ����"�)� !	
'(��	�(�	
���	���'�� �	� ����
��� �� ,��'���
�)� ���������	�
 ���
�
�996�??
 C����;�	�
 C�
 ,"�� �&&��

�>� @� %� .���
	
 �� 0
��
 �� 0 ��
 ��� 2� D���
�� 0
"����
����
� 	��
� ����� ����
�4��
"�5"
 �	��	���
	4�	���
� "��4
���
	
E�
�������)� ��������� �	 #����
�	� ���
��� ,����	
�	� !��'���	
�
��	 �#�,!�
 ���
� �6�>
 2�� @�
��
 0�
 ,"��
�&&&�

�=� 2� D���
�
 �� 0
��
 /� F�

 ��� @� .���
	� � ����
�
��� �������
 ��	 ;������� ����
�4��
"�5"
 �����" ������
��)�
!	
'(��	�(�	 ���������	� *�	����� ,����	 �	� !��'��
��	
�
��	 ��*,!�
 ���
� >76(�
 �
	���
 �
	����
 �&&��

�(� �� D�� ��� �� %���� *���� �	 �����
�� ����	��- ���''�	�
�	� �����	�	� �.��
 ���
���� 0��;	���
 3��!
	���� C	
��

�&&&�

�7� �� ��"1��
�
 .� D������

 �� D������
 �� �
	����
 �� C���
 ���
:� �� �	������� �� �!
	!�
� �� ���
"���)� �������	 ��	�
����	�� �	 #./��
�#���	
�� ���������	� ���##��
 ���
�
9�=69B9
 �����
��
 D����	�
 ���
 �&&��

��&� @� ��"
� ��� ,� �
 ���	�)��
	���!
 �	��	�� �	�����	������
;� 	
�	������)� %� :��
��

����	
 !	
'(��	�(�	 �����'��
��	�
���
��	 ����
 !����
 �&�= �� *��
��� +�
�� �	 ����
��
�� ����	��
 ���
� B�6>(
 �
��!�
)����
 �&&��

���� @� ��"
�
 *� @� ���
�
 .� 8�� :��
 ��� 0� 0� +	
�
	��4
�
�� C	�!��� "�		
"��
�� �� "�����
	 ������1������ ;� �
�4
��	�� ����"�)� ��	����	�� 0����� �� �#�* 1��1- ��� 12
�
�!"�*�+��!"��� ��������� �	 ���	���'�� �� ��������
��	� *�	������
 ���
� �(96�7?
 C�	�����
 ,%
 ���� �&&��

���� �� ������
 �� ����
	
 ��� �� C� ��		
��� 0����	��� ,2
E4
�
	���
 �� � ������	 ���
 ����
�# �
 �����
E�
	�
�"
�)�
��������	�� ��
�� �� �!"#�� �������	 $��%���� 1��1
��$1��1�
 ���
� B?6>�
 2����4.������
 +	��"

 2
��� �&&��

��9� 2� �"C
��
 �� *
"���
 2� %� ��
 ��� :� :
��
	� 0)�#)��
	4
�
����
 �������
 ��� ����� ��	 0 �	��	�� �������� ��� �	���4
��	�������)� !	
'(��	�(�	 �����'�� ��	�
���
��	 ����

!����
 �9&? �� *��
��� +�
�� �	 �����
�� ����	��
 ���
�
��96��(
 �	
��;�

 +	��"

 ��	� �&&��

��?� %� �� :���
	 ��� �� 0� ��	� �� ���������� �� �	�
	
�
!
���#
$���	�� �������� �����"�� "���
E� �� ���
"�4�	�
��������)�
��������	�� ��� ��)�	��� ������
��	 �� ��	���	� $��%����

���
� �9?6�97
 $�	����
 0�����
 ��� �&&��

12

Speed vs. Memory Usage
-

An Approach to Deal with Contrary Aspects

Wolfgang Schult and Andreas Polze
Hasso-Plattner-Institute

14440 Potsdam, Germany
{wolfgang.schult|andreas.polze}@hpi.uni-potsdam.de

ABSTRACT
Besides design and implementation of components, software
engineering for component-based systems has to deal with
component integration issues whose impact is not restricted
to separate components but rather affects the system as a
whole. The bigger the software system is, the more diffi-
cult it will be to deal with. Aspect-Oriented programming
(AOP) addresses these cross-cutting, multi-component con-
cerns. AOP describes system properties and component in-
teractions in terms of so-called aspects. Often, aspects ex-
press non-functional component properties, such as resource
usage (CPU, memory, network bandwidth), component and
object (co-) locations, fault-tolerance, timing behavior, or
security settings. Typically, these properties do not mani-
fest in the components’ functional interfaces.

Aspects often constrain the design space for a given soft-
ware system. System designers have to trade off multiple,
possibly contradicting aspects affecting a set of components
(e.g.; the fault-tolerance aspect may require replication of
component data, whereas the security aspect may prohibit
it). Component software may be deployed in varying con-
texts, maybe requiring emphasis on only a few of the aspects
considered during design and implementation. Static aspect
weavers often require compromises with respect to the gen-
erality of services provided by a component system.

In this paper, we focus on dynamic management of as-
pect information during program runtime. We introduce an
approach called ”dynamic aspect weaving” to interconnect
aspect code and functional code. Using our approach, it
is possible to decide at runtime whether objects living in-
side a component should be instantiated with support for a
particular aspect or not. We present a distributed Mandel-
brot computation as an example and discuss dynamic aspect
weaving as a technique to manage speed versus memory us-
age trade-offs. We have implemented our approach in the
context of the C# language and the Microsoft .NET and
the ROTOR environment.

1. INTRODUCTION
There exists a variety of application areas for Aspect-

Oriented Programming (AOP). Generally, it is very accept-
able to have a preprocessor-like aspect-weaver to intercon-
nect functional code and aspect code. However, sometimes
it is desirable to postpone the decision about whether as-
pect information is to be interwoven with a particular com-
ponent until program runtime. For instance, one may have
a huge resource consuming image processing algorithm lo-
cated in a component, and depending on system load and
available computing nodes a trade-off between data distri-
bution, memory allocation scheme, and utilization of com-
puting power has to be made at runtime. It might be de-
sirable to distribute calculations for better performance if
computing nodes are available. Minimizing local memory
usage might be at high priority if the same program is run
in a different setting. Both are crosscutting concerns. An
aspect may be defined to manage distribution of method
invocations across machine boundaries, whereas a different
(somewhat contrasting) aspect may deal with local and re-
mote memory utilization during a distributed computation.

Typically, one has to decide at compile time whether an
aspect should be interwoven with a set of components or
not. Classical AOP techniques provide neither a solution
to ’switch off’ (ignore) aspect code at runtime nor to dy-
namically interweave another aspect with the component
software.

In this paper, we present a solution to this problem and
demonstrate how to interweave previously defined aspects
with functional component code. This ’Dynamic Aspect
Weaving’ is promising because of its flexibility: neither at
design nor at compilation time does a definite decision has
to be made about whether a particular aspect should be ap-
plied to a set of components or not. Aspects specialized for a
particular situation can be defined and can be interwoven de-
pending on actual runtime requirements. Furthermore one
can parameterize the aspects during program runtime. We
discuss how this can be accomplished without usage of a
special ’aspect weaver’ tool.

The remainder of the paper is organized as follows: Sec-
tion 2 presents related work. Section 3 describes our ap-
proach to dynamic aspect weaving. In Section 4 we demon-
strate a case study whose experimental evaluation is pre-
sented in Section 5. In Section 6 we summarize our conclu-
sions.

13

2. RELATED WORK
The concept of aspect-oriented programming (AOP) offers

an interesting alternative for specification of non-functional
component properties (such as fault-tolerance properties or
timing behavior). There are a variety of language extensions
to deal with AOP. One of which, AspectJ [13], a Java exten-
sion, can be cited as the most prominent example. The cen-
tral concept of most AOP-frameworks is a join point model
described in [12][5].

JAC is a Java framework that provides support for dy-
namic aspect-oriented applications [20]. With JAC it is also
possible that an aspect can be woven and unwoven at run-
time. An aspect oriented program in JAC is entirely written
in regular Java and consists of several different parts, such
as base program, and other different aspect programs. The
weaver deploys the aspect objects so that the aspect pro-
gram crosscuts the base program.

Mehmet Aksit has developed the composition filters ob-
ject model, which provides control over messages received
and sent by an object [3][1]. In this work, the component
language follows traditional object-oriented programming
techniques, the composition filters mechanism represents an
aspect language that can be used to control a number of as-
pects including synchronization and communication. Most
of the weaving happens during runtime.

The authors have implemented a static aspect weaver,
which uses the unmanaged metadata interfaces from .NET
to interweave aspect code [21].

A restricted technique for dynamic aspect weaving for
.NET has been described in [15]. However, this solution uses
the current internal debug interfaces of the .NET framework
implementation to interweave aspect code during runtime
and is therefore less general and portable than our approach.

3. DYNAMIC ASPECT WEAVING
Dynamic aspect weaving means that a component (a tar-

get class) and an aspect class will become interwoven during
runtime. There is no need for the aspect class to have a pri-
ori knowledge about the target class and vice versa. To
understand how the weaving process works, some notions
have to be defined.

3.1 What is an Aspect Class?
An aspect description for a set of components focuses on

crosscutting concerns. In our case, an aspect is a simple
C# class derived from the base class Aspect. It will be
called aspect class. Aspect classes may implement methods,
properties, and member variables. In any case, an aspect
class describes a way to modify the behavior of another class
(the so-called target class). Therefore, there is no point to
instantiate an aspect class on its own. Rather it has to
be instantiated jointly with a target class. This process is
called dynamic aspect weaving. Its technical details will be
described later in this section.

3.2 Connection Points
As mentioned above, an aspect class works only in con-

junction with an instance of another class. At a connection
point both will become interwoven. Methods of the aspect
class can be identified as connection points, which is indi-
cated by the C# call attribute above the method definition
in the aspect class. The call attribute is defined as follows:

[call(Invoke.InvokeOrder {, Alias=AliasName })]

During dynamic aspect weaving, all of the connection points
inside an aspect class will become interwoven with a target
class’s method if at least one of the following requirements
is met:

1. The method name and the signature are equivalent.

2. If there is an AliasName defined, and the method name
from the target class is the same as the alias, and the
signatures of both are equivalent.

3. If there is an AliasName and the alias contains a wild-
card at the end, or the signature of the Aspect class
method contains wildcards, and the target method
matches.

The following example demonstrates requirement 1:

[call(Invoke.Instead)]
void mymethod(int i) { /∗ ... ∗/ }

In this case any target method mymethod with one int
as parameter and void as result will interweave with this
method in the aspect class.

To demonstrate requirement 2 let us assume that one
defines Alias=”myspecialmethod” for a method. This
results in interweaving all target methods named myspe-
cialmethod with an int parameter and a void with the
annotated method in the aspect class.

Requirement 3 basically says that if one modifies the alias
to Alias=”my*” every target method beginning with ”my”
and the same parameters will become interwoven. Further-
more one can use signature wildcards. A wildcard for the
result type is object, and for the parameters params ob-
ject[], this is like a method with variable arguments. An
alias has to be defined in order to flag the argument list
params object[] as wildcard. The following connection
point:

[call(Invoke.Instead, Alias="*")]
object catchall(params object[] args)

will become interwoven with every method in the target class
and args will contain each parameter one passes through the
method. For instance, if the target class has a method void
f(int i, double d), then args[0] will contain i and args[1]
will contain d after the method is called.

Now, since we have described the rules for interweaving
connection points with target methods, we will focus on
the actual algorithm implementing dynamic aspect weav-
ing. This is described by the InvokeOrder parameter of the
call attribute. There are three possibilities:

• Invoke.Before: The aspect method of the connection
point will be invoked before the target method will be
called.

• Invoke.After: As to be expected, the aspect method
will be invoked after the target method has been called.

• Invoke.Instead: The target method will not be called
automatically - but can be called from inside the as-
pect method.

The first two cases are useful if one wants to trace method
calls only. The last case is to be used in order to gain full
control over the target method’s behavior.

14

3.3 Aspect Context
When defining an Invoke.Instead connection point, one

needs a mechanism to call the appropriate target class meth-
od. The problem is that neither the type of the target class
(the aspect class can become interwoven with any type) nor,
in some cases, the signature of the called method (this is
when one uses signature wildcards) are known. The solution
is to define a Context property in the Aspect base class.
This property allows access to an object of type Aspect-
Context which contains the required information. There
are two methods defined for AspectContexts:

public object Invoke(params object[] args)

public object InvokeOn(object target , params object[]
args)

The first simply invokes the target class’s method on an ob-
ject with the given parameters. The second method allows
invocation of the target method on a different, arbitrarily
chosen instance (target) of the target class. This is useful if
there are special instances of the target class stored in the
aspect code, and one wants to invoke these.

3.4 Implementation Issues
In the previous section, we have introduced our notions

of an aspect class, of connection points, and of object con-
texts. Here, we are going to discuss our implementation of
this concept. Our approach relies on a number of language
features, namely:

• Support of attribute definition.

• Support of reflection to analyze the target class’s and
the aspect class’s signatures (methods and their pa-
rameter types).

• Runtime code generation, to emit the interwoven class.

We have implemented our solution based on Microsoft .NET.
The Microsoft .NET runtime environment allows to gener-
ate, load, and run code on the fly. This code can be pre-
sented to the environment in an intermediate language (IL).
There exist a variety of programming languages which sup-
port .NET and map on the same intermediate language.
Since our approach it is possible to interweave an aspect
written in one language (say C++) with a component writ-
ten in a different .NET language (say Pascal).

We have implemented our technique for dynamic aspect
weaving in a .NET library. This library provides several
classes and attributes defined within the namespace As-
pects:

• Aspect is the base class for all defined aspects.

• Weaver is a class which implements the weaving func-
tionality.

• Call is an attribute to define connection points.

• AspectContext allows invocation of instance meth-
ods via Aspect.Instance.

3.5 The Dynamic Aspect Weaver
As described above, the Aspects namespace contains a

class called Weaver. It provides a function named Create-
Instance to interweave a given target class. This function

TARGET
CLASS

ASPECT
CLASS

CreateInstance

TARGET
CLASS

ASPECT
CLASS

Connection Points

Woven Type

Figure 1: The Weaving Process

does the same as the new statement - it creates a new ob-
ject of a given class (the target class). But furthermore this
function interweaves the target class with an aspect-object.
This can be done in two ways; dynamic or static. The dy-
namic version is as follows:

A a=Weaver.CreateInstance(typeof(A), null, new MyAspect
()) as A;

In this example, an instance of the class A will be gen-
erated and dynamically interwoven with an aspect object
of MyAspect. In the static case one can simply use .NET-
attributes to express that a class should be interwoven with
a certain aspect:

[MyAspect]
class A
{ /∗ ... ∗/ }
/∗ ... ∗/
A a=Weaver.CreateInstance(typeof(A), ...) as A;

Giving the aspect instance explicitly as a parameter to Cre-
ateInstance is more flexible than naming it via attribute - as
the aspect and its parameters can be identified at runtime.
The code implementing dynamic aspect weaving first looks
for a custom attribute derived from Aspect. If there is no
aspect given, the CreateInstance call is equivalent to new
A(args). What happens during the creation is illustrated in
Figure 1. The weaver looks for connection points and tries
to join them with the target class’s methods as described
above. With this information, it builds a new type, and cre-
ates a new instance of this type. After that the weaver calls
a special method named ctor in the aspect, to inform them
that it was interwoven with a newly created object. This
method can be overridden and has the following signature:

virtual void ctor(Weaver weaver , object target , params
object[] args)

Inside the method, the parameters have the following mean-
ing:

• weaver is the aspect weaver itself.

• target is the new interwoven instance.

• args are the constructor parameters.

Finally, the newly constructed and interwoven object in-
stance will be returned to the caller.

15

CX

CY

Memory Hard disk

Calculate(...)

Figure 2: Mandelbrot Function Call

CX

Hard disk

Memory
1

Memory
1

Memory
1

...

Calculate(...)

Calculate(...)

Calculate(...)

Calculate(...)st
1

nd2

thCY

Figure 3: Function Call with the SaveMemory Aspect

4. CASE STUDY -
OPTIMIZING RESOURCE USAGE

Listing A in the appendix shows a C# class which calcu-
lates a Mandelbrot set [18]. The input for the algorithm is
a filename, a bounding box, and a resolution.

Figure 2 illustrates the behavior of our Mandelbrot com-
putation: The algorithm first calculates the whole Mandel-
brot set in memory and then stores it to the hard disk. For
small resolutions this is fine. But what happens if the reso-
lution is increased? The amount of memory consumed will
increase polynomial (one needs cx*cy memory storage). A
possible solution is to rewrite the algorithm. But under cer-
tain circumstances, there is no possibility to do that (i.e.
the algorithm exists as binary only), so ... another solution
is needed.

4.1 The Save Memory Aspect
The idea is that the function calls are split so that single

lines will be processed in memory and subsequently written
to separate files on the hard disk. Finally, all these files are
joined together to complete the Mandelbrot computation.
Figure B shows this approach. The envisioned effect can
be accomplished using an aspect class (which would not be
visible to clients of our Mandelbrot computation). Listing
B shows a possible implementation of this aspect.

As visible in the aspect class, the function calculate is de-
fined as a connection point. As described in Section 3, if
the target class contains a function Calculate with the same
signature, then both will become interwoven. The for-loop
simply invokes, via the aspect context, the Mandelbrot com-
putation line by line. For n lines, it will generate n files on
the hard disk. Finally, these n files will become concatenated
to form a new file containing the data originally requested.

4.2 The Distribution Aspect
The second goal was to utilize all available processors in

a system. Again, we are defining an aspect to tackle this
problem. Figure 4 demonstrates what has to be done: First,
one instantiates a replica of the original Mandelbrot object
on each processor available. Second, on every function call,

CX

CY1

Memory

Calculate(...)

Thread 1

hard disk

CX

CY2

Memory

Calculate(...)

Thread 2

InvokeOn(instance)1

InvokeOn(instance)2

Mandelbrot copy Mandelbrot copy

Original Mandelbrot-Component

Figure 4: Function Call with the Distribution Aspect

one splits the calculation up and delegates each part to a
separate thread. One can use the .NET threadpool for this.
The original Mandelbrot object gets the results back from
each replica and joins them together. Listing C shows an
excerpt of the actual C# implementation.

The aspect class contains three important functions. The
first is ctor, which will be called by the Weaver when the
instance is created. It is used to create additional instances
of the same type which may process function calls in parallel.
The second is Calculate. This method contains the call
attribute, which defines it as connection point as well. Here
the function calls are executed in separate threads operating
on disjunct copies of the Mandelbrot object.

4.3 The Client Side
On the client side, only the instantiation of the Mandel-

brot class changes. Depending on the actual runtime en-
vironment, one or the other aspect will become interwoven
with the Mandelbrot class (Listing 1).

Mandelbrot mb;
// we need less memory usage
if(opt_memory.Checked)
mb=Aspects.Weaver.CreateInstance(typeof(Mandelbrot),null,new

SaveMemory()) as Mandelbrot;
// we need more performance
else if(opt_speed.Checked)
mb=Aspects.Weaver.CreateInstance(typeof(Mandelbrot),null,new

Distribute("d:/temp")) as Mandelbrot;
// we need nothing of both
else mb=new Mandelbrot();

Listing 1: The Client Side

The function call initiating the actual Mandelbrot compu-
tation does not change.

5. PERFORMANCE MEASUREMENTS
After implementing a dynamic weaver and designing two

aspects, we evaluate the performance impact of our dynamic
aspect weaver. For our experiments, we have used a 1GHz
Dual-Pentium III System with 256MB RAM. We show here
the impact of both the Distribution and the Save Memory
Aspect on our system resources. Figure 5 shows the aver-
age duration of the mandelbrot calculation in dependence on
the number of calculated columns in the mandelbrot matrix
(CX). We have sketched out two representive row counts
(CY) for the three cases. For a row count of 4096 one can see
that the algorithm with the Distribution Aspect assigned is
approximately twice as fast as it is without an aspect. With

16

no Aspect

Distribution
Save Memory

row count=20480

row count=4096

Figure 5: Comparison of average duration (20 measurements
per point) between both aspects and without any aspect in
the mandelbrot component

no Aspect

Distribution
Save Memory

row count=20480

row count=20480
row count=4096

Figure 6: Comparison of average peak memory usage (20
measurements per point) between both aspects and without
any aspect in the mandelbrot component

a Save Memory aspect we have a performance gap of approx-
imately fifty percent compared to the calculation without an
aspect. But with a row count of 20480 the situation changes
markedly.

Beginning at a column count of approximately 17200 the
algorithm assigned with the Save Memory aspect gets the
best performance. The explanation for that is shown in
Figure 6. One sees that in the measurements with a column
count 12288 the maximum of available physical memory has
been exhausted. On the other hand, the algorithm assigned
with the Save Memory aspect uses a consistently low amount
of memory. This prevents it from swapping out memory and
so decreasing its performance.

6. CONCLUSIONS
Aspect-oriented programming (AOP) is a relatively new

approach for separation of concerns in software develop-
ment. AOP makes it possible to modularize crosscutting
aspects of a system.

We have presented our approach to dynamic management
of aspect information at program runtime. We have intro-
duced a technique called ”dynamic aspect weaving” which
allows for late binding (weaving) of aspect code and func-
tional code. Using our approach, it is possible to decide at
runtime whether a component should be instantiated with
support for a particular aspect or not. We have implemented
our approach in context of the language C# and the .NET
environment. Relying on the .NET support for a variety
of programming languages, our approach is not restricted
to C#, but works for all of the .NET languages and other
.NETenvironments like ROTOR, among others.

Our current implementation has some constraints for the
programmer of a component. Currently, only virtual meth-
ods can be interwoven dynamically. The reason for this lies
in our implementation of late binding of the function calls.
Currently the Weaver ”overrides” the function so that the
virtual method table maintained inside the .NET virtual
machine points to the woven function (the version enriched
with aspect information). Other members of a class, such as
fields, properties, static, and class functions currently can-
not be accessed this way. However, recursively applying the
AOP techniques described here and in [21], it is a simple
task to generate proxy classes which substitute non-virtual
member functions and fields with their virtual counterparts.

7. REFERENCES
[1] M. Aksit and L. Bergmans. Composing multible

concerns using composition filters. Communications of
the ACM, 44, Issue 10:51–57, Oktober 2001.

[2] M. Aksit and B. Tekinerdogan. Aspect-oriented
programming using composition-filters. In ECOOP’98
Workshop Reader. Springer Verlag, 1998.

[3] M. Aksit and B. Tekinerdogan. Solving the modeling
problems of object-oriented languages by composing
multiple aspects using composition filters. AOP’98
workshop position paper, 1998.

[4] T. Archer. Inside C#. Microsoft Press, 1 edition, 2001.

[5] AspectJ Homepage. http://www.aspectj.org/, 2002.

[6] J. Baker and W. Hsieh. Runtime aspect weaving
through metaprogramming. In 1st International
Conference on Aspect-Oriented Software Development

17

(AOSD), pages 86–95, Enschede, The Netherlands,
April 22-26 2002. ACM press.

[7] T. Elrad, M. Aksit, G. Kiczales, K. Lieberherr, and
H. Ossher. Discussing aspects of aop. In
Communications of the ACM, volume 44, pages 33–38,
Oktober 2001.

[8] T. Elrad, R. E. Filman, and A. Bader.
Aspect-oriented programming. In Communications of
the ACM, volume 44, pages 30–32, Oktober 2001.

[9] K. Gybels. Using a logic language to express
cross-cutting through dynamic joinpoints. In Second
Workshop on Aspect-Oriented Software Development,
Bonn, Germany, February 21-22 2002.

[10] S. Hanenberg and R. Unland. Concerning aop and
inheritance. In Aspektorientierung - Workshop der
GI-Fachgruppe 2.1.9 Objektorientierte
Software-Entwicklung, Paderborn, Germany, May 3-4
2001.

[11] S. Hanenberg and R. Unland. A proposal for
classifying tangeled code. In Second Workshop on
Aspect-Oriented Software Development, Bonn,
Germany, February 21-22 2002.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. Getting started with
aspectj. Communications of the ACM, 44, Issue
10:59–65, October 2001.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect
oriented programming. In European Conference on
Object-Oriented Programming (ECOOP), Finnland,
June 1997. Springer Verlag LNCS 1241.

[14] J. O. K.Lieberherr, D. Orleans. Aspect-oriented

programming with adaptive methods.
Communications of the ACM, 44, Issue 10:39–41,
Oktober 2001.

[15] J. Lam. My runtime aspect weaver.
http://www.iunknown.com, 2002.

[16] C. V. Lopes and G. Kiczales. Recent Developments in
AspectJ. Xerox Palo Alto Research Center.

[17] D. Mahrenholz, O. Spinczyk, and
W. Schrder-Preikschat. Program instrumentation for
debugging and monitoring with aspect c++. In
International Symposium on Object-oriented Real-time
distributed Computing (ISORC), pages 249–256,
Crystal City, VA, USA, April 29 - May 1 2002.

[18] B. Mandelbrot. The Fractal Geometry of Nature.
Freeman, San Francisco, 1982.

[19] Microsoft Cooperation,
http://msdn.microsoft.com/net/ecma/. ECMA C#
and Common Language Infrastructure Standards,
2001.

[20] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
Jac: A flexible solution for aspect-oriented
programming in java. In Reflection 2001, September
2001.

[21] W. Schult and A. Polze. Aspect-oriented programming
with C# and .NET. In International Symposium on
Object-oriented Real-time distributed Computing
(ISORC), pages 241–248, Crystal City, VA, USA,
April 29 - May 1 2002.

[22] W. Schult and A. Polze. Dynamic aspect-weaving with
.NET. In Workshop zur Beherrschung
nicht-funktionaler Eigenschaften in Betriebssystemen
und Verteilten Systemen, TU Berlin, Germany,
November 7-8 2002.

APPENDIX

A. THE MANDELBROT CLASS
public class Mandelbrot
{

// calculates a given point of the Mandelbrot matrix
private byte CalculatePoint(double x, double y) { /∗ ...∗/ }

// only this method is accessible from outside
// it calculates the matrix and
// stores the result to the hard disk
public virtual void Calculate(string filename, double x1, double y1, double x2, double y2, int xRes, int yRes)
{
double dAddx=(x2-x1)/((double)xRes);
double dAddy=(y2-y1)/((double)yRes);
Byte[] matrix=new Byte[yRes*xRes];
for(int y=0;y<yRes;y++)
{
x2=x1;
for(int x=0;x<xRes;x++)
{
matrix[xRes*y+x]=CalculatePoint(x1,y1);
x1+=dAddx;

}
y1+=dAddy;
x1=x2;

}
FileStream fs=new FileStream(filename, FileMode.Create, FileAccess.Write);
fs.Write(matrix,0,matrix.Length);
fs.Close();

}
}

18

B. THE SAVE MEMORY ASPECT
public class SaveMemory:Aspect
{
[Call(Invoke.Instead)] // connection point
public void Calculate(string filename, double x1, double y1, double x2, double y2, int xRes, int yRes)
{

// split up in lines
double dStep=(y2-y1)/((double)yRes);
for(int i=0;i<yRes;i++)
{

// call original function
Context.Invoke(filename+i.ToString(),x1,y1,x2,y1,xRes,1);
y1+=dStep;

}
// join the files together
Byte[] data=new Byte[xRes];
FileStream fsdst=new FileStream(filename, FileMode.Create, FileAccess.Write);
for(int i=0;i<yRes;i++)
{
FileStream fssrc=new FileStream(filename+i.ToString(), FileMode.Open, FileAccess.Read);
fssrc.Read(data,0,data.Length);
fssrc.Close();
fsdst.Write(data,0,data.Length);

}
fsdst.Close();

}
}

C. THE DISTRIBUTION ASPECT (EXCERPT)
public class Distribute:Aspect
{
private object[] instances;
private int workcount;

/∗ ... ∗/

// here we generate the copies from the mandelbrot component
public override void ctor(Weaver weaver, object o, object[] args)
{

// get processor count from current system
System.Int32 affinity=System.Diagnostics.Process.GetCurrentProcess().ProcessorAffinity.ToInt32();
int iInstances=0;
while(affinity!=0)
{
if((affinity & 1)!=0) iInstances++;
affinity=affinity>>1;

}
// and generate copies
instances=new Object[iInstances];
while(iInstances--!=0)
{
instances[iInstances]=weaver.CreateInstance(o,args);

}
}
// the connection point
[Call(Invoke.Instead)]
public void Calculate(string filename, double x1, double y1, double x2, double y2, int xRes, int yRes)
{

// split up calculation in threads
workcount=instances.Length;
int nyRes=yRes/workcount;
double yStep=(y2-y1)/((double)yRes);
double yRange=yStep*nyRes;
AutoResetEvent ev=new AutoResetEvent(false);
double ny1=y1;
int iNum;
for(iNum=0;iNum<instances.Length-1;iNum++)
{
double ny2=ny1+yRange;
System.Threading.ThreadPool.QueueUserWorkItem(
new WaitCallback(Distribute.InvokeWorker),
new WorkItem(// this is a container for
this, // aspect
ev, // event
instances[iNum], // mandelbrot instance
GetFilename(iNum), // temporary filename
x1, ny1, x2, ny2, // boundaries
xRes, nyRes)); // resolution

ny1=ny2+yStep;

19

}
System.Threading.ThreadPool.QueueUserWorkItem(
new WaitCallback(Distribute.InvokeWorker),
new WorkItem(this, ev, instances[iNum],GetFilename(iNum), x1, ny1, x2, y2, xRes, yRes-(nyRes*(instances.Length-1))));

// wait until ready
while(workcount!=0) ev.WaitOne();
// join files
FileStream fsdst=new FileStream(filename, FileMode.Create, FileAccess.Write);
for(iNum=0;iNum<instances.Length;iNum++)
Copy(GetFilename(iNum),fsdst); // copy file to filestream

fsdst.Close();
}
// callback for threadpool
public static void InvokeWorker(object para)
{

// unpack parameters from workitem and start calculation
WorkItem item=(WorkItem)para;
item.aspect.Context.InvokeOn(item.target, item.filename, item.x1, item.y1, item.x2, item.y2, item.xRes, item.yRes);
// signal ready
Interlocked.Decrement(ref item.aspect.workcount);
item.readyevent.Set();

}
}

20

 Managing Complexity In Middleware
Adrian Colyer
IBM UK Limited

Hursley Park, Winchester
England. SO21 2JN
+44 (0)1962 816329

adrian_colyer@uk.ibm.com

Gordon Blair
Computing Department

Lancaster University, Bailrigg
Lancaster, England.LA1 4YR

+44 (0)1524 593809
gordon@comp.lancs.ac.uk

Awais Rashid
Computing Department

Lancaster University, Bailrigg
Lancaster, England. LA1 4YR

+44 (0)1524 592344
marash@comp.lancs.ac.uk

ABSTRACT
Middleware is becoming increasingly complex, and this
complexity is at odds with one of middleware’s key goals –
to make it easier to build distributed systems. A new
emphasis on simplicity, componentization and application-
middleware independence is required to redress the situation.
Aspect-oriented software development techniques hold great
promise in helping to meet these challenges, though the
large scale of many middleware development projects raises
additional requirements that must be met.

1. INTRODUCTION
“There is literally no sensible, economic way to develop
distributed applications without middleware services.”
 – Richard Schreiber, 1995 [1]

Enterprise applications depend on distributed systems, and
therefore on middleware. Within the enterprise, distributed
systems are used to provide high levels of availability and
scalability, to physically separate components for security
reasons, to cope with the geographic spread of multi-national
corporations, and to exploit the price-performance
characteristics of PC and Unix based workstation clusters.
Distributed systems also arise naturally through mergers and
acquisitions, and business-to-business applications that
span organizational boundaries.

Building distributed systems directly on top of networked
operating systems is expensive, error-prone and difficult [2],
therefore corporate developers rely on middleware, whose
primary purpose is to make it easier to build, deploy and
operate distributed applications. Middleware makes building
distributed systems easier by resolving heterogeneity,
providing transparency of various kinds, and by providing
qualities of service.

In section 2, we argue that middleware itself is becoming
increasingly complex as we strive to build ever more
sophisticated distributed systems. If left unchecked, this
trend will leave us facing the same set of problems that
middleware was intended to solve in the first place –
building distributed systems for enterprise applications will
be too complex.

Section 3 sets a direction for the development of future
middleware platforms based on simplicity, independence of
applications from middleware, and componentization. In
section 4 we discuss the application of aspect-oriented
software development (AOSD) techniques to meet these
goals, and in section 5 we discuss the implications of the
large scale of many middleware development projects on
AOSD. Section 6 concludes and provides a brief summary of
related work.

2. MIDDLEWARE COMPLEXITY
“There is already too much diversity of middleware for many
customers and application developers to cope with … the
complexity of current middleware is untenable over the long
term” – Philip Bernstein, 1996 [3].

Middleware resolves heterogeneity and provides
transparency in order to make it simpler to build distributed
systems. Yet middleware itself is becoming increasingly
complex – there are many heterogeneous middleware
environments that need to be integrated, and the use of
middleware is not transparent to the application developer.

This complexity is driven by rich feature sets and feature
interactions both within and across middleware products, the
need to support ever more diverse environments, and the
introduction of (needed) more sophisticated capabilities that
threaten to reduce transparency further.

2.1 Feature Complexity
Many modern middleware products are rich in features, each
feature independently justifiable for sound business reasons.
Current state-of-the-practice is to roll these features into a
large, monolithic product. This can result in significant
complexity and confusion for the application developer
working on the middleware platform. Often there are several
ways of achieving the same goal with no obvious rationale
for choosing between them, and the sheer number of features
to learn and investigate can be overwhelming. Consider as an
example the Java™2 Platform Enterprise Edition (J2EE™)
[4]: J2EE provides a wealth of APIs and services, the
cornerstone of which are Enterprise JavaBeans™(EJB™),
JavaServer Pages™(JSP™), and Servlets. Mastering the art of
building EJB based systems alone can be quite a challenge
[5].

2.2 Portfolio Complexity
As well as complexity within a single middleware product,
there is additional significant complexity when multiple
middleware products are used. The inevitable overlap in
capabilities caused by their large feature sets creates
additional duplicate means of achieving an end, and hence
further developer confusion.

Nearly all large enterprises contain a broad mix of
middleware products and home-grown capabilities acquired
through the processes of time, business and mission growth,
and even mergers and acquisitions. The resulting computing
facilities are hard to integrate, and even harder to operate and
administer.

21

2.3 New Requirements
The need to support increasingly heterogeneous
environments also drives middleware complexity. Pervasive
(or ubiquitous) computing brings challenges due to widely
varying device formats and capabilities, unreliable network
connections, disconnected operation considerations, and
mobility of devices (nomadic devices and ad-hoc
networking) [6]. Pushing into new markets, such as taking an
enterprise product into the small-medium business (SMB)
segment, places new emphasis on existing requirements, and
creates entirely new requirements too. The integration of
business applications across business boundaries (B2B
applications) unites very diverse operating environments
across independent domains of control. New transaction
models and interaction protocols are needed to deal with this
additional complexity.

Meanwhile, middleware research continues to push the
boundaries of current capabilities, for example in support of
very large scale systems [7, 8] and reflective middleware [9].
A common trend in this research is to give the programmer
more influence over the behavior of the middleware. The
consequence is that more of the middleware becomes visible
to the programmer, and some aspects of distribution and
heterogeneity become less transparent [2].

3. MANAGING COMPLEXITY
“For the next several years, corporate buyers will…look for
technologies that address business problems directly;
provide near-term return on investment, and improve
customer acquisition and retention, cost-cutting, revenue or
profits.” – FORTUNE, March 18th 2002 [10].

The rise in middleware complexity comes at a time when
technology discussions are moving from the IT department
to the boardroom. Here the debate centers on solutions to
business problems, not technology platforms. Business
solutions need to be built and deployed as speedily as
possible in order to remain competitive; this calls for a
responsive middleware platform in which mastery and
deployment of only those components absolutely necessary
for the task in hand is required.

To take middleware forwards, we need to focus on simplicity
instead of complexity, on componentization and
configuration instead of monolithic construction, and on
loosening the ties between an application and the
middleware platform it executes on. All three of these goals
are considered from the perspective of the user of the
middleware.

3.1 Simplicity
Simplicity is required in the tools used to build applications
for a middleware platform, in the programming model
exposed by the middleware, in the administration and
configuration of the middleware, and in the operation of the
middleware.

For middleware programming models and tools, the goal i s
to make the use of middleware as transparent as possible, so
that enterprise application developers spend the majority of
their time working in the business application domain
focusing on the business problem at hand. Several authors
have shown that achieving full transparency of middleware i s
not possible [2, 11] as some aspects of distribution such as
network latency and end-to-end correctness cannot be fully

hidden. Approaches that have been, or are being, tried to get
as close as possible to this goal include 4GLs, modeling,
code generation and declarative specification.

Simplicity in administration and operation requires systems
that are self-configuring, self-optimizing, self-protecting and
self-healing. IBM® calls such systems “autonomic” [12].
Internally, such a system may well be more sophisticated and
more complex than current generation middleware, but the
system externals should be much simpler.

3.2 Componentization
Users need to be able to subset the full capabilities of a
middleware platform in order to select a feature and footprint
combination suitable to the task in hand. The large size of
middleware products points to a desperate need for greater
componentization of middleware to support this goal.
Instead of monolithic middleware products, we need a
sophisticated middleware production line1 that can assemble
components on demand to provide a given set of capabilities
within a given operating environment. Advanced platforms
may also permit runtime component selection and
configuration.

Software engineering tools to analyze, separate, manage and
compose the rich set of features and feature interactions
typically found in middleware are immature or non-existent.
The problem is hampered by middleware’s performance
sensitivity, which makes developers wary of large
frameworks with layers of indirection.

3.3 Application-Middleware Independence
Middleware platforms continue to change and evolve, and
large enterprises tend to acquire plenty of them [13].
Loosening the dependence of a given application on a
particular middleware platform or version of a middleware
product is good for both application developers and
middleware vendors. Application developers can preserve
their investment across multiple middleware platform
iterations, and middleware vendors can lower the version-to-
version migration or competitive win-back costs.

Application-middleware independence necessitates that
much of the detail and complexity of middleware is hidden
from the application.

4. THE ROLE OF AOSD
Section 3 described what needs to be done, but said nothing
about how the requirements could be met. In this section we
describe how a combination of aspect and component based
techniques may be employed to that end. We assume that the
reader is already familiar with aspect-oriented concepts.

4.1 Simplicity
Declarative specification is one of the most promising
approaches for achieving simplicity in programming models.
In this section we argue that aspect-oriented software

1 The sophistication in the production line is its ability to

create variants of the middleware. The resulting set of
products form a product line, which may or may not be
sophisticated. In the extreme case, the production line may
produce product variants tuned for individual customers.

22

development is a natural fit with a declarative style, aiding
simplicity by furthering its application

Declarative specification separates the declaration of the
(middleware) services required from the implementation of
the business logic that requires them. Declarative
specifications are typically honoured by the middleware
through some or all of application development-time code
generation, deployment-time code generation, and runtime
configuration and interpretation. The following Xdoclet [14]
fragment is an example of declarative specification through
attribute-oriented programming. It declares that a transaction
is required to execute the method being commented on:

/**
 * … other comments omitted for brevity
 * @ejb.transaction
 * type=”Required”
 */

Attributed programming in .NET® [15], and explici t
programming as exemplified by the ELIDE system [16] work
in a similar fashion. In a post [17] to the AspectJ [18] users
mailing list, Gregor Kiczales describes the techniques as a
form of “early-AOP:”

“…(the) approach requires tagging methods and classes
where aspects might apply with attributes. I believe the
approach [they outline] can perhaps be called early AOP,
but it is missing one of the most critical properties of all
other AOP systems, and this significantly limits its power. I
call it early AOP because when some people first hear about
AOP, this is one of the first mechanisms they propose to
achieve it.”

In a full aspect-oriented approach, instead of explicitly
tagging each element that is to acquire a certain property, we
can separate the concerns and encapsulate (for example) the
transaction policy of the system into a single unit. The
elements that are to acquire transaction semantics are not
individually tagged. Thus we can view, maintain, and add or
remove the transaction policy of our system as a single unit.
Clearly this treatment can be applied to any attribute already
separated from the user application through declarative
specification (it is not the intent of this paper to discuss the
wisdom or otherwise of declaratively specifying transactions
[19]).

Declarative specification, when coupled with an ability to
interpret declarations and apply appropriate aspects to an
element at either class-load time or run-time, can remove the
need for code generation completely. JBOSS [20] uses this
approach to apply advice to EJBs in the form of interceptors
[21]. A more fully fledged form of aspect-oriented
programming is promised for the JBOSS 4.0 release, which
will permit interceptors to be added to methods, constructors
and fields of not just EJBs, but any Java object.

In situations requiring more sophisticated capabilities than
can be provided by interceptors alone (such as introducing
new methods, fields or parent classes to an application
domain object), aspect-orientation allows the generation of
code that fully separates the concerns of the middleware from
the pure application concerns. The sample code for a stateless
session bean from Sun’s online EJB tutorial [22] is 90 lines
long, and contains only 6 lines of business application
logic. It is typical of the kind of template implementation

that may be generated by an EJB tool. Using aspect-oriented
software development techniques such as those offered by
AspectJ or Hyper/J [23], the application class can simply
become:

public class DemoBean {
 public String demoSelect() throws
RemoteException {
 return(“hello world”);
 }
}

The application class is not cluttered with EJB-specifics. An
aspect-aware EJB tool could then generate an accompanying
aspect (shown here as an AspectJ example) that might look
something like this:

aspect DemoBeanEJB {
 declare parents:
 DemoBean implements SessionBean;

 static final boolean
 DemoBean.verbose = true;

 private transient SessionContext
 DemoBean.ctx;
 …
 public void DemoBean.ejbActivate() {
 if (verbose) {
 System.out.println(
 “ejbActivate called”);
 }
 }
 // etc.
}

This clear separation between middleware specific concerns
and the business logic simplifies the task of application
development and greatly improves application-middleware
independence. It is also a tremendous advantage for
modeling tools supporting round-tripping since the user-
written code and generated middleware code are cleanly
separated – allowing for safe regeneration of the middleware
code without any concern for loss of user updates.

The Java Aspect Components project (JAC) [24] seeks to take
these ideas to their logical conclusion, replacing EJBs
altogether with simple Java objects and aspect components
that can be dynamically plugged into the system at runtime.

4.2 Componentization
Many research and commercial projects are investigating the
componentization of middleware – JBOSS for example has a
”super-server” architecture with componentization and
configuration handled through a JMX (Java Management
Extension) spine. TAO [25] is a CORBA implementation
focused on high-performance and real-time scenarios. It is
built on ACE [26], which can automate system configuration
and re-configuration by dynamically linking services into
applications at runtime. The Eclipse IDE [27] demonstrates
excellent componentization through its model of features,

23

plugins and extension points2. In this section we focus
explicitly on the application of aspect-oriented techniques
to facilitate and further these efforts.

Aspect-oriented software development techniques provide us
with new ways to modularize and encapsulate concerns that
were previously entangled (or scattered) across multiple
other concerns. Until a concern is encapsulated, it is very
difficult to add, remove or replace that concern in a
middleware system. Therefore by improving our ability to
modularize, aspect-oriented techniques improve our ability
to factor a middleware system into components. In a study
conducted at IBM’s Hursley Laboratory for example, we have
shown that tracing, logging, first-failure data capture and
performance monitoring instrumentation in a commercial
middleware system were all amenable to modularization via
aspect-oriented programming techniques [28]. Previously
these concerns were scattered throughout the system.
Similarly, [29] shows the use of aspect-oriented techniques
within a database system for concern encapsulation.

Frank Hunleth has studied the use of AspectJ for feature and
footprint management in middleware systems, using aspects
to introduce features incrementally and as independently as
possible [30, 31]. Lasagne [32] uses aspect-oriented software
development to construct customizable middleware and
distributed services, focusing on context-sensitive
customizations.

A promising direction seems to be the use of several aspect-
oriented techniques in combination to factor the middleware
in multiple dimensions: a Composition Filter [33] like
approach for simple interception based strategies, an aspect-
oriented language such as AspectJ for cross-cutting
concerns, sophisticated composition models such as those
offered by Hyper/J for large-scale feature and system
integration, and adaptive programming techniques such as
those offered by DemeterJ [33] for structure-shy object
relationship traversals. Such a hybrid approach was first
proposed in [34].

4.3 Application-Middleware Independence
Current (non-AO) approaches to application-middleware
independence such as the OMG’s Model Driven Architecture
(MDA) [13] rely mainly on abstraction and thus either reveal
complexity and tight coupling at the more concrete levels
(generated code or platform-specific models), or are limited
in their application by an inability to express often needed
details (declarative specifications and 4GLs). By separating
middleware concerns from application domain concerns at all
levels of abstraction, using techniques such as those
promoted by aspect-oriented software development, we retain
the ability to fully express an application’s middleware
requirements at the needed level of detail without adversely
affecting coupling. Section 4.1 illustrated the use of aspect-
oriented software development techniques to separate
application and middleware concerns at the implementation
level. The combination of abstraction and separation in the
binding of applications to middleware is illustrated in
Figure 1.

Quadrant A shows an abstract model of the business
application with no middleware details. Quadrant B adds an

2 Application development tools are an important part of a

middleware platform.

abstract model of middleware requirements. Quadrant C
shows a typical concrete middleware based application with
business and middleware concerns entwined. Quadrant D
shows a concrete middleware based application with
business and middleware concerns separated.

Many applications begin and end life in quadrant C. Code
generation and simple application domain modeling follows
the path A Æ C. MDA attempts to introduce the path A Æ B

Æ C, although the separation in quadrant B is not as clean as
depicted. Combining abstraction and separation gives us the
new endpoint D, and development path A Æ B Æ D. It can be
clearly seen how the concrete, separated system in quadrant D
can handle evolution or replacement of the middleware
portion much more gracefully than the system in quadrant C.

abstraction

separation

concrete, tangled system

abstract app. only
 model

abstract app. & mware
 model

concrete, separated system

A B

C D

Figure 1: Abstraction and Separation in Middleware

The adaptive programming approach supported by Demeter
provides another useful tool in the quest for application-
middleware independence. It supports “structure-shy”
traversal strategies that separate behaviour from structure,
and hence allows inter-position of middleware components
(such as wrappers and facades) in a manner transparent to the
application.

5. THE CHALLENGE OF SCALE
As discussed in section 2.1, middleware products tend to be
large – for example, IBM’s WebSphere® Application Server
comprises many thousands of Java classes and is developed
and maintained by hundreds of staff. Many concerns in the
middleware system are looked after by entire teams, and
apply broadly to the independently developed work of
multiple other teams. It is therefore essential to be able to
specify the broad policy pertaining to a concern and where i t
should be applied, and then independently permit special
cases (exceptions or additions to the general policy) to be
specified by the owners of the affected concerns.

We envisage the production line of section 3.2 working by
configuring and composing components to produce the
required variants. A single level of configuration or
composition is not tenable for software of this complexity
(both because the configuration file itself would be
overwhelming, and because updating the file under version
control would bottleneck parallel development streams).

24

Instead a “fractal” approach is required, whereby any given
component may be composed of multiple sub-components,
which in turn are composed of multiple sub-components and
so on. The decomposition terminates with primitive (atomic)
software units as determined by the metamodel of the
programming language and runtime in use. Component
composition is hidden from users of that component. Note
that this philosophy requires that we distinguish carefully
between aspect-oriented techniques that create or compose
new units of existing (meta)types, and those that introduce
new meta-types.

Fitting neatly with the fractal view of software composition
is the observation that middleware products are not simply
“compiled,” but rather “built” on a production line
involving many stages from initial compilation through to
deployment and automated system testing. One component
depends on other components, and the build infrastructure
ensures that dependencies are built (compiled, assembled,
composed) before the dependent component. This points to
the need for the strong integration of AO-techniques for
middleware with build environments, the primary of which i s
Apache Ant[35].

6. RELATED WORK
In addition to those tools and techniques already mentioned,
there are many other active research projects, of which a few
are highlighted here. In general, the emphasis of these
projects is on enhancing the capabilities of an infrastructure
platform, rather than the (more internally oriented) use of
aspect-orientation to simplify the construction and
presentation of existing capabilities.

DAOP [36] is a dynamic aspect-oriented platform providing a
composition mechanism for integrating aspects and
components dynamically at runtime. The DADO [37]
(distributed aspects for distributed objects) project helps
program crosscutt ing features in heterogeneous
environments. Choi [38] shows how aspect-orientation can
be used to build an open extensible container with EJB
facilities. Duclos [39] extends the concepts in EJB and the
CORBA Component Model to fully separate container
services from business logic. In contrast, Kim [40] discusses
the relevance of AOP within an existing EJB container.

7. SUMMARY
Enterprise computing requires distributed systems, even
though distributed systems introduce considerable
complexity into application development and system
management. Middleware facilitates the building of
distributed systems, resolving many of the lower-level
problems associated with distribution and heterogeneity.

Now middleware itself is suffering a crisis of complexity and
heterogeneity. This paper presents an analysis of the causes
of middleware complexity, and sets a direction to return to
the original focus of middleware – making distributed
systems easier to build. To achieve this end the middleware
community needs to focus on:

• Simplici ty of applicat ion development ,
administration, and operation.

• Separating middleware into pluggable components
that can be put together in middleware production
lines to more precisely meet the needs of a given
application running in a given environment.

• Loosening the ties between an application and the
middleware platform(s), products, and product
versions that it executes on.

 We have shown that aspect-oriented software development i s
well suited to helping middleware address these challenges.
AOSD is a natural fit with a declarative specification style,
and aids in the drive for simplicity by furthering its
application. AOSD also provides new mechanisms to
compose software artifacts, allowing us to separate and
encapsulate concerns that previously could not be easily
separated. It can therefore facilitate the separation of
middleware components and their subsequent re-
composition to meet the needs of a given application or
environment. Finally, AOSD can also help separate
middleware details from application domain concerns,
improving application-middleware independence.

Future directions for this work include the evolution of
aspect-oriented techniques to meet the challenges described
in section 5, when applied to componentization of large-
scale commercial middleware. Work is also underway to
investigate the role of AOSD within the OMG’s MDA, which
shares a common goal in application-middleware
independence. This includes using aspect-oriented
techniques to facilitate generation, from declarative
specifications in models, of cleanly separated code
implementing middleware concerns.

8. ACKNOWLEDGMENTS
IBM and WebSphere are trademarks of International Business
Machines Corporation in the United States, other countries
or both.

Microsoft and .Net are registered trademarks of Microsoft
Corporation in the United States, other countries or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or
both.

Other company, product or service names may be trademarks
or service marks of others.

9. REFERENCES
1. Schreiber, R., Middleware Demystified, in

Datamation. 1995. p. 41-45.
2. Emmerich, W., Software Engineering and

Middleware; A Roadmap, in The Future of Software
Engineering 2000, A. Finklestein, Editor. 2000,
22nd International Conference on Software
Engineering. p. 117-129.

3. Bernstein, P., Middleware: A model for distributed
systems services, in Communications of the ACM.
1996. p. 86-98.

4. Java 2 Enterprise Edition (J2EE), Sun
Microsystems: http://www.java.sun.com/j2ee .

5. Zeichek, A., WebSphere Goes Lite (sidebar), in
Software Development Times. 2002:
http://www.sdtimes.com/news/068/story1.htm .

6. Geihs, K., Middleware Challenges Ahead. IEEE
Computer, 2001. 34(6): p. 24-31.

7. van-Steen, M., P. Homburg, and A. Tanenbaum,
Globe: A Wide-Area Distributed System. IEEE
Concurrency, 1999. 7(1): p. 104-109.

25

8. Vaughan-Nichols, S.J., Developing the Distributed
Computing OS. IEEE Computer, 2002. 35(9): p. 19-
21.

9. Coulson, G., What is Reflective Middleware?, in
IEEE Distributed Systems Online. 2002:
http://dsonline.computer.org/middleware/RMarticl
e1.htm .

10. Kirkpatrick, D., Beyond buzzwords, in FORTUNE.
March 18, 2002.

11. Saltzer, J.H., D.P. Reed, and D.D. Clark, End-to-End
Arguments in System Design. ACM Transactions on
Computer Systems, 1984. 2(4): p. 277-88.

12. Autonomic Computing, IBM:
http://www.research.ibm.com/autonomic .

13. Model Driven Architecture, OMG:
http://www.omg.org/mda/ .

14. XDoclet: Attribute Oriented Programming, The
XDoclet team: http://xdoclet.sourceforge.net .

15. Shukla, D., S. Fell, and C. Sells, Aspect-Oriented
Programming Enables Better Code Encapsulation
and Reuse, in MSDN Magazine, March. 2002.

16. Bryant, A., et al. Explicit Programming. in 1st
International Conference on Aspect-Oriented
Software Development. 2002. Enschede, The
Netherlands: ACM press.

17. Kiczales, G., AOP .net? 2002: post to
users@aspectj.org,
http://aspectj.org/pipermail/users/2002/001846.ht
ml .

18. Kiczales, G., et al. Aspect-oriented programming. in
ECOOP '97 - Object Oriented Programming 11th
Europeann Conference. 1997. Jyvaskyla, Finland:
Springer-Verlag.

19. Kienzle, J. and R. Guerraoui. AOP: Does it Make
Sense? The Case of Concurrency and Failures. in
ECOOP 2002 - Object-Oriented Programming.
2002. Malaga, Spain: Springer.

20. JBOSS Home Page, JBOSS Group:
http://www.jboss.org .

21. Fleury, M., BLUE: "Why I Love EJBs". 2002, JBOSS:
http://www.jboss.org/blue.pdf .

22. Online EJB Tutorial: Writing the Enterprise
JavaBean class, Sun Microsystems:
http://developer.java.sun.com/developer/onlineTra
ining/Beans/EJBTutorial/step4.html .

23. Ossher, H. and P. Tarr, Using Multidimensional
Separation of Concerns to (re)shape Evolving
Software. Communications of the ACM, 2001.
44(10): p. 43-49.

24. Pawlak, R., et al., JAC: A flexible solution for
aspect-oriented programming in Java. Reflection
2001, 2001. LNCS 2192: p. 1-24.

25. Schmidt, D., Applying Patterns to Develop
Extensible ORB Middleware. IEEE Communications
Magazine, 1999(April).

26. Schmidt, D. The ADAPTIVE Communication
Environment: An Object-Oriented Network
Programming Toolkit for Developing

Communication Software. in 12th Annual Sun
Users Group Conference. 1994. San Francisco, CA.

27. Amsden, J. and A. Irvine, Your First Plug-In. 2002:
http://www.eclipse.org/articles .

28. Bodkin, R., A. Colyer, and J. Hugunin. Applying
AOP for Middleware Platform Independence. in
Practitioner Reports, 2nd International
Conference on AOSD - To Appear. 2003. Boston,
MA.

29. Rashid, A. and P. Sawyer, Aspect-orientation and
database systems: an effective customisation
approach. IEE Proceedings - Software, 2001.
148(5): p. 156-164.

30. Hunleth, F. and R. Cytron. Footprint and Feature
Management Using Aspect Oriented Programming
Techniques. in LCTES 02. 2002. Berlin, Germany:
ACM.

31. Hunleth, F., R. Cytron, and C. Gill. Building
Customizable Middleware using Aspect Oriented
Programming. in OOPSLA 2001 Workshop on
Advanced Separation of Concerns in Object-
Oriented Systems. 2001. Tampa, Florida.

32. Truyen, E., et al. Dynamic and Selective
Combination of Extensions in Component-based
Applications. in Proceedings of the 23rd
International Conference on Software
Engineering. 2001. Toronto, Canada.

33. Bergmans, L. and M. Aksit, Composing
Crosscutting Concerns Using Composition Filters.
Communications of the ACM, 2001. 44(10): p. 51-
57.

34. Rashid, A. A Hybrid Approach to Separation of
Concerns: The Story of SADES. in Reflection 2001.
2001. Kyoto, Japan: LNCS.

35. Apache Ant, The Apache Jakarta Project:
http://jakarta.apache.org/ant .

36. Pinto, M., L. Fuentes, and J.M. Troya, DAOP-ADL: An
Architecture Description Language for Dynamic
Aspect-Oriented Development.

37. Wohlstadter, E., S. Jackson, and P. Devanbu, DADO:
Enhancing Middleware to support cross-cutting
features in distributed, heterogeneous systems. To
Appear.

38. Choi, J.P. Aspect oriented programming with
Enterprise JavaBeans. in Fourth International
Enterprise Distributed Objects Computing
Conference. 2000. Makuhari, Japan: IEEE Computer
Soc.

39. Duclos, F., J. Estublier, and P. Morat. Describing
and Using Non Functional Aspects in Component
Based Applications. in 1st International
Conference on Aspect-Oriented Software
Development. 2002. Enschede, The Netherlands:
ACM Press.

40. Kim, H. and S. Clarke, The relevance of AOP to an
Applications Programmer in an EJB environment,
in First AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software (AOSD-
2002). 2002.

26

The Aspect-Oriented Interceptors’ Pattern for
Crosscutting and Separation of Concerns using

Conventional Object Oriented Programming Languages
John Zinky and Richard Shapiro

BBN Technologies
Cambridge MA, USA

jzinky@bbn.com, rshapiro@bbn.com
http://quo.bbn.com http://cougaar.org

Abstract
With disciplined use of the aspect-oriented interceptors’ pattern
[10], limited but effective crosscutting techniques can be used
with conventional programming languages such as Java and
C++. We have developed this pattern for use in Cougaar [7], a
comprehensive infrastructure for supporting distributed agents.
Cougaar can adapt to changes in the runtime environment,
supporting such dynamic features as performance tuning,
security, dependability, and agent mobility. Adaptation in this
context affects not what the system does, but how it does it.
Adaptive features, developed by various programming teams,
must be dynamically enabled at runtime based on policy
assertions and resource constraints. Adaptive features touch
every part of the system, hence they are said to crosscut the
dominant decomposition (which is based on class hierarchies).
The pattern presented in this paper helps control these features
by separating them into explicit components and by allowing the
components to be attached to the base system at multiple points.
The pattern shows interesting use of crosscutting, not only for
ease of implementation (reuse), but also for dynamic control and
composition of features. The paper presents some example
adaptive features to illustrate how aspect-oriented interceptors’
pattern is used in the implementation of the Cougaar agent-
based middleware. The paper concludes with a discussion of
how the aspect-oriented interceptors’ pattern compares with
emerging Aspect Oriented Programming languages.

1. Introduction
One category of crosscutting features is concerned with system
issues, such as performance, security, dependability, and time
constraints. This is because the application's dominant
decomposition is based on the functionality of the application
(what it does), and not on the system issues (how it is done).
Adaptive features gather information about policies and resource
constraints from many parts of the system, local and remote. The
system information is used to decide how the application should
implement its functionality and must be coordinated across all
the relevant parts.
Crosscutting is often equated with helping the software
engineering process by allowing a finer grain of code reuse
[1,2,5]. In the reuse case for crosscutting, the same block of
code can be woven into many different parts of the system. This
results in a kind of incremental implementation of classes from
many pieces. Also, it allows the different pieces to be named and
hence controlled independently at code-weave time. But code

weaving does not help with runtime control of crosscutting
features, in fact it may actually make that job harder. For
example, in AspectJ, when an aspect is added to a class, the
aspect's code fragments are added to the implementation of the
class. The class name does not change, but the class now
contains both the base functionality and the newly woven-in
feature. If at runtime the program needs to instantiate an object
without the new feature, it will not be able to do so because the
base class is no longer available (because AspectJ globally
replaced its implemenation). Even if the weaving process made
both classes available, the solution would only work for a small
number of feature weaves, until the combination of classes
explodes.
Crosscutting needs to be extended beyond weave-time to allow
for control of adaptive features at runtime. When objects are
instantiated, the instance needs to choose which features to
enable. When a client gets a reference to an object, the client
should be able to choose between an object instances that has
the feature and one that does not. Further, at runtime, the
features themselves must coordinate the interaction among the
many objects that contain them, implying that features need to
be first-class objects. Adaptive features must be made explicit at
runtime and they need to be named. Further, they need well-
defined inputs and outputs and they need to know their
dependencies on other features and on domain objects. Finally,
they need to know how to connect to domain objects to get
information and to assert control.
Large distributed applications, such as Cougaar [7], are written
in conventional programming language, such as Java and C++.
These adaptive features are developed by different software-
development groups and need to be enabled dynamically at
runtime. If two groups need to add their crosscutting features to
the same object implementation, both need to extend the base
class. Even though their features may not overlap, one feature
must extend the object through inheritance before the other
feature. Similarly, removing a feature requires using a different
class that was not extended with that feature. This implies that
the program needs to define all the combinations of features,
with some features in and some features out. If a feature needs to
be disabled at runtime, the right class must be chosen for all the
objects involved in the crosscut at instantiation time. Also, once
the object is instantiated, the feature cannot be removed without
destroying the object.

27

2. Aspect -Oriented Interceptors’ Pattern
The aspect-oriented interceptors’ pattern [10] is about
controlling adaptive features at run-time, rather than code
reuse. The pattern enables control of adaptive features at
multiple times in the application's runtime life-cycle. An
adaptive feature is encoded as a class and created as an explicit
object/component at runtime. Adaptive features decide at
runtime what adaptive code to attach, if any. Also, they can
expose interfaces for exchanging information among features
and other external clients. But since the patterns can only add
behavior to explicitly exposed places in the dominant
decomposition of the application, the actual feature code is
bound to the application and cannot be used in other contexts.
The requirements for using this pattern are very simple:

• Each of the objects over which the cross-cutting is
done must have an explicitly defined interface. We
call the objects that will participate in cross-cutting
Stations

• Each Station needs a base implementation class that
performs the core functionality described in its
interface.

• For each interface/implementation pair, the base
implementation instances should be made in a single
place (effectively, a Factory).

An Aspect is then an object that can create implementation
delegates for one or more Station interfaces. The Aspect class

will typically include inner implementation classes for each
Station interface for which the Aspect is providing a delegate.
Also, Aspects may keep state.
The mechanism is very simple. Suppose the Station interface in
question is Iface and the default implementation class is
IfaceImpl. In the one place where IfaceImpls are made (i.e., the
Iface Factory) we allow each known Aspect in turn to attach a
delegate for Iface if it wants to. This results in a cascaded series
of delegate objects, each of type Iface. The last object in the
chain is the original IfaceImpl. The first object in the chain is
returned as the newly created Iface (if no Aspect attaches a
delegate, the first object will of course be the IfaceImpl itself).
Any Aspect that wishes to attach a delegate to Iface would then
define its own Iface implementation class, typically as in inner
class.
One problem with this simple mechanism is that the Aspect
delegates always run in the same sequence. This ordering is too
restrictive. For example, in a communication subsystem, a
common paradigm is that the work done in the sender needs to
be accommodated in reverse order in the receiver. To handle this
we added a bit of complication to the attachment of delegates.
Aspects are in fact given two opportunities to attach delegates.
One set of delegates will run “forward” (i.e., earlier delegates
will run before later ones), the other will run in “reverse”
(earlier delegates run after later ones).

28

3. Example Application: Cougaar Message
Transport
Cougaar [7] is a comprehensive infrastructure for supporting
distributed agents. Cougaar Message Transport Service uses the
aspect-oriented interceptors’ pattern to add adaptive features to
communication among agents. Cougaar is a large system with
over 500k lines of code developed by several groups across
several independent projects. Ultra*Log is one such project,
designed to make Cougaar robust in the face of chaotic changes
in its environment such as simultaneous system failure, security
attacks, and global shifts in usage patterns. Using dynamic
adaptation to manage the interaction among agents is a key
feature that Ultra*Log will be adding. The Cougaar Message
Transport Service will be the locus of much of this adaptation,
and will be developed simultaneously by various groups.
The Message Transport architecture was designed to manage the
flow of messages among agents. The internal design is open, i.e.,
it consists of a number of abstract interfaces with a variety of
implementations. The constituents of the Cougaar Message
Transport are analogous to CORBA interceptors and pluggable
protocols; that is, new communication features can be added
without modifying the base code. Messages flow through the
abstract constituents, or “Stations”, in a predefined sequence,
but the behavior at each Station is determined dynamically.
The Cougaar Message Transport is divided into a dozen such
Stations. In the simple case, in which all the Stations provide
their default behavior and in which no errors have occurred, a
message flows from one Station to the next with minimal
processing. In this case the complexity of architecture may look
like overkill, since most Stations act as pass-throughs, at most

with buffering. In the real world, errors can occur and changing
system conditions can cause the default Station behavior to be
inadequate. In this more realistic case, the Stations need to do
their jobs differently, but in a coordinated way. Combining the
Aspect pattern with the Message Transport's open
implementation provides a clean solution via crosscutting. In
other words, an Aspect provides code that cuts across the
dominant decomposition provided by the Station interfaces.
The Stations are described in the “top view” diagram (see Figure
1). While strict layering is not used, Stations can be grouped
into the traditional communication layers. Stations handle issues
for end-to-end (on the left in the figure), routing (middle), link
protocols (right). Note that the “physical layer” is made from
full communication stacks, such as RMI, CORBA, Email, or raw
sockets. Adaptive features in the message transport tend to
reimplement the classic communication services, such as
addressing, flow control, retransmission, etc., but also employ
extra knowledge from the host and the application domains. The
reimplementation of lower-level services by higher-level
services is an ongoing issue addressed by several technologies,
such as micro protocols . We use crosscutting to insert the
features across multiple layers.

4. Example Aspects
Cougaar has over 20 Aspects implemented, which handle a
diverse set of adaptive features. Cougaar applications can be
configured to include any of these Aspects to match the external
requirements of the system. Hence Cougaar can be configured to
run as an embedded controler with minimal functionality, or as a
robust distributed system with security, robustness, and
performance-tuning features enabled.

29

The following examples show some different uses of Aspects.
The “side view” (Figure 2) shows how these Aspects could be
combined into a specific system configuration. Note how
various Aspects insert themselves into the message flow at
various Stations. Aspects allow an adaptive feature to obtain
access to the parts of the message flow where it needs to add
behavior, and to ignore the rest.

4.1 Message Statistics
Instrumenting code for debugging is the classic AOP
example[6]. All the trace and logging code is removed from the
Stations and placed in Aspects. The observation Aspects can be
hooked into any of the Stations and can correlate measurements
across interfaces. Also, the summary of the observations is kept
in the Aspect state. The Aspects can expose service interfaces so
that their observations can be viewed by external components or
other Aspects.

4.2 Message Multicasting
Message Multicasting detects the Multicast message type and
forwards it to all the agents in a society. The Multicast messages
are expanded at multiple levels. First the message is sent to all
the nodes in the society and then to each agent in the node.
Thus, Multicasting has to insert itself at many Stations, to
convert message types, to look up the addresses of remote nodes
and local agents, and to copy messages. Some of these tasks
happen when Multicast messages are sent and others occur when
agents register with its node or move. Thus, Multicasting
crosscuts the Station decomposition.
On the one hand, Multicasting is a single, fairly simple, concept.
One would expect a good software design for Multicasting to be
implemented in a single class. Otherwise it's a nuisance to
maintain. On the other hand, a typical message-handling system
would handle sending in one class and receiving in another, for
all the usual OOP reasons. Since Multicasting requires changes
both on the sender side and receiver side, we cannot use
traditional OOP to implement it unless we are willing to violate
the first point (i.e., keeping the Multicasting code as a self-
contained unit).
The Aspect pattern resolves this difficulty. By implementing
Multicasting using an Aspect, the core message-handling code
remains simple and stable, while all the Multicasting code lives
in a single place where it is easy to maintain.

4.3 Message Serialization
One of the Stations exposes an interface when a message is
serialized or deserialized. Different read and write filters can be
added dynamically, for such things as encryption, compression,
signiture, and byte-counting statistics. Some of these
serialization features need to be added at both the sender side
and the receiver side. For example, a compression Aspect may
want to add compression to the message serialization, when the
message goes to a destination that has a low bandwidth path, but
not to other destination that has a high-speed connection. The
Aspect must tradeoff CPU cost to compress the message against
the savings in bandwidth. When compression is used, the
sender-side Aspect must signal the receiver-side Aspect to add
the decompression filter to the deserialization Station. Signaling
is done by adding an attribute to the header of the message. The
message header actually carries a list of the Aspects to be called

to add filters on the receiver side. So the sender and receiver
Aspect instances cooperate to dynamically add behavior to the
system.

4.4 Heard-From status
Determining if the connection to a remote host/agent is work
requires correlating information that comes from many sources.
One indicator may be receiving a message from a remote agent,
implies that the agent’s host and communication path is
working. Likewise, when an acknowledgment is received for a
message sent to an agent. The heard-from Aspect inserts itself in
the connections to multiple agents, determines agent’s host and
maintains state about when the last time the host was heard-
from.

5. Comparison to other AOP technologies
The Quality Objects (QuO) Project [8] builds adaptive
middleware for distributed and embedded systems. The QuO
middleware offer support of QoS adative behavior at both
design time and runtime. The QuO is is used to implement some
of the Cougaar Aspect, helping to structure the implementation
of Service Proxies and Aspect Delegates But QuO has no direct
support for Cougaar Aspect objects themselves. QuO needs to
be extended to handle bind-time issues and managing Aspect
state based on information gathered from multiple delegates.
Aspectual collaborations [2] extend the concept of advice by
allowing aspects to be parameterized over the class and method
names that are to be advised. This extension is important for
connection aspects, where connection patterns may be reused
several times between Cougaar Stations. Collaborators are
analogous to reusable Cougaar Aspect objects. The
Collaboration roles are like the specification for where the
Aspect inserts its delegates. Also, Collaborations can have their
own state, just like Cougaar Aspects. The advantage of
Collaboration is they are like templates that can be bound to
different interfaces. Hence Collaborations could be used to reuse
adaptive behavior between Cougaar Aspect that modify a
specific Link Protocol, such as email or RMI.
AspectJ [5] implements aspects as wrappers (called "advice")
that can be executed before, after, or around program points
such as method calls. The Cougaar Aspect delegates are similar,
but they can only wrap the interaction at the server side and not
where the call is made (client-side) like AspectJ. AspectJ can
also insert advice at finer granularity, than just the predefined
Station interfaces.
Subject-oriented programming [4] and its derivative HyperJ
[3] are other AOP approaches. Hyper-J allows the extraction of
classes from an existing class decomposition. This allows would
allow the extensions to Station classes to be developed
independently and combined relatively easily. Hyper-J class are
composed at class loading time, which would allow some
dynamic composition. But Hyper-J does not support for
adaptation at service lookup time or message forwarding time.
Composition Filters [1] are similar in some respects to Cougaar
Aspect delegates, providing wrappers for class methods that can
change class behavior. Composition filters compose with formal
semantics so that they can be used to infer the composed
properties from its pieces. This is needed when Cougaar Aspects
begin to interact in more complicated situations. However, they

30

lack some of the features of Cougaar Aspects: the ability to
measure and react to external, systemic conditions and
coordination among filters that are inserted at several Stations.

6. Conclusions
The aspect-oriented interceptors’ pattern developed for the
Cougaar distributed agent system, allows the message transport
to be extended by multiple development groups without
modifying the base code. Dynamic adaptation at runtime is
supported by exposing multiple times and places in the code
base for which adaptive code can be inserted. Unfortunately,
coordinating this code is crosscuts the dominate decomposition
and new patterns were needed to keep the code maintainable and
to enable the dynamic adaptation at runtime. While current AOP
techniques hold promise for improving the maintainability of the
crosscut code, they offer very little support for runtime
adaptation. We hope that this paper will show a real world
application of crosscutting and an interesting pattern for dealing
with it. We hope that future programming languages will
support dynamic crosscutting

7. Bibliography:
[1] Bergmans L, Aksit M. "Composing Multiple Concerns
Using Composition Filters," Communications of the ACM,
special issue on AOP, October 2001.
[2] Lieberherr K, OvlingerJ, Mezini M, and Lorenz D, "Modular
Programming with Aspectual Collaborations", College of
Computer Science, Northeastern University , Tech report NU-
CCS-2001-04, March 2001

[3] Ossher H. and Tarr P, "Using Multidimensional Separation
of Concerns to Reshape Evolving Software. CACM) Oct 2001,
pp 43. http://www.research.ibm.com/hyperspace
[4] Ossher H, Kaplan M, Katz A, Harrison W, Kruskal V.
"Specifying Subject-Oriented Composition," Theory and
Practice of Object Systems, Vol. 2, No. 3, Wiley & Sons, 1996.
[5] Kiczales G, Hilsdale E, Hugunin J, Kersen M, Palm J,
Griswold W. "An overview of AspectJ," Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP), 2001.
[6] Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J and
Grisold W, "Getting Started with AspectJ" CACM Oct 2001,
page 59.
[7] Cougaar Distributed agent system, open source at
http://cougaar.org
[8] Zinky JA, Bakken DE, Schantz RE. Architectural Support
for Quality of Service for CORBA Objects. Theory and Practice
of Object Systems, April 1997. http://www.dist-
systems.bbn.com/tech/QuO
[9] Ultra*Log DARPA Program on Logistics Information
System Survivability, http://www.ultralog.net/
[10] Shapiro R, Zinky J., Rupel P. The Aspect Pattern.
OOPSLA 2002 Workshop. Patterns in Distributed Real-time
and Embedded Systems, November 5, 2002, Seattle,
Washington.

31

32

Invasive Composition Adapters: an aspect-oriented
approach for visual component-based development

ABSTRACT
In this paper, we build on previous work that combines ideas

from visual component-based software development with aspect-
oriented software development. We introduced a composition
adapter to modularize crosscutting concerns in our visual
component-based methodology developed in earlier work. A
composition adapter can be visually applied onto a composition
pattern and the changes it describes are automatically inserted
using finite automaton theory. The expressive power of a
composition adapter is however limited to concerns that alter the
exterior behavior of a component. To overcome this limitation,
we propose to employ a new aspect-oriented implementation
language, called JAsCo, tailored for the component-based
context. An invasive composition adapter, which has an
implementation in the JAsCo language, is able to express
concerns that require more than mere filtering and re-routing. The
changes dictated by an invasive composition adapter are
automatically inserted into the components and composition
patterns.

1. INTRODUCTION
Aspect-Oriented Software Development (AOSD) argues that

some concerns exist that can not be confined to one single
module. Typical examples of such concerns are logging and
synchronization. The research to deal with this problem is under
constant evolution. Most of this research however is targeted to
Object-Oriented Software Development (OOSD). As a
consequence, these approaches are not very well suited to be
reused in a component-based context. This paper describes our
approach to introduce aspect-oriented ideas in Component-Based
Software Development (CBSD) from design to implementation.

In previous research [12-15], we developed a component-
based approach that lifts the abstraction level for visual
component composition. This research resulted in a visual
component composition environment called PacoSuite. PacoSuite
improves on standard visual composition tools as it allows
components to be wired together based on generic interaction
protocols, called “composition patterns”, rather than simple
event/method pairs. To introduce aspect-oriented ideas into
PacoSuite, we proposed a “composition adapter”. A composition
adapter transforms the original composition patterns to introduce
the specified aspects. Technically, a composition adapter is
applied by introducing the aspects in the glue code of a
component-based application. As a result, it is impossible to
introduce aspects in the components themselves. However,

several experiments revealed that it should be possible to adapt
the components’ interior to express aspects that require more than
mere filtering or rerouting. To solve this problem, we introduce a
new aspect-oriented programming language targeted at
component-based development, called JAsCo. An “invasive”
composition adapter is an enhanced version of a regular
composition adapter implemented in the JAsCo language. In this
way, concerns that require adaptations to the interior of
components can also be expressed.

This paper presents a complete overview of our approach. As
a result, technical details of algorithms and formal foundations are
not discussed. Section 2 briefly describes our component-based
methodology and presents the composition adapter model using
run-time checking of timing constraints as a concrete example.
Section 3 briefly presents the JAsCo aspect-oriented
programming language and the invasive composition adapter
model is introduced in section 4. Section 5 presents the tool
support we created to support our methodology. Finally, we
present some related work and state our conclusions.

2. RESEARCH CONTEXT
2.1 CBSD in PacoSuite

startJuggling

stopJuggling

Toggler Juggler

START
LOOP

STOP

Figure 1: Usage scenario of a Juggler component.

We mainly focus our component-based research on lifting

the abstraction level for component-based development. We want
to realize the plug and play idea of component-based
development. Therefore, we propose to document components
with usage scenarios that specify how to employ them. A usage
scenario is expressed by a special kind of Message Sequence
Chart (MSC) [4]. The main difference with a regular MSC is that
the signals are taken from a limited set of pre-defined semantic
primitives. Each of these signals is mapped on the concrete API

Wim Vanderperren
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 62

wvdperre@vub.ac.be

Davy Suvée
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 65

dsuvee@vub.ac.be

Viviane Jonckers
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 67

viviane@info.vub.ac.be

33

that performs them. As a result, the documentation of a
component is both abstract and concrete at the same time. Figure
1 illustrates a usage scenario of the well-known Juggler bean.
One participant of a usage scenario represents the component
itself and the other participants represent the environment the
component expects. In this case, only one environment participant
is specified, namely the Toggler participant. This usage scenario
documents that the Juggler component expects consecutive start
and stops. The START primitive is implemented by startJuggling
and stopJuggling implements the STOP primitive.

LOOP

ALT

Toggler toToggle

STOP

START

Figure 2: Toggling composition pattern.

We introduce explicit and reusable composition patterns that

are also expressed using MSC’s. A composition pattern is an
abstract specification of the interaction between a number of
roles. The signals between the roles originate from the same
limited set of semantic primitives. This allows comparing the
signals in a usage scenario of a component with these in a
composition pattern. Figure 2 illustrates a generic toggling
composition pattern. This composition pattern specifies that the
Toggler participant consecutively sends either a START or a
STOP to the toToggle participant. A possible application of this
composition pattern is a simple visual interface that allows
toggling the Juggler component from a single JButton
component. To build this application, the Juggler component is
mapped on the toToggle role and the JButton component is
mapped on the Toggler role. Notice that even this simple
collaboration can not be wired by most visual composition
environments because the collaboration itself requires state.

The documentation of components and composition patterns
allows checking the compatibility of a component with a role. The
glue-code that constraints the behavior of the components and that
translates syntactical compatibilities is generated automatically.
Both the algorithms are based on finite automaton theory. In this
paper we do not go into the details of these algorithms. The
interested reader is referred to [14, 15].

2.2 Composition Adapters
Some concerns can not be cleanly modularized using

composition patterns and components as are spread into different
entities. As a result, editing, adding and removing such a concern
becomes a cumbersome and error-prone task. To solve this
problem, we propose composition adapters. The next paragraphs
present this solution using the run-time checking of timing
constraints as a concrete example. If we want to check timing
constraints dynamically using our current concepts, every
composition pattern needs to be adapted in the same way. Of
course, when the application goes into the production phase, the
dynamic timing aspect needs to be removed from the application.

Consequently, the involved composition patterns need to be
altered again to remove the timing aspect.

Dest Source

SIGNAL

CONTEXT

Dest Source

ADAPTER

Timer

SIGNAL

ConstraintChecker

NOTIFY
SIGNAL

Figure 3: Dynamic timing verification composition adapter.

In order to modularize crosscutting concerns in PacoSuite,

we introduce a new concept, called a composition adapter. A
composition adapter is able to describe adaptations of the external
behavior of a component independently of a specific API. A
composition adapter is again documented using a special kind of
MSC and consists of two parts: a context part and an adapter part.
Figure 3 depicts the composition adapter that is used to
modularize the timing aspect. The context part of a composition
adapter describes the behavior that needs to be adapted. This can
be a simple signal send as in Figure 3, but can very well be a full
protocol. The adapter part specifies the adaptation itself. In the
case of the dynamic timing composition adapter, every signal
between the Source and Dest role will be rerouted through a
Timer role. The Timer role is responsible for taking a timestamp
and notifying the ConstraintChecker role. The ConstraintChecker
role is responsible to verify whether every signal it is notified of,
does not violate a timing constraint. The component that is
mapped on the ConstraintChecker role could do the verification
process offline and/or run on a different CPU to minimize the
disruption of the system.

When a composition adapter is applied onto an existing
composition pattern, the context roles of the composition adapter
need to be mapped onto roles of the composition pattern. For
example, suppose we want to time the communication between
the Toggler and toToggle roles of the composition pattern in
figure 2. The Source role of the timing composition adapter of
Figure 3 has to be mapped onto the Toggler role of the
composition pattern. Likewise, the Dest role has to be mapped
onto the toToggle role. As a result, the START and STOP signals
are not send directly to the toToggle/Dest role but are re-routed
through the Timer role. After sending the START or STOP signal
to the toToggle/Dest role, the ConstraintChecker role is notified.

To automatically apply a composition adapter onto a given
composition we developed an algorithm based on finite automata
theory. In this paper, we do not discuss this algorithm, a full
explanation can be found in [13].

2.3 Discussion
The critical reader might have noticed that the composition

adapter approach to enable run-time checking of timing
constraints is not very accurate. Currently, the timestamp of the
event is taken when it arrives at the component mapped on the
Timer role. So, there is at least an inaccuracy because of the delay
of this message send. If the application works distributed, this
delay can not be neglected. Certain sophisticated component

34

systems use a scheduler to pass messages to components. This
scheduling process imposes yet another delay, making the
timestamp even less accurate. As a result, our composition
adapter approach to check timing constraints at run-time is not
very well suited if a high precision is desired. The only way to
achieve a correct timestamp is to alter the mapped components
themselves so that the timestamp is taken before a message is sent
or received. However, a composition adapter is only able to alter
the exterior behavior of a component by ignoring or re-routing
messages. Aspects that require other adaptations can not be
described using a composition adapter, which is a major
limitation. To solve this problem, we enhance our current model
using an implementation in an aspect-oriented programming
language. The next section describes the language we designed
for allowing a composition adapter to specify invasive changes of
a component. Section 4 discusses how this new language is used
to realize an invasive composition adapter.

3. JASCO LANGUAGE
For enhancing the composition adapter model, an

implementation in an aspect-oriented programming language is
required. Several AOSD-approaches, such as AspectJ [2],
composition filters [3] and HyperJ [15], are available. These
technologies however, mainly aim at describing crosscutting
concerns in an object-oriented context. As a result, they are very
well not suitable for being deployed in a component-based
context, this because of several restrictions:

• Nearly all AOSD-approaches describe aspects with a
specific context in mind, which limits reusability.

• The deployment of an aspect within a software-
system is at the moment rather static, as aspects
loose their identity when they are integrated within
the base-implementation. As a result, aspects are not
able to exhibit the same plug-and-play characteristic
of components.

• The communication between components depends
on the employed component model. Current AOSD-
technologies however do not support to specify
aspects on these specific kinds of interactions.

For overcoming the problems mentioned above, we propose
a new aspect-oriented implementation language called JAsCo.
JAsCo has been developed with CBSD, and in particular
PacoSuite, in mind. The JAsCo-language stays as close as
possible to the regular Java syntax, and introduces two new
concepts: aspect beans and connectors. An aspect bean is a
regular Java bean that describes one or more logically related
hooks as a special kind of inner classes. A hook is a generic and
reusable entity and can be considered as the combination of the
AspectJ’s pointcut and advice. A connector on the other hand, is
used to initialize several logically related hooks with a concrete
context. To make the JAsCo language operational, we propose an
"aspect-enabled" component model, where components do not
require any adaptation whatsoever for aspects to be deployed.

The following two subsections describe the syntax of both
the aspect- and connector-language. For more information about
JAsCo and the JAsCo Beans component model, we refer to [9].

3.1 Aspect Syntax
Aspect beans are used for describing functionality that would

normally crosscut several components from which the system is
composed. The run-time checking of timing constraints,
introduced in section 2, is an example of such a crosscutting
concern. Whenever a specific method is executed, a timestamp
should be taken such that the defined timing constraints can be
checked. Figure 4 illustrates the implementation of this dynamic
timer aspect. Aspect beans usually contain one or more hook-
definitions (line 17 till 32), and are able to include any number of
ordinary Java class-members (line 3 till 15), which are shared
amongst all hooks of the aspect. A hook is used for defining
when the normal execution of a method should be cut, and what
extra behavior there should be executed at that precise moment in
time. For defining when the behavior of hook should be
executed, each hook is equipped with at least one constructor (line
21 till 23) that takes one or more abstract method parameters as
input. These abstract method parameters are used for describing
the context of a hook. The TimeStamp-hook specifies that it can
be deployed on every method that takes zero or more arguments
as input. The constructor-body defines how the join points of a
hook initialization are computed. In this particular case, the
constructor-body (line 22) specifies that the behavior of the
TimeStamp-hook should be triggered whenever method is
executed. The behavior methods of a hook are used for
specifying the various actions a hook needs to perform whenever
one of its calculated join points is encountered. Three kinds of
behavior methods are available: before, after and replace. The
TimeStamp-hook specifies two behavior methods (line 25 till 31).
The before behavior method describes that a timestamp should be
taken prior to the execution of method. In addition, the after
behavior method specifies that all the interested observers should
be notified of the timestamp.
1 class DynamicTimer {
2
3 private Vector obs = new Vector();
4 void removeTimeListener(TimeListener o) {
5 obs.remove(o);
6 }
7 void addTimeListener(TimeListener o) {
8 obs.add(o);
9 }
10 void notifyListeners(Method m, long t) {
11 for (int i = 0;i < obs.size();i++) {
12 ((TimeListener)obs.elementAt(i)).
13 TimeStampTaken(m,t);
14 }
15 }
16
17 hook TimeStamp {
18
19 private long timestamp;
20
21 TimeStamp(method(..args)) {
22 execute(method);
23 }
24
25 before() {
26 timestamp=System.currentTimeMillis();
27 }
28
29 after() {
30 notifyListeners(method,timestamp);
31 }
32 }
33 }

Figure 4: The JAsCo-aspect for dynamic timing.

When?

What?

35

3.2 Connector Syntax
Connectors are used for initializing a hook with a specific

context (methods or events). A hook initialization takes one or
more methods or event signatures as input. Figure 5 illustrates the
TimeConnector. This connector initializes a TimeStamp-hook
timer with the throwing of the actionPerformed-event of the
JButton-component (line 5), and with the startJuggling and
stopJuggling-methods of the Juggler-component (line 6 till 7).
After initializing this hook, the TimeConnector specifies the
execution of the before and the after behavior methods.
Consequently, the TimeConnector has following implication: take
a timestamp and notify all observers of the DynamicTimer aspect
bean whenever the JButton throws an ActionEvent and whenever
the Juggler starts or stops juggling.
1 connector TimeConnector {
2
3 DynamicTimer.TimeStamp timer =
4 new DynamicTimer.TimeStamp ({ onevent
5 JButton.actionPerformed(ActionEvent),
6 void Juggler.startJuggling(),
7 void Juggler.stopJuggling() });
8
9 timer.before();
10 timer.after();
11 }

Figure 5: The JAsCo-connector for dynamic timing of the
JButton and the Juggler.

4. INVASIVE COMPOSITION ADAPTERS

4.1 Documentation
One of the problems encountered with our current

composition adapter model is that it is not able to express aspects
that require interior adaptations of a component. To solve this
problem, we propose to employ the JAsCo language as an
implementation for a composition adapter. Hence, the
composition adapter model needs to be altered slightly.

Figure 6 illustrates the invasive composition adapter that
documents the DynamicTimer aspect bean of Figure 4. Messages
in the context part of an invasive composition adapter can be
mapped on a hook. In the case of Figure 6 the SIGNAL message
is mapped on the TimeStamp hook. As a result, every message
between the component that is mapped on the Source role and the
component that is mapped on the Dest role will be given to the
TimeStamp hook constructor. As a consequence, those messages
are changed to take a timestamp and to notify interested
observers. The adapter part of an invasive composition adapter
includes a new role that represents the aspect bean in the JAsCo
language. In the case of Figure 6, the DynamicTimer role
represents the aspect bean with the same name of Figure 4. The
adapter part documents what the effect of the application of the
DynamicTimer aspect bean will be. In the example of Figure 6,
every signal between a certain source and destination component
is still sent in the same way. However, the DynamicTimer aspect
bean declares that a timestamp has to be taken before an adapted
method is executed (see Figure 4, line 28-30). This behavior is not
documented in the composition adapter as it is internal to the
aspect bean and no communication with other components is
involved. As a consequence, this behavior is not relevant for
verifying compatibility and to generate glue-code. After the
original method is executed, the DynamicTimer aspect bean

notifies a ConstraintChecker component that verifies whether
certain timing constraints are violated (see Figure 4, line 32-34).
This behavior however, is documented in the composition adapter
because it requires communication with other components.
Messages that are sent or received by a JAsCo component require
an implementation mapping. In Figure 6, the NOTIFY message of
the DynamicTimer aspect bean is implemented by throwing the
timeStampTaken event. The implementation mapping is required
to be able to generate glue-code that will call the correct method
of the component that is mapped on the ConstraintChecker role
when the DynamicTimer throws the timeStampTaken event.
Notice that the component that will be mapped on the
ConstraintChecker role does not have to understand the
timeStampTaken event. Glue-code that translates the
timeStampTaken event into one or more methods of the mapped
component can be automatically generated using the
documentation of Figure 6.

Dest Source

SIGNAL

CONTEXT

Dest Source

ADAPTER

timing.DynamicTimer

SIGNAL

ConstraintChecker

NOTIFY

TimeStamp

timeStampTaken

Figure 6: Invasive Composition Adapter model for the

DynamicTimer aspect bean.

4.2 Applying an invasive composition adapter
An invasive composition adapter changes the composition

patterns in the same way a regular composition adapter does. As a
result, we can still use the same algorithm that was developed for
regular composition adapters to determine the effect of an
invasive composition adapter on a composition pattern.

An invasive composition adapter however also changes the
components themselves through the implementation in the JAsCo
language. The adaptations to a component caused by an invasive
composition adapter might affect the external behavior of the
component. As a consequence, the documentation of a component
becomes inconsistent. To be able to still verify the compatibility
of an adapted component with a given composition pattern, the
documentation of this component needs to be modified. This is
easily achieved by a similar algorithm as the one used for
adapting composition patterns to the specification of a
composition adapter [13]. The specification of an invasive
composition adapter is used to alter the documentation of the
components that are mapped on the context roles of the
composition adapter. In this way, we are still able to check
compatibility and automatically generate glue-code. In the case
of Figure 6, the documentation does not have to be altered
because the original behavior of the components that are mapped
on the Source and Dest roles is not changed.

As a last step, a connector in the JAsCo language is
generated to be able to apply the JAsCo implementation of the
invasive composition adapter onto the correct components. In

Where?

36

order to locate the concrete methods and events the aspect has to
be applied to, we have to calculate where the context part of the
composition adapter occurs. Luckily, this was already determined
in the previous phase. So, only the parts of the documentation of a
component where the context part occurs need to be analyzed. In
case of Figure 6, this means that all messages that are mapped
onto the signal with the TimeStamp hook as an implementation,
have to be altered by the composition adapter. For instance, if the
Juggler component of Figure 1 is mapped onto the Dest role of
the composition adapter of Figure 6, both the startJuggling and
stopJuggling methods would have to be adapted. Figure 5
illustrates the connector generated when the Juggler component is
mapped onto the Dest role and the JButton component is mapped
onto the Source role. The onevent keyword is used because
outgoing communication of Java Beans occurs through event
posting. When the connector is generated, the JAsCo compiler is
executed and the regular glue-code generation process of our
visual component composition environment is started. As a result,
the startJuggling end stopJuggling methods and the
actionPerformed event are timed. Timing constraints that act on
these points can be verified at run-time with a more accurate
precision than when using a non-invasive composition adapter.

4.3 Small Case Study

ProductDB Requester

REQUEST

CONTEXT

ProductDB Requester

ADAPTER

CaptureProduct

ANSWER
ApplyDiscount

REQUEST

ANSWER

Figure 7: OldProductDiscount invasive composition

adapter.
It can be argued that using an invasive composition adapter

for specifying timing constraints validation is not really
necessary. Indeed, a regular composition adapter is also able to
describe this concern, only the accuracy of the timestamps differs.
Therefore, we shortly present a small case-study that introduces
crosscutting concerns that really require an invasive composition
adapter. The case study at hand is a digital photo printing
laboratory. The system consists of two sub-applications: a client
that allows browsing and previewing pictures and a server
application that is responsible for printing and calculating the
price of an order. We identified four crosscutting concerns and
successfully modeled them using an invasive composition
adapter. Due to space constraints, only one of them is introduced,
namely a business rule that specifies a discount for obsolete
products. In this case, the obsolete product is a photo paper format
that is no longer in use. To introduce this concern, extra behavior
has to be inserted in the product database to be able to persistently
store and use the old product information. As a result, the product
database returns a discounted price for older products. Figure 7
illustrates the OldProductDiscount invasive composition adapter.
The context part declares that this invasive composition adapter is
applicable on a consecutive REQUEST and ANSWER. Notice
that a different hook is mapped on both the primitives of the

context part. The CaptureProduct hook is responsible for
capturing all relevant information of the price request of a certain
product. The ApplyDiscount acts on the answer of the request and
changes the result if the product is considered obsolete. The
adapter part of the OldProductDiscount invasive composition
adapter declares that the request and answer are sent in the same
way as before. Notice that the OldProductDiscount aspect bean
itself is not documented because it does not participate in the
interaction. Indeed, this invasive composition adapter only
changes the interior behavior of the component that is mapped
onto the ProductDB role.

5. TOOL SUPPORT

Figure 8: Screenshots of PacoSuite. The middle left and
bottom right screenshots illustrate the visual component
composition environment PacoSuite. The rectangles represent
components, the ovals stand for composition patterns and the
hexagonal shapes symbolize invasive composition adapters.
The top-right screenshot shows the documentation of a
Scrabble component in the PacoDoc tool.

The ideas introduced in this paper are implemented in a
visual component composition environment called PacoSuite.
PacoSuite consists of two visual tools, called PacoDoc and
PacoWire, and the command-line tools required by the JAsCo
language. PacoDoc is a visual editor for documenting
components, composition patterns and composition adapters.
PacoWire is our actual component composition environment that
allows visually applying a component onto a role of a
composition pattern. The drag and drop action is refused when the
component is detected to be incompatible with the composition
pattern. Composition adapters can also be visually applied on a
given composition of components. The changes dictated by a
composition adapter are automatically applied using the
algorithms mentioned in this paper. In case of an invasive
composition adapter, the JAsCo tools are executed transparently
to the user. When all the component roles are filled, the
composition is checked as a whole and glue-code is generated
automatically. Figure 8 illustrates some screenshots of this tool
suite.

6. RELATED WORK
One of the first approaches to integrate aspect-oriented

software development and component-based software
development is the aspectual component model of Lieberherr et al
[11]. The JAsCo language was partly inspired by this work and

37

quite some similarities exist between both languages. They both
employ a separate connector language to deploy an aspect within
a specific context. On a technical level, the aspectual components
approach uses byte code weaving, while we propose a new
component model. Our approach improves on aspectual
components by lifting the abstraction for applying aspects from
the implementation level to a visual composition environment.

Filman [7] proposes dynamic injectors to introduce aspects
into a given component configuration. He incorporates dynamic
injectors into OIF (Object Infrastructure Framework), a CORBA
centered aspect-oriented system for distributed applications. The
dynamic injector approach is very similar to our non-invasive
composition adapter idea because both approaches employ a
wrapping and filtering technique to insert crosscutting concerns
into a composition of components.

Another more recent approach to recuperate aspect-oriented
ideas in component-based software development is event based
aspect-oriented programming (EAOP). EAOP [4] allows
specifying crosscuts on events and event patterns using a formal
language. Similar to the composition adapter approach, EAOP
allows specifying aspects on a full protocol of events instead of a
set of methods. Since EAOP is based on a formal model, EOAP is
able to improve on our approach because of the advanced
detection and resolution of aspect interactions [5]. Our approach
extends EAOP by lifting the abstraction level for aspect
application from the implementation level to a visual composition
environment.

Duclos et al [6] focus on separating crosscutting concerns in
legacy systems built using CCM [3]. Similar to PacoSuite, they
specify crosscutting concerns at the architectural level. They also
employ two languages, one for declaring an aspect and one for
describing how the aspect should be used. Aspects are applied by
generating individually tailored CCM containers that include the
aspect’s logic. In that sense, their approach is similar to wrapping
because they do not allow interior changes to the components.

7. CONCLUSIONS
In this paper, we introduce an invasive composition adapter

in order to specify crosscutting concerns that require interior
adaptations of a component on a component-based design level.
An invasive composition adapter is an extended version of a
regular composition adapter and has an implementation in the
JAsCo aspect-oriented language. A component composer is able
to visually apply an invasive composition adapter on a given
component composition. The invasive composition adapter is
verified to be compatible with the composition and is
automatically deployed using algorithms based on finite
automaton theory. Likewise, an invasive composition adapter can
be easily removed from a collaboration when the concern is not
desired any longer. The main drawback of this approach is that it
is domain dependent. It is possible to agree on a set of semantic
primitives to document component interactions for a limited
application domain. However, it is unfeasible to come up and
agree on a general set of semantic primitives. Another drawback
is that this approach is resource intensive. Our current algorithms
are of exponential nature and in worst case scenarios this could
lead to state explosions. In addition, the glue-code to translate

syntactic incompatibilities between components adds an extra
level of indirection.

8. ACKNOWLEDGMENTS
We owe our gratitude to Prof. Dr. Viviane Jonckers for her

invaluable help during our research and for proof reading this
paper. Also, we like to thank Dr. Bart Wydaeghe who developed
the component based methodology during his PhD research. Since
October 2000, Wim Vanderperren is supported by a doctoral
scholarship from the Fund for Scientific Research (FWO or in
Flemish: “Fonds voor Wetenschappelijk Onderzoek”).

9. REFERENCES
[1] AspectJ Website. http://www.aspectJ.org.

[2] Bergmans, L. and Aksit, M. Composing Crosscutting Concerns
Using Composition Filters. Communications of the ACM, Vol.
44, No. 10, pp. 51-57, October 2001.

[3] Corba Component Model: see http://www.omg.org.

[4] Douence, R., Motelet, O. and Südholt, M. A formal definition of
crosscuts. In Proceedings of the 3rd International Conference on
Reflection. (Kyoto Japan, September 2001)

[5] Douence, R., Fradet, P. and Südholt, M. A framework for the
detection and resolution of aspect interactions. In Proceedings of
the ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering (Pittsburgh PA,
October 2002)

[6] Duclos, F., Estublier, J. and Morat, P. Describing and Using Non
Functional Aspects in Component-based Applications. In
Proceedings of the 1st international conference on Aspect-oriented
software development. (Enschede The Netherlands, April 2002)

[7] Filman, R.E. Applying Aspect-Oriented Programming to
Intelligent Synthesis. Workshop on Aspects and Dimensions of
Concerns, ECOOP, Cannes, France, June 2000.

[8] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence
Chart (MSC). ITU-TS, Geneva, September 1993.

[9] Suvée, D., Vanderperren, W., and Jonckers, V. JAsCo: an Aspect-
Oriented approach tailored for Component-based Software
Development .In Proceedings of the second international
conference on AOSD, Boston, USA, march 2003.

[10] Lieberherr, K., Lorenz, D. and Mezini, M. Programming with
Aspectual Components. Technical Report, NU-CCS-99-01, March
1999. Available at:
http://www.ccs.neu.edu/research/demeter/biblio/aspectual-
comps.html.

[11] Ossher, H. and Tarr, P. Multi-Dimensional Separation of Concerns
and The Hyperspace Approach. In Proc. of the Symposium on
SACT: The State of the Art in Software Development. Kluwer,
2000.

[12] Vanderperren, W. A pattern based approach to separate tangled
concerns in component-based development. ACP4IS workshop at
AOSD 2002.

[13] Vanderperren, W. Localizing crosscutting concerns in visual
component-based development.In proceedings of Software
Engineering Research and Practice (SERP) international
conference, Las Vegas, USA, june 2002.

[14] Vanderperren, W. and Wydaeghe, B. Towards a New Component
Composition Process. In Proceedings of ECBS 2001, April 2001.

[15] Wydaeghe, B. and Vandeperren, W. Visual Component
Composition Using Composition Patterns. In Proceedings of Tools
2001, July 2000.

38

Aspect Component Based Software Engineering1

1 This project has been financed by CICYT, project number TIC02-04309-C02-01.

Pedro J. Clemente and Juan Hernández
Quercus Software Engineering Group. http://quercusseg.unex.es

University of Extremadura. Spain

{jclemente, juanher}@unex.es

ABSTRACT
Component Based Software Engineering (CBSE) and Aspect
Oriented Programming (AOP) are two disciplines of software
engineering, which have been generating a great deal of interest in
recent years. From the CBSE point of view, the building of
applications becomes a process of assembling independent and
reusable software modules called components. However, the
necessary dependencies description among components and its
latter implementation causes the appearance of crosscutting, a
problem that Aspect Orientation resolves effectively. Aspect
Oriented Programming allows programmers to express in a
separate form the different aspects that intervene in an application
which are composed adequately at a later stage. This paper
analyses the problem of crosscutting which is produced during
component development, and a component based development
extension using Aspect Oriented techniques is proposed. This
Component based Software Engineering (CBSE) extension has
been named Aspect Component Software Engineering (ACBSE).

Keywords
Aspect-Oriented Software Development (AOSD), Component
Based Software Engineering (CBSE)

1. INTRODUCTION
Component-Based Development is gaining recognition as the key
technology for the construction of high-quality, evolvable, large
software systems in timely and affordable manners. Constructing
an application under this new setting involves the
assembly/composition of prefabricated, reusable and independent
pieces of software called components. A component should be
able to be developed, acquired and incorporated into the system
and composed with other components independently in time and
space[1].

The ultimate goal, once again, is to be able to reduce developing
costs and efforts, while improving the flexibility, reliability, and
reusability of the final application due to the (re)use of software
components already tested and validated. Component Oriented
Programming aims at producing software components for a
component market and for later composition (composers are third
parties). This requires standards to allow independently created
components to interoperate, and specifications that put the
composer into the position to decide what can be composed under
which conditions[1]. This approach moves organizations from
application development to application assembly.

This situation has given birth to the existing commercial
component models and platforms such as CCM, EJB or DCOM.

However, most of the publicity surrounding these component
models and platforms is oriented towards gaining the race way
under between middleware architects and vendors to establish
their products as standards for developing open distributed
systems. Thus, whilst companies are focused on highlighting the
benefits of software developing using the plug and play
mechanism of their products, there is little or no discussion in the
media of how to really design reusable, flexible and adaptable
components.

In this sense, there are reasons in Component Based System
(CBS) which cause a lack of reusability and adaptability: CBSE
imposes a structure on the programs that makes it difficult to have
different concerns well-modularized: code-tangling is inherent to
CBSE programs[2;3]. The uses statement (like CCM statement)
during component specification may be considered harmful. The
purpose of these statements is on the specification of receptacles
(i.e., a component reference in order to use the operations it
provides). However, these references express an aggregation
relation between components, thus establishing strong (and hard-
coded) dependencies among components which make them
difficult (or even impossible) to reuse, adapt and evolve.

Aspect-Oriented Software Development (AOSD) is an emerging
technology that provides direct support for separating and
weaving concerns that crosscut the functional components in a
typical software system. Aspect Oriented Programming (AOP) has
been created with the objective of allowing programmers to
express separately the different concerns of an application, in
order to be composed adequately at a later stage. The main
characteristics of software developed with AOP are flexibility,
adaptability and reusability of the elements used to compose the
system [4]. AOP provides various mechanisms to express, adapt,
isolate and reuse crosscutting concerns in the software
development to obtain these main characteristics.

This paper focuses on the study of the current problems of
Component Based Systems. On the one hand, each phase of CBD;
that is specification, implementation, package, assembly and
deployment, is revised. On the other hand, an Aspect Oriented
Programming methodology to develop Component Based Systems
business rules is proposed. The final software systems are
composed using Aspect Oriented techniques as a “glue” among
components, giving that the main advantages provided by aspect
orientation to component-based systems.

The rest of the paper is as follows: in section 2, the problems
arising during Component-based development will are identified.
In section 3, our proposal is presented. Finally, we feature a set of
conclusions.

39

2. CURRENT CBS PROBLEMS
Currently, common component platforms like CORBA
Component Model (CCM)[5] or Enterprise Java Beans (EJB)[6]
are based in the idea of D’Souza in Catalysis[7]. This idea is
simple: to build software systems using modules (components)
like a builder builds a house, using independent modules. Each
module has a specification and an implementation, and then, each
is composed to build the final software. For this objective, the
interfaces which a component provides and requires are used like
the connectors in a “lego piece”.

In this context, building applications are based on a process to
compose/assemble plug&play components. Therefore, building an
application requires the following phases: on the one hand, the
description and implementation of plug&play components is
needed (specification and implementation CBD phases). On the
other hand, a process to interconnect and deploy components is
required (package, assembly and deployment CBD phases).
Initially, CBD methodology increases the quality of software by
providing flexibility, adaptability and reusability through the
assembly/composition of independent software components.

However, individual components are not as reusable and
adaptable as may appear in a first place because the crosscutting
phenomenon arises in a actual way, as we explain in the following
paragraphs.

2.1 CBS Adaptability and Reusability
From the adaptability point of view, a system must be adapted
when new requirements appear. This means that changes in the
business rules can be applied to systems already built with
minimal changes. Let us proceed to analyze how we can adapt the
functionality of CBS to new requirements. First, a business rule is
a process in a software system; therefore, business rule changes
introduce software systems changes. These system changes can
include ones in functional or non-functional properties.

Updating Non-functional properties. Common component
platforms offer a container to manipulate the non functional
system properties like security, persistence, distribution, etc. The
container properties facilitate the development of components,
because the containers offer common services for all
components[5;6]. The container configuration can be changed
during the package phase. During this phase the developer can
specify various kind of policies for each component. For example,
if we are developing a system using CCM, the security,
transactions, and persistence for each component can be
configured in Package Phase[5].

Updating Functional properties. The container can not be used
to change a functional system behavior. CBS functional behaviors
are specified by business rules which describe the interconnection
among components. This interconnection among components will
form the final system. Besides, business rules change for each
system, for each domain, etc. Business rules respond to the
specific problem to be solved, and they establish the specification
and interconnection components in the design phase [8].

When a component A declares that uses the services offered by
other component B, that declaration affects both the specification
and implementation of A. This is due to the fact that the uses
statement expresses an aggregation relation between A and B.
Furthermore, in the implementation of A, direct calls to B
methods appear and they are hard-coded. Consequently, changes

in business rules involve updating both the specification and
implementation of software components. In addition, specification
changes affect to package, assembly and deployment phases of
CBD.

For example, let us assume that we have developed a CBS
controlling a market. Then, a new business rule for clients’
authentication is required in our system. This rule describes an
aspect called the Authentication Aspect. Suppose that the
Authentication Aspect is implemented in a specific component
(Authentication Component). In order to introduce this new
aspect (it is implemented by Authentication Component) in the
system we have to perform the following steps:

§ First, to identify the components affected by the
Authentication Aspect.

§ Second, the specifications and implementations of the
identified components should be updated, as it has been
shown above.

§ Finally, the software architecture of the system should be
updated; that is to say, package, assembly and deployment
phases must be reviewed.

This means that component systems are not easily adaptable to
new requirements, because the introductions of new requirements
involve changes in the all phases of the component life cycle,
namely specification, implementation, package, assembly and
deployment.

This situation happens frequently because business rules evolve
and, continuously the software systems need to implement new
business rules. Consequently, new mechanisms for developing
more adaptable and reusable component based systems are
needed, and this is the main contribution of this paper, which it is
explained below.

3. ACBSE: BUILDING CBS USING AOP
In this section a new component based development methodology
is presented. This methodology combines the principles of
Component Based Software Engineering and the flexibility,
adaptability and reusability characteristic are provided by Aspect
Orientation. This methodology is called ACBSE (Aspect
Component Based Software Engineering).

In the following paragraphs we are going to express the changes
necessary to apply aspect oriented programming in each
component based system development phase (design and
specification, implementation, package, assembly and
deployment).

3.1 System Design and Components
Specification Phases
During the component-based system specification, the interfaces
that a component provides and requires must be described. For
example, in the specification of a CCM[5] component, the
interfaces that it provides (facets) and those that it requires
(receptacles) are described. We will focus our attention on the
dependencies introduced by the uses clause, that is to say, the
interfaces it requires from other components. There are two
alternatives to define the dependencies between components:
doing it during the specification phase, or leaving it for
subsequent phases.

40

Both approaches have their advantages and disadvantages:

§ If the dependencies of a component are described during the
specification, they belong to that component and, therefore,
they must be maintained by all implementations of that
component specification [8]. With this alternative, the
component provides a clear and concise idea of its behavior.
However, the use of this component is quite limited. For
example it is possible that in a specific framework the
handling of some of the dependencies is unnecessary or, even
worse, the introduction of new dependencies becomes a
difficult task.

§ If the dependencies between components are not represented
during the specification phase. As an advantage, the
components can be easily adapted to the requirements of
each context. However, CBD phases concerns system
architecture (package, assembly and assembly) should be
reviewed to apply the component dependencies.

We propose a new way to specify component dependencies
avoiding the crosscutting at the implementation phase. The
different implementations of a component specification do not
need to implement those dependencies.

Component dependencies are classified as intrinsic and non-
intrinsic[9], since not all the dependencies have the same degree
of dependency regarding to the component:

§ A non-intrinsic dependency is when its use depends on the
framework or the context in which a component is to be
used. That is, if we delete a dependency from the component
description, the component maintains its initial functionality
without those facilities that provide the deleted dependency.

§ An intrinsic dependency is when its description and use is
vital for the component itself. In others words, if this
dependency is deleted then the component loses its meaning.

3.2 System Implementation Phase
The implementation phase allows for implementing the
component functionality. The component developer should use
only the intrinsic dependencies, and in the component
implementation there are many calls to methods to intrinsic
interfaces. This means that each component only implements the
basic business rules.

Throughout the implementation phase of the components, each
component implements the interfaces it provides, as well as all the
methods needed to carry out its functionality. During the
implementation of these methods, dependencies can be used in the
component implementation but it can only use intrinsic
component dependencies. However, all those dependencies
defined as non intrinsic dependencies are applied throughout the
package phase of software components. Therefore, crosscutting is
not being introduced in the implementation of the component due
to non-intrinsic dependencies.

3.3 System Package Phase
During the Package Phase, XML descriptors (for example,
Component Descriptor in CCM) are used to describe the
component properties which form a part of the component system.
In this XML description each component identifies the
interconnections with other components; that is to say, the system

architecture is described through the connection among interfaces
which are provided or required by components.

The Package Phase allows us to apply the non intrinsic
dependencies on the new component based system. The steps are
the following:

§ First, the non intrinsic dependencies must be defined during
System Design Phase[9] using a graphic representation like
UML.

§ Second, the dependencies which have been described in
UML are translated to XML Component Descriptor
Specification.

§ Third, this XML Component Descriptor Specification
describes the non-intrinsic dependencies for each
component. This means identifying the new business rules or
new dependencies in new contexts or new domains.

§ Finally, the information that a specific component describes
in its XML Component descriptor is pre-processed in order
to recompile the component code, and add the restrictions
and dependencies that are specified in this XML Component
Descriptor. These dependencies are expressed as aspect
implementations through a generic aspect-oriented
programming language, such as AspectJ[10],
AspectC++[11], etc.

Why is the packaging phase the most suitable one to describe
when and where the new business rules or dependencies should be
applied? One of the principal advantages of our proposal is the
flexibility that is obtained in the component design, precisely due
to the fact that the dependencies with other components are not
expressed in the component implementation, but indeed are once
the component has been implemented according to the necessities
of the context.

3.4 System Assembly and Deployment Phase
At this moment of the lifecycle of the CBD we have defined the
component interfaces, the intrinsic and non intrinsic dependencies
and the mode to interconnect the components to obtain the final
system (previous section). However, given that we are designing
component-based systems, which are possibly distributed, we
must also represent the location of every one of the components
that form the final system.

During the packaging phase a description of when and how the
dependencies that are defined in the specification phase must be
applied is provided. However, the location of the component that
implements or provides an interface is still not specified. The
UML diagrams for assembly and deployment of component-based
systems[9] are translated to XML Assembly Descriptor.

An XML Assembly Descriptor (similar to CCM Assembly
Descriptor) permits us to connect the component
implementations, which are part of our application. It is made up
of a set of component descriptors and property descriptors. That is
to say, it allows for the description of components and component
instances which make up a final application. This descriptor
permits us to specify the location of the components or instances.

The objective of this XML descriptor is to generate a specific
properties file. This file can be read for all components and the
rest of the components along the net can be located. This file can
use various types of locations: URL, IOR, NameService, etc.

41

3.5 ACBSE advantages
§ Reusability. The component is not recoded when the

components are used in other domains or contexts, because
the component implementation can be adapted to new
business rules by changing the non intrinsic dependencies.
Then these components can be coupled with others
components.

§ Adaptability. Programmers are offered the possibility of
modifying the component descriptor by altering the final
component functionality.

§ Scalability. The system can be easily scalable because we
obtain new component implementations and new component
specifications. Then these new components with their
intrinsic and non intrinsic dependencies can be used to
compose new systems.

§ Compressibility. Developing a new system is based on
following a set of structured phases (Design and
Specification, Implementation, Package, Assembly and
Deployment). All information about the system is stored by
using the common schemas (UML or XML). Besides, the
interconnection code is generated by XML translation.

4. CONCLUSIONS
In this paper we have presented a joined CBSE and AOP proposal
in which two of the recent tendencies in software system
development are united. We have expanded the life cycle of a
component-based system through techniques of aspect-oriented
programming with the aim of making good use of the advantages
of both tendencies and obtaining more flexible, adaptable and
reusable software systems.

In a component based system, the business rules establish and
determine the components specification and their relations.
However, these relations or dependencies provoke the appearance
of crosscutting as we have seen in this paper.

Therefore we have detached every one of the stages in the
component based development. Every one of these stages is
expanded so that a new description model of dependencies
between components, which are materialized during the system
composition phase, is implanted.

These interconnection descriptions in XML permit us to save time
and cost, due to the fact that almost the entire code necessary is
generated automatically. Finally, it should be emphasized that
currently the interconnection between components is totally
transparent to the programmer.

This ACBSE methodology has been developed with success in the
CORBA Component Model domain [12].

5. REFERENCES
[1] Szyperski, C., Component Software: Beyond Object-

Oriented Programming, Addison-Wesley, 1998.

[2] Duclos, F., Estublier, J., and Morat, P., "Describing
and using non functional aspects in component based
applications," Proceedings of the 1st international
conference on Aspect-oriented software development
Enschede, The Netherlands: ACM Press, 2002, pp. 65-
75.

[3] Lieberherr, K. J., Lorez, D., and Mezini, M.
Programming with Aspectual Components. 1999.
Technical Report, NU-CCS-99-01, Northeastern
University.

[4] Kiczales, G. Aspect-Oriented Programming. 1997.
Procedings of ECOOP, Springer Verang. LNCS 1241.

[5] Object Management Group (OMG). Specification of
Corba Component Model (CCM). 1999. Web Site:
http://www.omg.org/cgi-bin/doc?orbos/99-07-01.

[6] Sun Microsystems, Enterprise JavaBeans (EJB)
Specification 2.1, Web site: http://java.sun.com, 2003.

[7] D'Souza, D. Objects, Components and Frameworks
with UML. 2000. Web site:
http://http://www.trireme.u-net.com/catalysis/.

[8] Chessman, J. and Daniels, J., UML Components: A
Simple Process for Specifying Component-Based
Software, Addison-Wesley, 2001.

[9] Clemente, P. J., Sánchez, F., and Perez, M. A.
Modelling with UML Component-based and Aspect
Oriented Programming Systems. 8-6-2002. Seventh
International Workshop on Component-Oriented
Programming(WCOP 2002) at European Conference
on Object Oriented Programming (ECOOP). Málaga,
Spain. Web Site Download:
http://www.research.microsoft.com/%7Ecszypers/even
ts/wcop2002/.

[10] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M.,
Palm, J., and Griswold, W. An Overview of AspectJ.
2001. Proceedings of ECOOP, Springer Verang.
LNCS 2072.

[11] Gal, A., hroeder-Preikschat, W., and Spinczyk, O.
AspectC++: Language Proposal and Prototype
Implementation. 2001. OOPSLA. Web
Site.http://www.cs.ubc.ca/\~kdvolder/Workshops/OOP
SLA2001/submissions/17-gal.pdf.

[12] Clemente, P. J., Hernández, J., Murillo, J. M., Perez,
M. A., and Sánchez, F. AspectCCM: An aspect-
oriented extension of the Corba Component Model.
2002. EUROMICRO Conference. Euromicro
Component Based Software Engineering Track.
Dortmund, Germany, IEEE Press.

42

Learning from Components: Fitting AOP for System
Software ∗

Andreas Gal, Michael Franz
Department of Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

{gal,franz}@uci.edu

Danilo Beuche
School of Computer Science

Otto-von-Guericke-University of Magdeburg
Magdeburg, D-39106, Germany

danilo@ivs.cs.uni-magdeburg.de

ABSTRACT
Aspect-oriented programming (AOP) and implementation
of system software are fairly complex tasks on their own.
Combining these two severe challenges seems to be not very
inviting to operating system and system software builders.
To make AOP more appealing to the system software com-
munity, we limit the sometimes pervasive nature of AOP by
applying lessons learned from component-oriented program-
ming to make AOP more manageable and easier to verify.
The result is AspectLagoona, a featherweight aspect lan-
guage with very simple semantics and easily understandable
and well specified aspect and component code interaction.

1. MOTIVATION
At first, aspect-oriented programming [7] and component-
oriented programming (COP) seem to be totally irreconcil-
able as far as their fundamental design principles are con-
cerned.

Components are defined as a unit of composition with con-
tractually specified interfaces and explicit context dependen-
cies only [13]. A component can be understood as a black
box for which it is only known how to connect to it to request
a certain service (Figure 1). How the request is processed
internally is hidden from the client. This property makes
components interchangeable, as all dependencies are on the
interface level only.

Aspects have a very different way of interconnecting with
components. Instead of communicating with components
through well defined interfaces, they have to reach directly
inside the component to extract and modularize crosscut-
ting concerns (which might very well even crosscut across
component boundaries).

In general, commercial operating system builders tend to be
much more reluctant to adapt new technologies than soft-
ware writers in other domains. Operating system imple-
mentors are this conservative for a good reason: it is the re-
sponsibility of the OS to facilitate all I/O operations and to
manage all hardware resources. While a faulty application
might affect a certain single task performed by that particu-
lar application, a software error inside the operating system
can easily interfere with all applications at once, causing

∗This work was partially supported by the National Science
Foundation under grants EIA-9975053 and CCR-0105710.

damage to a much greater extent. Operating systems are
in general also much more difficult to debug than standard
applications as usually little control over the machine is left
once the OS crashed.

Probably the most repulsive property of AOP for system
software programmers is its crosscutting nature. While a
line of component code tends to be connected to one par-
ticular action resulting in some predictable local effect, as-
pect code can sometimes have a subtle, sometimes even
“ghostly”, influence on the whole system by bypassing es-
tablished communication protocols and interfaces between
components and directly manipulating internal component
state.

The interdependence between aspect code and component
code is particularly hard to grasp as existing general pur-
pose aspect languages like AspectJ [6] and AspectC++ [12]
offer a wide variety of mechanisms for aspects to attach to
component code.

To make AOP more attractive for system software develop-
ers, it is required to make aspect and component code inter-
action more obvious by simplifying the involved mechanisms
and offering the programmer a mechanism to control where
aspect code is allowed to interfere with component code and
where not.

In this position paper, we present the language Lagoona [3]
and its aspect-oriented extension AspectLagoona. Lagoona
is an object-oriented language based on the idea of stand-
alone messages and message forwarding. In Section 2 we will
discuss the fundamentals of the Lagoona language. Section 3
highlights why stand-alone messages greatly simplify the un-
derstanding of aspect-component interaction while still pre-
serving the similar level of expressibility as other general-
purpose aspect languages. Section 4 discusses related work
while Section 5 finally contains our conclusions and possible
future extensions.

2. LAGOONA
The most obvious feature that sets Lagoona apart from es-
tablished object-oriented programming languages is stand-
alone messages. In Lagoona messages are bound to (de-
clared in) modules instead of types, whereas most other
object-oriented statically-typed languages subordinate mes-
sages to classes (Figure 2). Stand-alone messages prevent

43

well defined interface

componentcomponent component

COP AOP

aspect

Figure 1: Interdependencies between components and aspects

“accidental” conformance relationships, where for example
a Cowboy type and a Shape type both understanding a mes-
sage draw with different semantics. Similar to the assump-
tion made about interfaces in COM [10], it is assumed that
messages and their specification are immutable once pub-
lished and thus have the same meaning to any potential
receiver object independently from its type.

Messages are the basis for interface types, (interface in our
concrete syntax) which represent references to objects that
implement a certain set of messages. Conformance to inter-
face types is structural. The pervasive interface type any

represents the empty message set and is the top element in
the resulting type lattice. Note that the name we give to
an interface type is only a convenient abbreviation; instead
of using such a name, we could also declare isomorphic in-
terface types repeatedly. Conceptually, interface types in
Lagoona are used to decouple independent components [4],
similar to the use of interfaces in both COM [10] and to a
certain extent Java [5].

Implementation types (class in our concrete syntax) host
methods and declarations for instance variables. While mes-
sages are abstract operations that describe what effect they
achieve, methods are concrete operations that describe how
an effect is achieved. In other words, messages are speci-
fications for methods, and methods are implementations of
messages. Each method implements exactly one message
and is triggered when an object of the associated type re-
ceives that particular message.

While an interface type is simply a set of messages, an imple-
mentation type consists of a set of methods and associated
storage definitions. In contrast to messages, methods are
declared in the scope of an implementation type. This asym-
metry is intentional, since we want to support multiple im-
plementations of identical specifications on the level of mes-
sages and methods as well as on the level of interface types
and implementation types to foster component-oriented pro-
gramming. As with messages and methods, interface types

and implementation types serve as specifications and imple-
mentations for each other.

To relate interface types and implementation types (includ-
ing their instances), we need to define some notion of con-
formance.

First, an interface type B denoting a set of messages MB

conforms to an interface type A denoting a set of messages
MA if and only if MB is a superset of MA:

A � B ⇐⇒ MA ⊆ MB (1)

In other words, we employ structural subtyping between in-
terface types.

Second, an implementation type C with a set of methods
implementing a set of messages MC conforms to an interface
type B denoting a set of messages MB if and only if MC is
a superset of MB :

B � C ⇐⇒ MB ⊆ MC (2)

Third, an interface type never conforms to an implement-
ation type. Of course, Lagoona allows interface types to be
cast to implementation types, guarded by a dynamic check.

Finally, two implementation types only conform if they are
the same type. In other words, we employ occurrence equiv-
alence between implementation types.

As instance variables are internal to the associated object,
at runtime, Lagoona’s object model essentially reduces to
a web of independent instances that communicate through
messages.

Assume we are sending a message m to a receiver r, which
can be an interface or an implementation reference, whose
type R denotes a message set MR. We distinguish two mes-
sage send operators with different semantics.

44

object−bound messages stand−alone messages

Object A Object A

Object B Object B

method A.X

method A.Y

message A.X

message A.Y

method B.Y message B.Y

method A.X

method A.Y

method B.Y

message X

message Y

Figure 2: Messages in Lagoona and traditional object-oriented languages

The first operator . is strict in the sense that the expression
r.m is valid if and only if m is an element of MR:

r.m ⇐⇒ m ∈ MR (3)

In other words, this operator statically ensures that the mes-
sage m will be ‘handled” by the instance bound to r.

The second operator ! is blind in the sense that the expres-
sion r!m is always valid. Of course, we have to guard the
application of this operator by a dynamic check, similar to
the one for casts mentioned above.1

Implementation types can define a default method which is
triggered for messages that do not have an explicit method
associated with them. Inside this default method, messages
can be resent or forwarded to other instances (Figure 3).

Lagoona does not contain any implicit fall back rules for the
message dispatch such as inheritance. However, the pro-
grammer can easily emulate inheritance, both class-based
as well as prototype-object based, using the default method
and a simple forwarding statement. We use the term generic
message forwarding to express that the actual message re-
mains opaque during the forwarding process. The default
method is implemented in a generic way and describes the
forwarding action for all otherwise unhandled messages for
the implementation type. Figure 4 shows a concrete code
example where objects of type A forward all unhandled mes-
sages to an object of type B. Thus, basically A behaves as
it would be derived from B in traditional object-oriented
languages.

3. AOP WITH LAGOONA
Adding support for aspect-oriented programming to Lagoona
is surprisingly simple. As we have mentioned earlier, in-

1For sensible assignment semantics, it is also necessary to
perform a dynamic check for the generation of return values
in case of messages, which are expected to produce a return
value.

module Example {

...

class A {

B b = new B();

void X() {

...

}

void default(message m) {

m.forward(b);

}

};

class B {

void Y() {

...

}

};

};

Figure 4: Emulating inheritance with stand-alone
messages

stance variables are internal to the associated object in La-
goona and thus objects communicate exclusively using mes-
sage send operations. This removes the need for get/set
pointcut functions, which exist in other aspect languages to
capture read and write actions to attributes.

There is also no need to distinguish between different types
of invocations such as call and execution as all complex dis-
patch algorithms are explicit in Lagoona. If the programmer
decides to use inheritance by emulating it with forwarding,
that emulation code is embedded within the default method
and can be directly accessed by aspect code.

In AspectLagoona advice code is bound to messages and
executed every time that particular message is being send

45

Object A

Object B

default method

method A.X

method B.Y

generic forwarding

message Y

message

Figure 3: Using generic message forwarding to extend objects

to an object. As messages are unique in Lagoona, there
is no need to introduce the concept of named pointcuts to
describe and select parts of the class hierarchy. This has a
subtle but significant impact on the code maintainability.

Languages like AspectJ and AspectC++ rely on explicit
class names or name patterns to select the join points for
which advice is being specified. To maintain consistency,
these pointcut expression in the aspect code have to be up-
dated every time a new class is added to the system which
should receive advice from that particular aspect. Name
patterns like “my*” can be used to ease this maintenance
burden, allowing to capture all classes or methods having
a name matching the pattern. However, this approach is
error prone, if the name of a new class accidentally matches
already existing name patterns in the program.

In AspectLagoona, aspects are bound to messages and not
to concrete implementation types. If advice is specified for
a certain method, it will apply to all methods implementing
that particular message. When new implementation types
are added to the system, the pointcut expression and the
aspect definition do not have to be changed, because advice
code is specified for messages instead of concrete methods.
This feature is vital to apply aspect-oriented programming
in a component-based environment, where new components
can be added on the fly.

There is also no need to introduce a novel construct for
pointcuts and pointcut expressions. A pointcut is a set of
join points. In Lagoona the only meaningful join points are
messages and Lagoona already supports the notion of a set
of messages: interfaces. Figure 5 demonstrates how advice
code is declared in Lagoona.

In contrast to other aspect languages where privileged as-
pects can inject code inside components, in Lagoona public
interfaces exported by components serve as join points. This
decouples the aspect code from the component code and al-
lows the component to hide its internal structure to the de-
gree it is necessary to provide interchangeability. Effectively,
interfaces become not only the well-defined specification for
inter-component communication, but also for the interaction
between aspects and components (Figure 6).

module Application {

interface NeedLocking {

void print(char c);

void flush();

};

class Screen {

void print(char c) {

// lock must be held

...

}

void flush() {

// lock must be held

...

}

};

};

module Locking {

advice Application.NeedLocking {

void before() {

// aquire lock

}

void after() {

// release lock

}

}

};

Figure 5: Defining advice code in Lagoona

4. RELATED WORK
A number of powerful aspect-oriented languages exists to-
day, including AspectJ [6], AspectC++ [12], and more re-
cently AspectC# [8]. Unfortunately, none of them is geared
to accommodate component-oriented programming and aspect-
oriented programming at the same time.

AOP has been successfully applied in the operating systems
domain by a number of projects. The PURE family of op-
erating systems uses AspectC++ to implement interrupt
synchronization for deeply embedded systems [9]. The a-
kernel [2] project uses AspectC, a subset of AspectJ to mod-
ularize certain crosscutting concerns in the FreeBSD kernel.

46

component aspect

Figure 6: Well-defined aspect/component interface

Both projects operate on a monolithic operating system ker-
nel and do not address component-based systems.

The Aspect-Modulator Framework [11] also permits to mod-
ularize C++ OS code with aspects. An aspect modulator is
responsible to execute advice code where appropriate. The
aspect modulator is invoked from join points generated man-
ually through code insertion. Bossa [1] uses event-based
AOP to modularize OS schedulers. Events are inserted man-
ually into the source code and aspects can choose to sub-
scribe to them. An interesting feature of the event-based
AOP model is the possibility to dynamically enable and dis-
able aspect code.

5. CONCLUSIONS AND FUTURE WORK
Implementors of system software are reluctant to adopt novel
programming mechanisms and paradigms, unless the new
technology is handed to them in manageable pieces. As-
pectLagoona aims exactly at these hard-to-convince users
by offering a lightweight mechanism for aspect-oriented pro-
gramming that still allows to deal effectively with all ap-
plications of aspects that the authors of this paper have
encountered so far.

On the other hand AspectLagoona does not try to compete
directly with AspectJ or AspectC++, as it is in contrast
to the latter two aspect languages a complete new language
design with a different object-oriented core language. This
disqualifies AspectLagoona for the re-engineering of legacy
operating systems, which seems to be currently the most
pursued approach in pushing AOP into the commercial OS
market.

The lesson we are trying to learn from AspectLagoona is
what the smallest and least invasive approach to extend a
languages with AOP capabilities would be. We are confident
that such a minimalistic approach has a good chance of being
accepted in certain areas of the system software domain.

Our current implementation of AspectLagoona includes a
complete compiler and runtime system, all written in La-
goona. Recently we started to re-engineer parts of the com-
piler and especially the runtime system to make use of the
aspect-oriented features of the language, which were initially
not present.

As far as future work is concerned, we plan to rework the
advice activation infrastructure, which is currently compile-
time driven. Our goal is to fully integrate aspects into the
component framework of Lagoona, allowing to compose sys-
tems from binary components and precompiled aspects at
deployment time or even dynamically.

6. REFERENCES
[1] L. P. Barreto, R. Douence, G. Muller, and M. Südholt.

Programming os schedulers with domain-specific
languages and aspects: New approaches for os kernel
engineering. In Proceedings of the 1st AOSD
Workshop on Aspects, Components, and Patterns for
Infrastructure Software, Apr. 2002.

[2] Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, and
J. S. Ong. Structuring operating system aspects: using
AOP to improve OS structure modularity, 2001.

[3] M. Franz. The Programming Language Lagoona: A
fresh Look at Object-Orientation. Software - Concepts
and Tools, 18(1):14–26, 1997.

[4] P. Fröhlich and M. Franz. On certain basic properties
of component-oriented programming languages. In
D. H. Lorenz and V. C. Sreedhar, editors, Proceedings
of the Workshop on Language Mechanisms for
Programming Software Components (at OOPSLA),
pages 15–18, Tampa Bay, FL, Oct. 15 2001. Technical
Report NU-CCS-01-06, College of Computer Science,
Northeastern University, Boston, MA 02115.

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Addison-Wesley, 2nd edition,
2000.

[6] G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In J. L. Knudsen, editor, ECOOP 2001 –
Object-Oriented Programming, volume 2072 of LNCS.
Springer-Verlag, June 2001.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In M. Aksit and
S. Matsuoka, editors, Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP
‘97), volume 1241 of Lecture Notes in Computer
Science, pages 220–242. Springer-Verlag, June 1997.

[8] H. Kim. AspectC#: An AOSD implementation for
C#. Master’s thesis, Department of Computer
Science, Trinity College Dublin, Sept. 2002.

[9] D. Mahrenholz, O. Spinczyk, A. Gal, and
W. Schrder-Preikschat. An aspect-orientied
implementation of interrupt synchronization in the
pure operating system family. In Proceedings of the
5th ECOOP Workshop on Object-Orientation and
Operating Systems, Malaga, Spain, June 2002.

[10] Microsoft Corporation. The Component Object Model
(Version 0.9), Oct. 1995.

47

[11] P. Netinant, T. Elrad, and M. E. Fayad. A layered
approach to building open aspect-oriented systems: a
framework for the design of on-demand system
demodularization. Communications of the ACM,
44(10):83–85, 2001.

[12] O. Spinczyk, A. Gal, and W. Schröder-Preikschat.
AspectC++: An Aspect-Oriented Extension to the
C++ Programming Language. In Fortieth
International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS
Pacific), volume 10 of Conferences in Research and
Practice in Information Technology. ACS, 2002.

[13] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley /
ACM, 1998.

48

AOP Support for C#

 M. Devi Prasad B.D. Chaudhary
Manipal Center for Information Science
Manipal Academy of Higher Education

Manipal – 576119
Karnataka, India

Telephone: +91- 08252-571914

Department of Computer Science
Motilal Nehru National Institute of Technology

 Allhabad – 211004
 Uttar Pradesh, India

Telephone: +91-532-2541006
devi.prasad@mahe.manipal.edu bdc@mnrec.ac.in

ABSTRACT
We have extended the C# compiler available under Microsoft’s Shared Source Common Language Infrastructure (SSCLI) to facilitate
Aspect Oriented Programming. The resulting compiler targets Microsoft .NET architecture. Our implementation introduces new ideas into
the aspect language and the aspect-weaving mechanism. Our AOP extensions emulate AspectJ programming model and augment it with
constructs that harness facilities provided by the Microsoft’s .NET architecture. In particular, our framework allows aspect definitions to
introduce ‘attributes’ on base C# module elements. This allows .NET runtime to provide container services transparently to marked
modules and module elements.

Our aspect weaver brings novelty to the weaving phase. It allows configurable aspect ordering and selective aspect weaving. Selecting
aspects of interest from a set of defined aspects and specifying suitable physical order for advice weaving is externalized in an XML file.
Aspect scheduler determines a weave plan based on this specification and the weaver carries out this plan.

Modifications to the original compiler involved reorganizing the source code so that we obtain better modularization promoting reuse, or
reduce coupling with the base code. In some cases, we extracted classes used as implementation helpers in the base compiler and turned
them into new reusable abstractions.

In order to implement efficient traversals between abstract syntax graph and a graph representing semantics-verified method bodies, we had
to extend data structures for syntax and method-body graphs. The solution introduced cyclic references across graphs. Therefore, we had to
define new protocols for memory management so that these graphs representing method bodies are preserved even after their semantic
checking. We altered the memory ownership scheme so that the base compiler and our extension subsystem coordinate memory
management concerns.

Current (incomplete) implementation is around 2 thousand lines of C++ code over and above Microsoft’s base compiler code. This
implementation performs only a source to source translation. It has taken about four months for four people to make stable extensions.
There is no public release of the implementation available as yet.

1. INTRODUCTION
This paper summarizes the novel features of our AOP extensions to C# language [3]. It also reports the experience gained while
restructuring and enhancing a shared source compiler. Here we describe a general global view of this project, named CAMEO. The initial
aim of CAMEO is to implement AspectJ like language support enabling aspect-oriented modularization in C#. Other goals include support
for structural aspects that harness Common Language Runtime (CLR) features [1], incremental or partial aspect weaving, and configurable
advice weaving. A preliminary source-to-source translator implementation is available for internal use. We intend to evolve this framework
for exploring new ideas in AOP and metaprogramming.

Determining a collection of joinpoints in the base source involves performing a detailed control flow analysis of the code. Conducting flow
analysis directly on the source text is an expensive operation in most practical cases. Since traditional compilers routinely parse source text
and build Abstract Syntax Graphs (ASGs), it makes sense to make use of available infrastructure from implemented translators. In the
CAMEO project, we counted on Microsoft’s Shared Source Common Language Infrastructure (SSCLI) implementation to meet these
requirements.

SSCLI [2] is an implementation of Microsoft’s CLR architecture. Apart from the implementation of a Virtual Execution Engine and host of
other tools, it includes C++ implementation of a C# language translator. The latter is a complete implementation of the ECMA standard [3]
and its source code is available for modifications only for academic and research purposes. The SSCLI provided compiler generates
Microsoft’s Intermediate Language (MSIL) code. Because the compiler is a tiny part of the larger framework, it is inextricably tied to the
infrastructure. SSCLI itself is spread around some 9000 files and the compiler source occupies nearly 200 files. We decided, very early in
the project, to separate compiler code per se from rest of the SSCLI. That way, building the compiler did not require ‘make’ing the entire
SSCLI and it also eliminated dependencies on other tools.

The base compiler contains a collection of classes and Component Object Model (COM) components implemented in C++. It comprises
lexical analysis, parsing, semantic checking, and code generation phases. The lexer reads entire source file into the memory and creates a
token stream. Eventually all source files are tokenized and stored in core. Parser operates on this token stream to create an Abstract Syntax
Graph (ASG). The semantic analyzer builds a Symbol Graph (SG) for namespaces, classes, methods, and other structural language-
elements while performing semantic checks on types and inheritance hierarchies. It also builds an Expression Graph (EG) while binding
method bodies. From there, the code generator emits MSIL executables. Totally, there are about one hundred different kinds of syntax

49

nodes, symbol nodes, and expression nodes. By referring to these three graphs, it is possible to regenerate the original source without any
loss of information.

We turn off code generation from the base compiler and redirect control to CAMEO subsystem. CAMEO will then go through a series of
phases that operate using three different data sources: the abstract graphs generated by the base compiler, aspect definition files, and an
aspect configuration file. The output of CAMEO is a morph of original C# source program with aspects woven into it. Figure 1 shows the
normal flow of data and control between the subsystems and phases within them.

Figure 1 - Flow of control across CAMEO aspect weaver

The aspect parser builds an abstract aspect tree (AAT) from aspect definitions. This tree represents all inter-type introductions, pointcut
declarations, or local member definitions found in the body of an aspect declaration. This tree is used in aspect selection and weaving
stages.

CAMEO weaver takes an approach fundamentally different from that of AspectJ [4]. The latter uses ‘dominates’ clause to define
precedence relationships among advice encapsulated by different aspects. We feel such “concerns” about advice ordering must be separated
from aspect definition per se. In CAMEO, the description of precedence relations is externalized in an XML based configuration file, much
in the spirit of descriptions supplied to the popular ‘make’ tool. Each ‘rule’ in the configuration file specifies dominating rules and aspects
that are part of this rule. Aspect scheduler plans a weaving order based on this information. Aspect weaver uses this plan to weave advices
into the base code.

In AspectJ all aspects from an aspect definition file are automatically included for weaving. The only way to avoid particular aspects is to
physically separate their definitions into different files and exclude these files from the compilation unit. In CAMEO, we have an improved
method for excluding aspects from a weave step. CAMEO uses an external configuration file containing aspect composition rules. It is
much simpler to specify and maintain appropriate rules for combining required aspects than to configure physical compilation units. This
simplified method for separating aspect selection concern from its definition helps in building variants of a base system in a side-by-side,
configurable fashion.

The rest of this paper is organized as follows: in section 2, we explain some novel features of our aspect language and the weaver. In
Section 3, we discuss the challenges faced in implementing these features on top of the existing translator. In Section 4, we compare the
overlapping ideas between CAMEO and a popular dynamic AOP framework. In the final section, we provide a summary of the work.

2. ASPECT LANGUAGE SUPPORT AND WEAVING MODEL
In order to maintain conformance with contemporary aspect technology, we decided to make CAMEO weaver emulate AspectJ. Moreover,
C# is quite similar to Java at various levels. Hence, the syntax for aspect definition, pointcut declaration and advice declaration in CAMEO
remains similar to AspectJ with minor differences. We plan to support all primitive pointcuts of AspetcJ in CAMEO. There are certain
idiosyncrasies in C# and .NET that call for additional pointcuts to pick up special joinpoints and special weaver behavior. We provide a
representative list of specialties in CAMEO here:

Scanner Parser

Semantic
Analyzer

Abstract
Graph

C# source program

Aspect
Configuration

Aspect definitions

Aspect
Parser

Aspect
Scheduler

Aspect
Weaver

Abstract
Aspect Graph

Woven Program
(C# Source)

Notation:
 Shadowed arrows represent
 control flow between phases.
 Thick arrows represent use of a
 data structure or a file.
 Dashed open headed arrows
 represent data structure or file
 construction.

50

 The ‘get (…)’ and ‘set (…)’ primitive pointcuts in AspectJ pick up those joinpoints that access a non-private member of a Java
class. On the other hand, C# has a special syntax for defining property accessors and mutators, in addition to the ordinary field
accessors. In C#, property members resemble methods of a class, both in syntax and semantics. Therefore, we should treat
property members of class, as well as non-private fields of a class, orthogonal. These two pointcuts, therefore, need different
treatment from that of AspectJ.

 C# programs can use “unsafe” pointers. The ‘unsafe’ primitive pointcut picks up joinpoints from the base code that use pointers.

 The inter-type declaration can introduce new attributes on existing classes, members of a class, return type and formal parameters
of methods.

We feel these joinpoints are interesting to both designers and developers under the .NET architecture. Code using unsafe pointers could be
compromising reliability for functionality. We can control tensions between safety and functionality using ‘declare error’ or ‘declare
warning’ constructs within aspect definitions, in a case-by-case fashion.

The next three subsections bring out important ideas that distinguish CAMEO from other contemporary aspect weavers.

2.1 Structural Aspects Targeting .NET Architecture
AOP frequently uses inter-type ‘introduction’ mechanism to affect structural and behavioral changes in classes. An aspect definition can
extend some class declaration to implement one or more interfaces, and introduce new methods and fields into that class. When
components participate in specific patterns of interactions, AOP helps in implementing protocols in a non-invasive way by introducing
required members and interfaces on partaking classes. Introduction in CAMEO works transparent to the target classes.

In some cases, stylistic naming conventions are strictly followed in naming methods and fields of classes. An external framework can later
use reflection or static analysis techniques to provide certain services to methods that are stylistically named. Many software-testing
frameworks follow this approach to automate testing. The use of declarative ‘attributes’ in .NET avoids some well-known problems with
stylistic naming conventions [6]. Nunit Version-2 [7], a unit-testing framework for .NET languages, extensively uses attributes.
Applications can also define custom attributes to annotate classes and methods and reflect upon them to provide services or modify
behavior at runtime [5].

In CAMEO, we have a provision to introduce attributes on classes, methods, parameters, and fields. A statement such as the following one,
defined inside an aspect declaration, introduces new attribute ‘Test’ on ‘PushTest’ method of ‘Stack’ class that is visible in the
‘org.example’ namespace.

introduce [Test] on public org.example.Stack.PushTest (…);

Following construct introduces a new private field named ‘url’ into the class ‘org.example.Machine’

introduce private String url on org.example.Machine;

The base compiler maintains a sequential in-core token stream representing the source program. Inter-type declarations modify physical
structure of a class after the creation of token stream. Consequently, we cannot efficiently update the sequential buffer when introductions
arbitrarily modify the token stream. In CAMEO, we create new abstract syntax nodes to represent the synthesized attribute or member
declaration. Then we hook them into the target (which can be a class, method, formal parameter or return type) node in the original ASG.
Synthesized nodes lack matching source text in the token stream.

This poses an interesting problem while unparsing, which is the last phase in CAMEO. There we need to reconstruct source text from
woven ASG and EG. Because we cannot directly map synthesized nodes to text tokens, we should explicitly implement an ‘Unparse()’
method to generate source text from their abstract internal representation. We have generalized this technique and applied it to all types of
abstract nodes. An important benefit of this approach is that in the future we can do away with the token stream making way for flexible
solutions.

2.2 Configurable Aspect Ordering
CAMEO uses an XML file containing weave rules. Each rule logically stands for a concern that is implemented in terms of related aspects.
In some cases, it also specifies requirements regarding the order of execution of advice. Each rule has two parts. One part lists aspects
central to the concern represented by that rule. We treat a rule to ‘own’ aspects listed under it. The other (optionally empty) part specifies
precedence relation among aspects owned by this rule, and other ‘interfering’ aspects. For example, a logger concern may take precedence
over a security concern. A typical rule reads:

<rule name = 'XmlSerializer'>
 <precedence type = 'strict'>
 <dominatingRule name = 'Logger' />
 <dominatingRule name = 'SecurityManager' />

51

 </precedence>
 <weave>
 <aspect name = 'XmlWriter’ />
 </weave>
</rule>

This example says that rules ‘Logger‘and ‘SecurityManager’ dominate the rule ‘XmlSerializer’. Moreover, the attribute type = ‘strict’ on
the ‘precedence’ element specifies that the aspects listed by “Logger” (which is not shown here) must be weaved before the aspects under
“SecurityManager” (again, not shown). If type attribute is ‘lax’, the weaver is free to weave the aspects under the rules 'Logger' and
‘'SecurityManager’ in arbitrary fashion. In the example, aspect ‘XmlWriter’ is weaved only after the aspects owned by ‘Logger’ and
‘SecurityManager’ rules are completely considered.

The aspect scheduler computes the closure of rules starting from a ‘head rule’ representing the root of precedence relationships. This step
should yield an acyclic directed graph. A cyclic graph implies circular dependency of rules and aspect relations, which is illegal.
Consistency checks on this graph detect conflicts in aspect precedence relations. We obtain a flattened list of owned aspects from the
closure of rules. This list represents a complete weave order. If there is any non-consecutive repetition of aspect names in this list, we flag
the precedence requirement illegal. In the current implementation, we always assume strict ordering for aspects. A non-consecutive
repetition of an aspect aj across two different rules implies that at least two aspects for distinct concerns have incompatible expectation
from aj. When aj appears consecutively, it is folded into one instance.

2.3 Selective Aspect Weaving
While integrating software developed using AOP techniques, testing becomes easier if aspects are propagated in a staged manner. By
guiding the weaver to deal with few selected aspects, it is possible to avoid aspect ‘interference’. In CAMEO, we can introduce fresh set of
rules into the configuration file, any time it is necessary to control aspect impact on the base code. These new rules should capture only the
desired aspects and their inter-relationships. The command line argument to compiler should indicate the new head rule for aspect
selection. As discussed in the previous section, we obtain a flattened list of owned aspects from the closure of head rule.

The aspect scheduler refers the aspect closure graph, described in section 2.2, to determine the list of aspects relevant to the current weave
step. In the most general case, the scheduler constructs a list that honors aspect precedence relations. The current implementation handles
only strict precedence rules, mentioned in section 2.2.

The weaver receives abstract aspect tree and precedence list from the aspect scheduler. The precedence list represents the weave order for
aspects of interest. At first, the weaver considers inter-type introductions from each aspect. The weaver performs field introductions,
followed by method and property introductions and then attribute introductions, in that order, on the target classes. Introductions modify
the in-memory ASGs. Then the weaver processes pointcut declarations. This step performs a flow analysis of the transformed ASG in order
to identify potential sites for advice weaving. Finally, the advice weaver carries out required modifications by inserting code at appropriate
locations in the ASG.

3. OTHER IMPLEMENTATION CONCERNS
Some of the modifications discussed in the previous sections posed complex engineering problems. We mention these problems in this
report because they represent a class of concerns that are best candidates for aspectual modularization. We hope that an understanding of
such concerns helps better design of traditional software.

A careful study of the SSCLI C# translator source reveals numerous crosscutting concerns. Important among them include incremental
compilation, thread synchronization (during incremental compilation), symbol table creation, memory management, compiler options
influencing different phases, error reporting, executable file creation, and COM support

It is clear that the above concerns contribute to the efficiency of translator implementation. In general, efficiency concerns are scattered and
tangled inside compiler’s implementation. A minor modification to one feature escalates changes in many modules, either across multiple
methods within a class or across class hierarchies.

For instance, the base compiler uses a class named ‘CLSDREC’ that maintains information necessary to declare a single class. This class
has a method named ‘compileMethod’ that builds a parse tree for a method definition and generates the intermediate language (IL)
instructions for it. For obvious efficiency reasons, its implementation releases memory held by the parse tree after IL generation. Though
we have switched off the code generation phase, we would still like to exploit interior parse tree for its rich semantic content. In the base
compiler, a COM class implements the interior parse tree. Each object of this type maintains references to other classes that represent
source module and related abstractions. We changed the implementation so that CAMEO takes up ownership of allocated memory. This
change in memory management policy manifests as two scattered blocks of code. First, we modify the flow within ‘compileMethod’ to
avoid deallocation on successful compilation. We allow a deallocation only when compilation fails. Next, as a last step in CAMEO, we
iterate every method node in the ASG and release the reference to the parse tree component it holds. This is necessary because we have to
honor COM’s reference counting requirements.

In some cases, we were able to refactor code from base implementation and reuse it effectively. For example, there is a class named
‘CSourceText’ that was used in the base compiler as an implementation helper for buffering C# source programs. This class can read

52

content encoded in UTF8, UNICODE or ASCII. We extracted its class declaration and implementation into different physical files and
reused it for reading aspect definitions. Although this class uses an inflexible buffering strategy, its design simplicity facilitated good reuse.

4. RELATED WORK
At present, the choice of weaving strategy appears to be one of the important distinctions among different AOP languages and frameworks.
Languages based on AspectJ model employ static weaving. Java Aspect Components (JAC) [8] represents an approach that exploits
runtime infrastructure to provide dynamic composition of aspects. Some enhancements claimed by CAMEO overlap with that of JAC [9].
However, there are important differences in realizing these enhancements. Therefore, in this section we briefly bring out essential
distinctions between JAC and CAMEO.

JAC is a powerful framework comprising of a runtime infrastructure for dynamic aspect composition. JAC does not extend the Java
language. Instead it works directly on the java bytecodes. Its programming model consists of four important elements: a base object, an
aspect component, an application specific weaver object, and a wrapping controller. All four are pure java objects. JAC uses Javaassist [10]
to intercept requests to load a class and constructs a run-time environment suitable for composing objects with aspects. Each aspect
component is written using a reflective API that helps in coordinating the execution of multiple aspects wrapped around a base object. This
API also helps an aspect component to probe runtime call stack and determine method call context. The weaver object uses reflection to
wrap base objects with aspect objects. An application specific wrapping controller assists in dynamically verifying the consistency among
aspects, in defining precedence among aspects in a modular way. JAC derives its effectiveness from the powerful reflection based API.

In contrast, CAMEO employs static weaving, provides C# extensions, and works with source code. It does not use any runtime
infrastructure or reflection, nor does it deal with bytecode weaving. The CAMEO programming model does not directly deal with
consistency and precedence among aspects. Instead such issues are handled by externalized declarative specifications. These preferences
have to be known at compile time.

5. CONCLUSION
CAMEO employs Microsoft’s SSCLI code base for building experimental AOP infrastructure for C#. As an ongoing project, it intends to
serve as a tool for advanced separation of concerns for .NET application development. The current implementation does not handle all
pointcuts available in AspectJ. Nor does it support byte code level weaving. We have a few ideas on the paper for adding new joinopints to
the existing repertoire of CAMEO that simplify constructing a class of structural design patterns. We have plans to refine the ideas of
aspect configuration to handle lax ordering among different aspects. We also intend to replace existing in-memory token stream by a more
flexible scheme so that inter-type introduction, advice interlacing becomes more efficient.

The main contribution of this project is in exploring mechanisms to separate aspect definitions from aspect weaving concerns. We have
demonstrated that selective aspect weaving and configuring their weave order is both attractive and useful. We believe such separation of
aspect weaving concern helps in better reuse of aspect definitions.

6. ACKNOWLEDGEMENTS
We would like to thank the CAMEO team: Aravind, Gopichand, Jagadish, and Lalitha. Thanks to our colleagues Mohan and Veena for
their support at various stages. We appreciate the AspectJ mailing list members for their critical analysis of selective aspect weaving and
for comparing it with the strategies employed in AspectJ and Hyper/J.

7. REFERENCES
[1] Microsoft .NET architecture and resources – www.microsoft.com/net

[2] SSCLI – http://www.microsoft.com/licensing/sharedsource/default.asp

[3] ECMA C# specification - http://www.ecma.ch/ecma1/STAND/ECMA-334.htm

[4] AspectJ download, documentation – http://www.eclipse.org/aspectj/

[5] Dharma Shukla, Simon Fell, and Chris Sells. Aspect-Oriented Programming Enables Better Code Encapsulation and Reuse. MSDN
magazine, March 2002 http://msdn.microsoft.com/msdnmag/issues/02/03/AOP/AOP.asp

[6] Martin Fowler. How .NET’s Custom Attributes Affect Design. IEEE Software September/October 2002.
http://www.martinfowler.com/articles/netAttributes.pdf

[7] Nunit. http://www.nunit.org

[8] Java Aspect Components. http://jac.aopsys.com

[9] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A flexible solution for aspect-oriented programming in Java. In Reflection
2001, pages 1-24, 2001. LNCS 2192.

[10] Javaassist. http://www.csg.is.titech.ac.jp/~chiba/javassist

53

54

Idioms for Building Software Frameworks in AspectJ

Stefan Hanenberg1 and Arno Schmidmeier2

1Institute for Computer Science
University of Essen, 45117 Essen, Germany
shanenbe@cs.uni-essen.de

2AspectSoft,
Lohweg 9, 91217 Herbruck, Germany

A@schmidmeier.org

ABSTRACT

Building applications using AspectJ means to design applications
build upon the new language features offered in addition to Java.
The usual argumentation that AspectJ permits a better separation
of concerns in contrast to the traditional static typed object-
oriented code might be valid, but does not prevent developers to
misuse these language features. What's needed is a discussions of
how to apply the language features of AspectJ to achieve good
designed applications. In this paper we propose four idioms
whose application turned out to result in good designed
application in an appropriate context.

1. INTRODUCTION
AspectJ comes with a number of (more or less) new language
features which try to tackle the problem of crosscutting code.
Although the impact of these features on the object-oriented code
is already analyzed like for example in [6] it is not clear how to
apply these features to new problems. However, as noted by R.
W. Floyd : "To persuade me of the merit of your language, you
must show me how to construct programs in it. I don't want to
discourage the design of new languages; I want to encourage the
language designer to become a serious student of the details of the
design process" [2, p. 460].

In this paper we continue to describe idioms which turned out to
be used in good designed AspectJ applications and try in this way
to encourage the usage of AspectJ in large scale applications. In
[4] we already proposed some idioms which were closely related
to the language features of AspectJ. Here we propose idioms
which seem to be somehow more advanced. The idioms where
successfully used in a large scale AspectJ project on Enterprise
Application Integration (EAI) systems [9]. In [4] we already
discussed the relationship between the proposed idioms and
patterns. One of the major points in this discussion was, that the
proposed idioms did not have the pattern format. However, in this
paper we still neglect to put the idioms in such a format because
of two reasons. First, we feel that it is still more important to
discuss typical design decisions in aspect-oriented languages than
to claim that a number of good patterns are found. And second, it
is still not yet clearly determined what language features an
aspect-oriented language will provide in the future: the provided
language features still evolve from version to version. Hence, a
collection of good design decisions might be no longer valid in the
future because of language changes in AspectJ.

Furthermore, we do not give an example for each proposed idiom.
Instead, we discuss the design of an existing real-world example
which was influenced by the here proposed idioms at the end of
the paper.

In section 2 to 5 we discuss four different idioms. We concentrate
in this discussion on the core ingredients of those idioms, their
advantage and their consequences. In section 6 we discuss a real-
world example where such idioms were used. Since the example
comes from quite a large context we just can give a small glimpse
of it and we only concentrate on the considerations which lead to
the final design. In section 7 we conclude the paper.

2. TEMPLATE ADVICE1
A template advice is used whenever additional behavior which
should be executed at a certain join point contains some
variabilities. That means the code to be executed consists of a fixed
and a variable part whereby the variable part changes from
application to application. A template advice corresponds directly
to the template method design pattern [3] whereby the template is
specified inside an advice instead of a method.

<<aspect>>
AbstractAspect

m();
pointcut pc() = ...;
... around(): pc() {
 ...
m();

 ...

TargetClass

<<aspect>>
ConcreteAspect

m() {...}

*

Figure 1. Template Advice

Whenever the problem is given that the code to be executed at
certain join points is partly known and fixed, but might contain
(depending on the concrete join point) some variabilities, the
designer has to decide how to consider such variabilities. In case

1 It should be noted that the name template advice has been

already used in [4] for a different idiom. We regard the name of
the idiom in [4] a little bit misleading and renamed it to import
pointcut since this metaphor seems to describe its usage more
appropriate.

55

the join points are well-known, it is possible to implement a
number of different aspects for each of those different kinds of
join points. The disadvantage of this approach is, that all those
different join points usually have some commonalities. This
commonalities (which means, that some common pointcut
specifications are used) depict redundant code inside the
application. The problem can be reduced by using the composite
pointcut idiom [4]. However, the problem is still, that the advice
contains redundant code. This redundant code depicts those part
which are constant in each occurrence of the advice. To reduce this
redundancy the stable part of the advice is used as a template and
the variable part is put into a method. The property of AspectJ
that advice cannot be refined in subaspects means in such a
situation that the decision which part of the code is fix is final: it is
not possible to refine advice incrementally. Instead, the aspect
needs to be refactored.

The ingredients of the template advice are (in correspondence to
template method [3]):

• Abstract aspect: the aspect that contains declarations of a
number of primitive operations which are defined in sub-
aspects. Usually, these methods are abstract, that means they
are just declared but not defined. Furthermore, the abstract
aspect contains the advice (which is called the template
advice) which contains the invocations of the primitive
operations. Usually the pointcut referred by the template
advice is abstract.

• Concrete aspect: The concrete aspect defines or overrides the
primitive operations of the abstract aspect and implements in
that way the aspect-oriented adaptation of the target classes.

It seems questionable if the template advice is really a specific
AspectJ idiom since it is very similar to the template method.
However, we regards it as an specific idiom, because the
consequences of using a template advice are quite different than
the usage of a template method. First, in AspectJ only abstract
aspects can be extended by further aspects. That means, when the
corresponding aspect is written it must be clear whether or not a
contained advice inside the aspect tends to be a template advice or
not. Using pure object-oriented language features in a language
supporting late binding this question does not have to be
answered. For example in Java or Smalltalk almost every method
can be overridden by a subclass. That means every method inside
the superclass which contains invocations of an overridden
method depicts a potential template method. That means methods
might become template methods because of an incremental
modification of the class structure. Hence, the preplanning
problem of design patterns as mentioned in [1] is not that
significant for a template method. On the other hand, because of
the limited possibilities of incremental aspect refinement in
AspectJ this problem is more present in a template advice. Hence,
the consequences of using a template advice are much more
restrictive.

The consequences of using a template advice are:

• Separation of fixed and variable part of crosscutting code: the
advice depicts the fixed part of the crosscutting code, while
the abstract method depicts the variable part which can be
refined according to the special need.

• Limited incremental refinement: since AspectJ does not
permit to refine advice directly (via overriding) the advice
implementation is usually fixed.

• Conflict handling: if there are more than one concrete aspect
which refer to at least one common join point the developer
need to determine which advice should be executed. This can
be either realized by further idioms, or by an explicit usage of
dominate relationships between aspects.

• Limited knowledge on aspects internals required: the
adaptation of the aspect behavior just depends on the
concrete method definition. Hence, the developer performing
the aspect adaptation only needs little knowledge about the
concrete pointcut or the advice internals. However, a detailed
description of the contract belonging to the abstract method
is needed.

• Lost access to introspective facilities: since the reflective
facilities of AspectJ are just available inside an advice there is
no possibility to refer inside the method to the execution
context. This must be considered during the design. In case
the execution context might be needed, it has to be passed as a
parameter.

Template advice usually occur together with composite pointcuts
[5] where the concrete aspect defines the component pointcuts.
Also, template advice are often used in conjunction with pointcut
methods and chained advice (see section 3 and 4) where in both
cases the concrete aspect refines the pointcut definition. Hence,
different implementation of template advice usually differ in their
handling of the corresponding pointcut.

It should be noted that template advice is a very generic idiom
which builds in conjunction with template method and composite
pointcut the fundament of aspect-oriented frameworks in
AspectJ. It can be compared to [7] whose analysis of software
frameworks is based on the distinction between hook and template
coming mainly from the template method design pattern.

3. POINTCUT METHOD
A pointcut method is used, whenever a certain advice is needed
whose execution depends on runtime specific elements which
cannot or only with large effort expressed by the underlying
pointcut language.

The pointcut language of AspectJ is quite expressive. Dynamic
pointcuts like args(..) permit to specify join points which are
evaluated during runtime and permit in that way to specify a large
variety of crosscuttings. Typical examples where dynamic
pointcuts are used are the simulating dynamic dispatching on top
of Java (cf. e.g. [9]). However, sometimes the decision of whether
or not a corresponding advice should be executed is not that easy
to specify inside a pointcut definition. Such a situation is usually

56

given if the advice execution depends on a more complex
computation or includes a invocation history of the participating
objects.

The usage of if pointcuts can reduce this problem. However, if
pointcuts are somehow ugly since they permit only to call static
members of the aspect. Furthermore, the usage of if pointcuts
usually reduces the reusability of the enclosing aspect, because
they are usually very specific to a small set of join points.
Usually, the usage of the pointcut language seems to be
inappropriate when the decision whether or not a corresponding
advice should be executed can be better expressed by methods
than the pointcut language. In these cases the usage of a pointcut
method is appropriate.

<<aspect>>
AbstractAspect

boolean pointcutMethod();
pointcut candidate() = ...;
... around(): candidate() {
if (pointcutMethod()) ...
else proceed();

}

TargetClass

*

<<aspect>>
CandidateAspect

boolean pointcutMethod() {...}

Figure 2. Pointcut Method

The ingredients of a pointcut method are:

• Candidate pointcut: the pointcut which determines all
potential join points where additional behavior might take
place. However, the pointcut definition includes more join
points than needed to perform the aspect specific behavior.

• Pointcut Method: the method which is invoked from inside
the advice to determine whether or not the advice should be
executed. Typically the return type of a pointcut method is
boolean.

• Conditional Advice: the advice which contains the behavior
which might be executed at the specified join points. The
additional behavior is conditional executed depending on the
result of the pointcut method.

• Candidate Aspect: the aspect which refines the pointcut
method.

Implementations of pointcut methods vary in a number of ways.
First, usually a pointcut method's return type is boolean. That
means a pointcut method only determines whether or not the
additional behavior specified inside an advice should be executed.
On the other hand, a pointcut method can also include just any
computation whereby the conditional execution of the advice
depends on the pointcut methods result (and any other context
information). That means the decision whether or not the advice
should be executed not only depends on the pointcut method
itself.

Another important issue is how the computation of the pointcut
method depends on the execution context of the application.
Usually context information are directly passed by the advice to
the pointcut method. That means the referring pointcut either
passes some parameters to the advice or the advice extracts
context information using the introspection capabilities of AspectJ
like thisJoinPoint or thisStaticJoinPoint. Another
possibility is, that the aspect itself has a state that is set by the
application's execution context. The pointcut method can decide
because of this state whether the advice should be executed or not.

An advantage of using a pointcut method is its adaptability by
aspects: it is possible to specify further advice which refine the
pointcut method outside the aspect hierarchy. That means, the
condition whether or not an advice should be executed can be
modified incrementally. In case the pointcut is hard-coded by
using the pointcut language such an extension is not that easy. It
assumes a corresponding underlying architecture or rules of thumb
like discussed in [5].

The consequences of using a pointcut method are:

• Hidden pointcut definition: the user which specifies the
pointcut method does not need to understand the
implementation of the whole pointcut. He just needs an
acknowledgement that at least all join points he is interested
in are specified by the pointcut.

• Parameter passing: to determine whether or not the advice
should be executed, the pointcut method needs some inputs.
This might be for example property files, or (which is more
usual) parameters which are passed from the pointcut to the
advice and then from the advice to the pointcut.

• Possible late pointcut refinement: the pointcut method can be
refined by further aspects.

• Default advice behavior: in case the conditional advice is an
after or around advice, it is necessary to specify any default
behavior. Around advice usually call proceed, while after
advice usually pass the incoming return value.

• Little knowledge about advice internals needed: when
specifying the pointcuts it is not necessary to understand all
internals of the advice. Usually it is enough to have a
description in natural language what kinds of join points can
be handled by the advice and what kind of impact the advice
has on the join point.

The pointcut method idiom is similar to the composite pointcut
[5]. Both divide the pointcut into a stable and variable part
(usually a composite pointcut it used in conjunction with a
inheritance relationship between aspects). The difference between
both is, that for adapting a composite pointcut the application of
an inheritance relationship between aspects is necessary. This also
implies that a composite pointcut has some preplanned
variabilities (which are usually component pointcuts). A pointcut
method does not directly depend on an inheritance relationship.
The refinement might be either achieved via inheritance or by an
advice. In the first case a pointcut method plays the role of an

57

abstract method inside a template advice. In the latter case, a
pointcut method is often refined by a chained advice.

4. CHAINED ADVICE
Whenever there is (extrinsic) behavior of objects which is regarded
to be somehow fragile what means it seems as if these methods
might change because of a number of different decisions and
furthermore by a number of different aspects the usage of chained
advice is recommended.

Object-orientation already offers to extend the behavior of objects
via the inheritance mechanism. Often this extension is based on a
template method [3] where the pattern's abstract method already
contains a concrete implementation. However this does not really
solve the adaptation problem: the adaptation is achieved by
inheritance and that implies a new class has to be created which
overrides and adapts a known one. Furthermore, it must be
guaranteed that the request for creating new objects must be
redirected to the new class in certain situations. If (for the original
classes) no creational patterns [3] where used such a task tends to
be error-prone and the resulting design is usually unacceptable. In
such cases, where an application's behavior at (at least) one join
point depends on a number of concerns those concerns are usually
not orthogonal, but interact in some way. That means, the new
behavior should be modularized in separate aspects, but the
relationship between such non-orthogonal concerns must be
considered. In such cases we propose to apply the chained advice
idiom.

<<aspect>>
AbstractChain

final pointcut anchor(..) =
 ...

...<<aspect>>
ChainElement1

.. around(..):
 anchor(..) {...}

<<aspect>>
ChainElement2

.. around(..):
 anchor(..) {...}

TargetClass

*

Figure 3. Chained Advice

The ingredients of a chained advice are:

Abstract chain: the aspect containing the anchor pointcut.

Anchor pointcut: the pointcut which is used by every advice
within the chain. We call this the anchor pointcut, because each
chain of advice is anchored at each join points part of this pointcut
definition.

Chain element: The aspects extending the abstract chain and
containing the advice which refers to the anchor pointcut. The
chained advice have a predefined order. Usually each advice
contains a mechanism to redirect the execution to a different
advice.

In contrast to the previous mentioned idioms, a chained advice
comes with a number of different implementations. On the one

hand it is not necessary that the pointcut is inherited from a
super-aspect. Instead, we found either the usage of static
pointcuts, or even more complex aspect hierarchies than illustrated
in figure 3. We found implementations where the chain was
realized by an ordinary proceed-call, in other cases we found
more complex pointcut definitions (that means each chain element
offers a join point used by the following chain element). Also, in
many cases the execution of chained advice is mutually exclusive,
than means at most one chained advice is executed. But there are
situation where more than one chain element is executed. What
kinds of chained advice should be used depends on the concrete
situation.

The way how the mutually exclusive advice were realized differ in
different applications. On the hand (as we will illustrate in the
final example) pointcut methods were used, in other cases ordinary
advice in combination with composite pointcuts [5] were used.
Both implementations have their pro and cons. The advantage of
the first approach is that aspects do not need to have any
knowledge about each other, i.e. their implementations do not
depend on each other. But this also means that the advice
execution order has to be controlled in some way. The latter
approach assumes an explicit dependency of each advice.

The consequences of using the chained advice idiom are:

• Separate concerns for each advice: each advice represents
certain behavior coming from different concerns within its
own module.

• Independent composability: certain elements within the chain
can be composed independent of each other. The level of
independence of each chain elements depends on the
underlying implementation. The major benefit is usually, that
new chain elements can be added without the need to perform
any destructive modifications within existing chain elements.

• Parameter passing: a mechanisms is needed to pass the
responsibility from one chain element to another.

• Default behavior needed: often chained advice need to
provide a default behavior at the anchor join points.

Chained advice make often use of pointcut methods to determine
whether or not a chain element should be executed. Furthermore,
chained advice often make use of composite pointcuts to reduce
redundant pointcut definitions.

5. FACTORY ADVICE
Whenever the object creation of certain object depends on specific
aspects which might vary from application to application or the
execution context of an application, the usage of a factory advice is
recommended.

A factory advice is an advice which is responsible for the object
creation. It looks similar to the well-known design pattern factory
method [3]. The argumentation why we still regard this a specific
idiom in AspectJ is similar to the argumentation in section 2: the
consequences of using a factory advice differ widely from the
factory method.

58

Whenever the creation of objects depends on certain aspects (and
there might be more than one aspect) and such object creation
might differ in different applications or different execution
contexts it is usually not appropriate only to intercept the object
creation using a pointcut to the constructor and then redirecting
the creation using an around advice. The problem in such a context
is usually the restriction that around advice need to return the
same type than its join points.

<<aspect>>
ConcreteCreator

pointcut pc() =
 call(.. createObject()
Product around(..): pc() {
 ... new ConcreteProduct();
 ...
}

KnownCreator

createObject()

*

Figure 4. Factory Advice

The ingredients of a factory advice are:

• default create method: the method which is invoked by a
client to request a new object. Usually, the method just return
a null object.

• a concrete creator: the aspect which contains a pointcut to
the default create method and the specification what product
should be created.

• abstract product: the product expected by the client. Usually
the factory advice redirects the creation of the abstract
product to a different class extending the abstract product.

The relationship between a factory advice and the usual
application of advice can be seen like the relationship between the
factory method design pattern [3] and the template method [3]:
although both are similar in their relationship of hook and template
their differ mainly in the way their intention.

The consequences of using a factory advice are:

• deferred object instantiation: the aspect instantiation is no
longer hard coded inside the object structure, but moved to
the aspect definition. That means the instantiating aspect
must be woven to the application to guarantee its correctness.

• specified default behavior: an advice factory assumes a
specification of a default behavior of the default create
method. Usually, the advice overrides the whole behavior
specified there. But there are situations where the default
create method contains some meaningful code and the aspect
code is just executed in "special situations".

• composability: The advice factory permits to exchange the
object creation process without performing destructive
modifications within the object structure.

Factory are often used as chained advice in cases where the object
to be instantiated depends on some execution context. In this way
the factory advice looks even more like the abstract factory design
pattern [4].

6. Example
Object oriented component frameworks suffer always from the
problem of the construction of new component instances. The
creational patterns in [4] reduce but do not really solve the
problem. Each combination of these patterns violates at least in
one point the principle of "need to know", which leads to
somehow non transparent dependencies. Each component can
know everything from the framework but not the other way
round. When the framework is responsible to constructing new
component instances, the framework needs to know the
component. Delegating this kind of knowledge to framework
configuration files doesn’t solve that problem either. This
approach contains several other drawbacks: it is impossible to
implement the component in plain Java, a combination of Java and
XML is needed, several checks which modern compiler can
perform during compile time are no longer possible, code patterns

<<aspect>>
AbstractFactoryAdvice

pointcut create(P1 p1, P2 p1) = ..;

Entity around(...): create(...) {
if (accept(p1,p2)){

return createObject(p1,p2);
 } else return proceed(p1,p2);
}
Entity createObject(...);
boolean accept(…);

Factory

Entity createEntity(...)

<<aspect>>
Rounter1Creation

boolean accept(P1 p1, P2 p1) …;
Entity createObject(...);

<<aspect>>
Rounter2Creation

boolean accept(P1 p1, P2 p1) …;
Entity createObject(...); ...

1

Figure 5. Example: Object creation in large scale frameworks

59

which enforce all configurations are not possible, this approach is
not valid for high performance applications, because of the
additional overhead caused by the required use of the Java
Reflection API.

It is desirable, that every component connects itself to the
construction mechanism. We present a solution of this problem as
an example of a combination of the discussed idioms, which has
been applied in the EOS-product family [10].

The core functionality is that dependent of the passed parameters
the component decides on its own if it should be instantiated or
not. That means, it depends on the framework configuration what
objects have to be instantiated an in such a situation the
application of an advice factory is appropriate. That means the
request of an object creation is passed to a certain default creation
method (we neglect here the implementation of corresponding
pointcut create). However, the decision of what concrete product
should be created depends on the one hand on the passed
parameters and on the other hand on the available components
inside the framework.

Since it is possible to specify all join points and it depends on the
installed components whether or not they should be instantiated
we decided use a poincut method inside the advice factory as
illustrated in figure 5. Clients request a new abstract product (of
type Entity) from the factory (which is in the concrete example
an object). The factory object's default create method contains a
dummy implementation. The concrete creator defines a pointcut
for this method and defines a template advice and a pointcut
method. The pointcut method accept specifies whether or not a
concrete aspect should be responsible for the object creation or
not. The abstract method createObject is overridden by
concrete aspects and creates a concrete product.

In the here mentioned context we realized the concrete aspects as
chained advice where each installed component comes with its
own chain element for object creation. The reason for it is, that the
fixed part of the template advice can be easily implemented as a
chained advice and the responsibility which chain element creates
the object lies in each chain element's accept method. Since the
template advice either invokes createObject or proceeds with
the join points execution all chain elements are mutually exclusive.
Under the assumption that each element's pointcut method
accept is adequately implemented there is no need determine
any domination of the aspects.

Since the creational process differed widely from entity to entity
we decided the implement the object creation as the abstract
method inside the template method idiom.

7. CONCLUSION
In this paper we demonstrated a small collection of idioms we
found frequently inside AspectJ applications and demonstrated an
example which illustrated the usage of the idioms. The intention of

the paper is to demonstrate "good design decisions" in AspectJ
and discuss their advantages and disadvantages.

Although we found implementations of the here described idioms
in current AspectJ projects we are aware of the fact, that there is
no such clear distinction between the here described idioms and
the known GoF design patterns template method, chain of
responsibility, abstract factory and factory method. In that way it
looks like the here proposed idioms are more a implementation of
known design patterns as e.g. proposed in [6]. On the other hand
the consequences of each of the idioms is quite different from the
consequences of using the GoF patterns. Such consequences are
mainly determined by the restriction that concrete aspects cannot
be extended and advice cannot be overridden.

Nevertheless, the pointcut method seems to be an idiom which is
highly related to an aspect-oriented language features and seems in
that way rather a "pure aspect-oriented idiom" than the others.
However, we think that the here described idioms are good
examples of good AspectJ design which were successfully used
and should be therefore considered when designing AspectJ
applications if the application's context matches the idioms
contexts.

8. REFERENCES
[1] Czarnecki, K.; Eisenecker, U. W.: Generative Programming:

Methods Tools and Applications, Addison-Wesley, 2000

[2] Floyd, R. W.; The Paradigms of Programming,
Communications of the ACM, Volume 22, No. 8 (1979), pp.
455 – 460.

[3] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J: Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[4] Hanenberg, S.; Costanza, P.: Connecting Aspects in AspectJ:
Strategies vs. Patterns, First Workshop on Aspects,
Components, and Patterns for Infrastructure Software at
AOSD'01, Enschede, April, 2002

[5] Hanenberg, S., Unland, R.: Using and Reusing Aspects in
AspectJ. Workshop on Advanced Separation of Concerns in
Object-Oriented Systems at OOPSLA, 2001

[6] Hannemann, J., Kiczales, G., Design Pattern Implementations
in Java and AspectJ, OOPSLA 2002.

[7] Pree, W.: Design Patterns for Object-Oriented Software
Development, Addison-Wesley, Reading, 1995.

[8] Schmidmeier, A.; Hanenberg, S.; Unland, R.: Implementing
Known Concepts in AspectJ, 3rd Workshop on Aspect-
Oriented Software Development of the German Informatics
Association, March, 2003

[9] Sirius GmbH, Enterprise Object System, EOS, Functional
Product Overview, EOS Core System Version 3.5, 2002

60

	The Second AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software (ACP4IS)
	Lock Inference for Systems Software
	Evolving an OS Kernel Using Temporal Logic and Aspect-Oriented Programming
	Speed vs. Memory Usage - An Approach to Deal with Contrary Aspects
	Managing Complexity in Middleware
	The Aspect-Oriented Interceptors' Pattern for Crosscutting and Separation of Concerns Using Conventional Object Oriented Programming Languages
	Invasive Composition Adapters: An Aspect-Oriented Approach for Visual Component-Based Development
	Aspect Component Based Software Engineering
	Learning from Components: Fitting AOP for System Software
	AOP Support for C#
	Idioms for Building Software Frameworks in AspectJ

