
 Managing Complexity In Middleware
Adrian Colyer
IBM UK Limited

Hursley Park, Winchester
England. SO21 2JN
+44 (0)1962 816329

adrian_colyer@uk.ibm.com

Gordon Blair
Computing Department

Lancaster University, Bailrigg
Lancaster, England.LA1 4YR

+44 (0)1524 593809
gordon@comp.lancs.ac.uk

Awais Rashid
Computing Department

Lancaster University, Bailrigg
Lancaster, England. LA1 4YR

+44 (0)1524 592344
marash@comp.lancs.ac.uk

ABSTRACT
Middleware is becoming increasingly complex, and this
complexity is at odds with one of middleware’s key goals –
to make it easier to build distributed systems. A new
emphasis on simplicity, componentization and application-
middleware independence is required to redress the situation.
Aspect-oriented software development techniques hold great
promise in helping to meet these challenges, though the
large scale of many middleware development projects raises
additional requirements that must be met.

1. INTRODUCTION
“There is literally no sensible, economic way to develop
distributed applications without middleware services.”
 – Richard Schreiber, 1995 [1]

Enterprise applications depend on distributed systems, and
therefore on middleware. Within the enterprise, distributed
systems are used to provide high levels of availability and
scalability, to physically separate components for security
reasons, to cope with the geographic spread of multi-national
corporations, and to exploit the price-performance
characteristics of PC and Unix based workstation clusters.
Distributed systems also arise naturally through mergers and
acquisitions, and business-to-business applications that
span organizational boundaries.

Building distributed systems directly on top of networked
operating systems is expensive, error-prone and difficult [2],
therefore corporate developers rely on middleware, whose
primary purpose is to make it easier to build, deploy and
operate distributed applications. Middleware makes building
distributed systems easier by resolving heterogeneity,
providing transparency of various kinds, and by providing
qualities of service.

In section 2, we argue that middleware itself is becoming
increasingly complex as we strive to build ever more
sophisticated distributed systems. If left unchecked, this
trend will leave us facing the same set of problems that
middleware was intended to solve in the first place –
building distributed systems for enterprise applications will
be too complex.

Section 3 sets a direction for the development of future
middleware platforms based on simplicity, independence of
applications from middleware, and componentization. In
section 4 we discuss the application of aspect-oriented
software development (AOSD) techniques to meet these
goals, and in section 5 we discuss the implications of the
large scale of many middleware development projects on
AOSD. Section 6 concludes and provides a brief summary of
related work.

2. MIDDLEWARE COMPLEXITY
“There is already too much diversity of middleware for many
customers and application developers to cope with … the
complexity of current middleware is untenable over the long
term” – Philip Bernstein, 1996 [3].

Middleware resolves heterogeneity and provides
transparency in order to make it simpler to build distributed
systems. Yet middleware itself is becoming increasingly
complex – there are many heterogeneous middleware
environments that need to be integrated, and the use of
middleware is not transparent to the application developer.

This complexity is driven by rich feature sets and feature
interactions both within and across middleware products, the
need to support ever more diverse environments, and the
introduction of (needed) more sophisticated capabilities that
threaten to reduce transparency further.

2.1 Feature Complexity
Many modern middleware products are rich in features, each
feature independently justifiable for sound business reasons.
Current state-of-the-practice is to roll these features into a
large, monolithic product. This can result in significant
complexity and confusion for the application developer
working on the middleware platform. Often there are several
ways of achieving the same goal with no obvious rationale
for choosing between them, and the sheer number of features
to learn and investigate can be overwhelming. Consider as an
example the Java™2 Platform Enterprise Edition (J2EE™)
[4]: J2EE provides a wealth of APIs and services, the
cornerstone of which are Enterprise JavaBeans™(EJB™),
JavaServer Pages™(JSP™), and Servlets. Mastering the art of
building EJB based systems alone can be quite a challenge
[5].

2.2 Portfolio Complexity
As well as complexity within a single middleware product,
there is additional significant complexity when multiple
middleware products are used. The inevitable overlap in
capabilities caused by their large feature sets creates
additional duplicate means of achieving an end, and hence
further developer confusion.

Nearly all large enterprises contain a broad mix of
middleware products and home-grown capabilities acquired
through the processes of time, business and mission growth,
and even mergers and acquisitions. The resulting computing
facilities are hard to integrate, and even harder to operate and
administer.

2.3 New Requirements
The need to support increasingly heterogeneous
environments also drives middleware complexity. Pervasive
(or ubiquitous) computing brings challenges due to widely
varying device formats and capabilities, unreliable network
connections, disconnected operation considerations, and
mobility of devices (nomadic devices and ad-hoc
networking) [6]. Pushing into new markets, such as taking an
enterprise product into the small-medium business (SMB)
segment, places new emphasis on existing requirements, and
creates entirely new requirements too. The integration of
business applications across business boundaries (B2B
applications) unites very diverse operating environments
across independent domains of control. New transaction
models and interaction protocols are needed to deal with this
additional complexity.

Meanwhile, middleware research continues to push the
boundaries of current capabilities, for example in support of
very large scale systems [7, 8] and reflective middleware [9].
A common trend in this research is to give the programmer
more influence over the behavior of the middleware. The
consequence is that more of the middleware becomes visible
to the programmer, and some aspects of distribution and
heterogeneity become less transparent [2].

3. MANAGING COMPLEXITY
“For the next several years, corporate buyers will…look for
technologies that address business problems directly;
provide near-term return on investment, and improve
customer acquisition and retention, cost-cutting, revenue or
profits.” – FORTUNE, March 18th 2002 [10].

The rise in middleware complexity comes at a time when
technology discussions are moving from the IT department
to the boardroom. Here the debate centers on solutions to
business problems, not technology platforms. Business
solutions need to be built and deployed as speedily as
possible in order to remain competitive; this calls for a
responsive middleware platform in which mastery and
deployment of only those components absolutely necessary
for the task in hand is required.

To take middleware forwards, we need to focus on simplicity
instead of complexity, on componentization and
configuration instead of monolithic construction, and on
loosening the ties between an application and the
middleware platform it executes on. All three of these goals
are considered from the perspective of the user of the
middleware.

3.1 Simplicity
Simplicity is required in the tools used to build applications
for a middleware platform, in the programming model
exposed by the middleware, in the administration and
configuration of the middleware, and in the operation of the
middleware.

For middleware programming models and tools, the goal i s
to make the use of middleware as transparent as possible, so
that enterprise application developers spend the majority of
their time working in the business application domain
focusing on the business problem at hand. Several authors
have shown that achieving full transparency of middleware i s
not possible [2, 11] as some aspects of distribution such as
network latency and end-to-end correctness cannot be fully

hidden. Approaches that have been, or are being, tried to get
as close as possible to this goal include 4GLs, modeling,
code generation and declarative specification.

Simplicity in administration and operation requires systems
that are self-configuring, self-optimizing, self-protecting and
self-healing. IBM® calls such systems “autonomic” [12].
Internally, such a system may well be more sophisticated and
more complex than current generation middleware, but the
system externals should be much simpler.

3.2 Componentization
Users need to be able to subset the full capabilities of a
middleware platform in order to select a feature and footprint
combination suitable to the task in hand. The large size of
middleware products points to a desperate need for greater
componentization of middleware to support this goal.
Instead of monolithic middleware products, we need a
sophisticated middleware production line1 that can assemble
components on demand to provide a given set of capabilities
within a given operating environment. Advanced platforms
may also permit runtime component selection and
configuration.

Software engineering tools to analyze, separate, manage and
compose the rich set of features and feature interactions
typically found in middleware are immature or non-existent.
The problem is hampered by middleware’s performance
sensitivity, which makes developers wary of large
frameworks with layers of indirection.

3.3 Application-Middleware Independence
Middleware platforms continue to change and evolve, and
large enterprises tend to acquire plenty of them [13].
Loosening the dependence of a given application on a
particular middleware platform or version of a middleware
product is good for both application developers and
middleware vendors. Application developers can preserve
their investment across multiple middleware platform
iterations, and middleware vendors can lower the version-to-
version migration or competitive win-back costs.

Application-middleware independence necessitates that
much of the detail and complexity of middleware is hidden
from the application.

4. THE ROLE OF AOSD
Section 3 described what needs to be done, but said nothing
about how the requirements could be met. In this section we
describe how a combination of aspect and component based
techniques may be employed to that end. We assume that the
reader is already familiar with aspect-oriented concepts.

4.1 Simplicity
Declarative specification is one of the most promising
approaches for achieving simplicity in programming models.
In this section we argue that aspect-oriented software

1 The sophistication in the production line is its ability to

create variants of the middleware. The resulting set of
products form a product line, which may or may not be
sophisticated. In the extreme case, the production line may
produce product variants tuned for individual customers.

development is a natural fit with a declarative style, aiding
simplicity by furthering its application

Declarative specification separates the declaration of the
(middleware) services required from the implementation of
the business logic that requires them. Declarative
specifications are typically honoured by the middleware
through some or all of application development-time code
generation, deployment-time code generation, and runtime
configuration and interpretation. The following Xdoclet [14]
fragment is an example of declarative specification through
attribute-oriented programming. It declares that a transaction
is required to execute the method being commented on:

/**
 * … other comments omitted for brevity
 * @ejb.transaction
 * type=”Required”
 */

Attributed programming in .NET® [15], and explici t
programming as exemplified by the ELIDE system [16] work
in a similar fashion. In a post [17] to the AspectJ [18] users
mailing list, Gregor Kiczales describes the techniques as a
form of “early-AOP:”

“…(the) approach requires tagging methods and classes
where aspects might apply with attributes. I believe the
approach [they outline] can perhaps be called early AOP,
but it is missing one of the most critical properties of all
other AOP systems, and this significantly limits its power. I
call it early AOP because when some people first hear about
AOP, this is one of the first mechanisms they propose to
achieve it.”

In a full aspect-oriented approach, instead of explicitly
tagging each element that is to acquire a certain property, we
can separate the concerns and encapsulate (for example) the
transaction policy of the system into a single unit. The
elements that are to acquire transaction semantics are not
individually tagged. Thus we can view, maintain, and add or
remove the transaction policy of our system as a single unit.
Clearly this treatment can be applied to any attribute already
separated from the user application through declarative
specification (it is not the intent of this paper to discuss the
wisdom or otherwise of declaratively specifying transactions
[19]).

Declarative specification, when coupled with an ability to
interpret declarations and apply appropriate aspects to an
element at either class-load time or run-time, can remove the
need for code generation completely. JBOSS [20] uses this
approach to apply advice to EJBs in the form of interceptors
[21]. A more fully fledged form of aspect-oriented
programming is promised for the JBOSS 4.0 release, which
will permit interceptors to be added to methods, constructors
and fields of not just EJBs, but any Java object.

In situations requiring more sophisticated capabilities than
can be provided by interceptors alone (such as introducing
new methods, fields or parent classes to an application
domain object), aspect-orientation allows the generation of
code that fully separates the concerns of the middleware from
the pure application concerns. The sample code for a stateless
session bean from Sun’s online EJB tutorial [22] is 90 lines
long, and contains only 6 lines of business application
logic. It is typical of the kind of template implementation

that may be generated by an EJB tool. Using aspect-oriented
software development techniques such as those offered by
AspectJ or Hyper/J [23], the application class can simply
become:

public class DemoBean {
 public String demoSelect() throws
RemoteException {
 return(“hello world”);
 }
}

The application class is not cluttered with EJB-specifics. An
aspect-aware EJB tool could then generate an accompanying
aspect (shown here as an AspectJ example) that might look
something like this:

aspect DemoBeanEJB {
 declare parents:
 DemoBean implements SessionBean;

 static final boolean
 DemoBean.verbose = true;

 private transient SessionContext
 DemoBean.ctx;
 …
 public void DemoBean.ejbActivate() {
 if (verbose) {
 System.out.println(
 “ejbActivate called”);
 }
 }
 // etc.
}

This clear separation between middleware specific concerns
and the business logic simplifies the task of application
development and greatly improves application-middleware
independence. It is also a tremendous advantage for
modeling tools supporting round-tripping since the user-
written code and generated middleware code are cleanly
separated – allowing for safe regeneration of the middleware
code without any concern for loss of user updates.

The Java Aspect Components project (JAC) [24] seeks to take
these ideas to their logical conclusion, replacing EJBs
altogether with simple Java objects and aspect components
that can be dynamically plugged into the system at runtime.

4.2 Componentization
Many research and commercial projects are investigating the
componentization of middleware – JBOSS for example has a
”super-server” architecture with componentization and
configuration handled through a JMX (Java Management
Extension) spine. TAO [25] is a CORBA implementation
focused on high-performance and real-time scenarios. It is
built on ACE [26], which can automate system configuration
and re-configuration by dynamically linking services into
applications at runtime. The Eclipse IDE [27] demonstrates
excellent componentization through its model of features,

plugins and extension points2. In this section we focus
explicitly on the application of aspect-oriented techniques
to facilitate and further these efforts.

Aspect-oriented software development techniques provide us
with new ways to modularize and encapsulate concerns that
were previously entangled (or scattered) across multiple
other concerns. Until a concern is encapsulated, it is very
difficult to add, remove or replace that concern in a
middleware system. Therefore by improving our ability to
modularize, aspect-oriented techniques improve our ability
to factor a middleware system into components. In a study
conducted at IBM’s Hursley Laboratory for example, we have
shown that tracing, logging, first-failure data capture and
performance monitoring instrumentation in a commercial
middleware system were all amenable to modularization via
aspect-oriented programming techniques [28]. Previously
these concerns were scattered throughout the system.
Similarly, [29] shows the use of aspect-oriented techniques
within a database system for concern encapsulation.

Frank Hunleth has studied the use of AspectJ for feature and
footprint management in middleware systems, using aspects
to introduce features incrementally and as independently as
possible [30, 31]. Lasagne [32] uses aspect-oriented software
development to construct customizable middleware and
distributed services, focusing on context-sensitive
customizations.

A promising direction seems to be the use of several aspect-
oriented techniques in combination to factor the middleware
in multiple dimensions: a Composition Filter [33] like
approach for simple interception based strategies, an aspect-
oriented language such as AspectJ for cross-cutting
concerns, sophisticated composition models such as those
offered by Hyper/J for large-scale feature and system
integration, and adaptive programming techniques such as
those offered by DemeterJ [33] for structure-shy object
relationship traversals. Such a hybrid approach was first
proposed in [34].

4.3 Application-Middleware Independence
Current (non-AO) approaches to application-middleware
independence such as the OMG’s Model Driven Architecture
(MDA) [13] rely mainly on abstraction and thus either reveal
complexity and tight coupling at the more concrete levels
(generated code or platform-specific models), or are limited
in their application by an inability to express often needed
details (declarative specifications and 4GLs). By separating
middleware concerns from application domain concerns at all
levels of abstraction, using techniques such as those
promoted by aspect-oriented software development, we retain
the ability to fully express an application’s middleware
requirements at the needed level of detail without adversely
affecting coupling. Section 4.1 illustrated the use of aspect-
oriented software development techniques to separate
application and middleware concerns at the implementation
level. The combination of abstraction and separation in the
binding of applications to middleware is illustrated in
Figure 1.

Quadrant A shows an abstract model of the business
application with no middleware details. Quadrant B adds an

2 Application development tools are an important part of a

middleware platform.

abstract model of middleware requirements. Quadrant C
shows a typical concrete middleware based application with
business and middleware concerns entwined. Quadrant D
shows a concrete middleware based application with
business and middleware concerns separated.

Many applications begin and end life in quadrant C. Code
generation and simple application domain modeling follows
the path A Æ C. MDA attempts to introduce the path A Æ B

Æ C, although the separation in quadrant B is not as clean as
depicted. Combining abstraction and separation gives us the
new endpoint D, and development path A Æ B Æ D. It can be
clearly seen how the concrete, separated system in quadrant D
can handle evolution or replacement of the middleware
portion much more gracefully than the system in quadrant C.

abstraction

separation

concrete, tangled system

abstract app. only
 model

abstract app. & mware
 model

concrete, separated system

A B

C D

Figure 1: Abstraction and Separation in Middleware

The adaptive programming approach supported by Demeter
provides another useful tool in the quest for application-
middleware independence. It supports “structure-shy”
traversal strategies that separate behaviour from structure,
and hence allows inter-position of middleware components
(such as wrappers and facades) in a manner transparent to the
application.

5. THE CHALLENGE OF SCALE
As discussed in section 2.1, middleware products tend to be
large – for example, IBM’s WebSphere® Application Server
comprises many thousands of Java classes and is developed
and maintained by hundreds of staff. Many concerns in the
middleware system are looked after by entire teams, and
apply broadly to the independently developed work of
multiple other teams. It is therefore essential to be able to
specify the broad policy pertaining to a concern and where i t
should be applied, and then independently permit special
cases (exceptions or additions to the general policy) to be
specified by the owners of the affected concerns.

We envisage the production line of section 3.2 working by
configuring and composing components to produce the
required variants. A single level of configuration or
composition is not tenable for software of this complexity
(both because the configuration file itself would be
overwhelming, and because updating the file under version
control would bottleneck parallel development streams).

Instead a “fractal” approach is required, whereby any given
component may be composed of multiple sub-components,
which in turn are composed of multiple sub-components and
so on. The decomposition terminates with primitive (atomic)
software units as determined by the metamodel of the
programming language and runtime in use. Component
composition is hidden from users of that component. Note
that this philosophy requires that we distinguish carefully
between aspect-oriented techniques that create or compose
new units of existing (meta)types, and those that introduce
new meta-types.

Fitting neatly with the fractal view of software composition
is the observation that middleware products are not simply
“compiled,” but rather “built” on a production line
involving many stages from initial compilation through to
deployment and automated system testing. One component
depends on other components, and the build infrastructure
ensures that dependencies are built (compiled, assembled,
composed) before the dependent component. This points to
the need for the strong integration of AO-techniques for
middleware with build environments, the primary of which i s
Apache Ant[35].

6. RELATED WORK
In addition to those tools and techniques already mentioned,
there are many other active research projects, of which a few
are highlighted here. In general, the emphasis of these
projects is on enhancing the capabilities of an infrastructure
platform, rather than the (more internally oriented) use of
aspect-orientation to simplify the construction and
presentation of existing capabilities.

DAOP [36] is a dynamic aspect-oriented platform providing a
composition mechanism for integrating aspects and
components dynamically at runtime. The DADO [37]
(distributed aspects for distributed objects) project helps
program crosscutt ing features in heterogeneous
environments. Choi [38] shows how aspect-orientation can
be used to build an open extensible container with EJB
facilities. Duclos [39] extends the concepts in EJB and the
CORBA Component Model to fully separate container
services from business logic. In contrast, Kim [40] discusses
the relevance of AOP within an existing EJB container.

7. SUMMARY
Enterprise computing requires distributed systems, even
though distributed systems introduce considerable
complexity into application development and system
management. Middleware facilitates the building of
distributed systems, resolving many of the lower-level
problems associated with distribution and heterogeneity.

Now middleware itself is suffering a crisis of complexity and
heterogeneity. This paper presents an analysis of the causes
of middleware complexity, and sets a direction to return to
the original focus of middleware – making distributed
systems easier to build. To achieve this end the middleware
community needs to focus on:

• Simplici ty of applicat ion development,
administration, and operation.

• Separating middleware into pluggable components
that can be put together in middleware production
lines to more precisely meet the needs of a given
application running in a given environment.

• Loosening the ties between an application and the
middleware platform(s), products, and product
versions that it executes on.

 We have shown that aspect-oriented software development i s
well suited to helping middleware address these challenges.
AOSD is a natural fit with a declarative specification style,
and aids in the drive for simplicity by furthering its
application. AOSD also provides new mechanisms to
compose software artifacts, allowing us to separate and
encapsulate concerns that previously could not be easily
separated. It can therefore facilitate the separation of
middleware components and their subsequent re-
composition to meet the needs of a given application or
environment. Finally, AOSD can also help separate
middleware details from application domain concerns,
improving application-middleware independence.

Future directions for this work include the evolution of
aspect-oriented techniques to meet the challenges described
in section 5, when applied to componentization of large-
scale commercial middleware. Work is also underway to
investigate the role of AOSD within the OMG’s MDA, which
shares a common goal in application-middleware
independence. This includes using aspect-oriented
techniques to facilitate generation, from declarative
specifications in models, of cleanly separated code
implementing middleware concerns.

8. ACKNOWLEDGMENTS
IBM and WebSphere are trademarks of International Business
Machines Corporation in the United States, other countries
or both.

Microsoft and .Net are registered trademarks of Microsoft
Corporation in the United States, other countries or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or
both.

Other company, product or service names may be trademarks
or service marks of others.

9. REFERENCES
1. Schreiber, R., Middleware Demystified, in

Datamation. 1995. p. 41-45.
2. Emmerich, W., Software Engineering and

Middleware; A Roadmap, in The Future of Software
Engineering 2000, A. Finklestein, Editor. 2000,
22nd International Conference on Software
Engineering. p. 117-129.

3. Bernstein, P., Middleware: A model for distributed
systems services, in Communications of the ACM.
1996. p. 86-98.

4. Java 2 Enterprise Edition (J2EE), Sun
Microsystems: http://www.java.sun.com/j2ee .

5. Zeichek, A., WebSphere Goes Lite (sidebar), in
Software Development Times. 2002:
http://www.sdtimes.com/news/068/story1.htm .

6. Geihs, K., Middleware Challenges Ahead. IEEE
Computer, 2001. 34(6): p. 24-31.

7. van-Steen, M., P. Homburg, and A. Tanenbaum,
Globe: A Wide-Area Distributed System. IEEE
Concurrency, 1999. 7(1): p. 104-109.

8. Vaughan-Nichols, S.J., Developing the Distributed
Computing OS. IEEE Computer, 2002. 35(9): p. 19-
21.

9. Coulson, G., What is Reflective Middleware?, in
IEEE Distributed Systems Online. 2002:
http://dsonline.computer.org/middleware/RMarticl
e1.htm .

10. Kirkpatrick, D., Beyond buzzwords, in FORTUNE.
March 18, 2002.

11. Saltzer, J.H., D.P. Reed, and D.D. Clark, End-to-End
Arguments in System Design. ACM Transactions on
Computer Systems, 1984. 2(4): p. 277-88.

12. Autonomic Computing, IBM:
http://www.research.ibm.com/autonomic .

13. Model Driven Architecture, OMG:
http://www.omg.org/mda/ .

14. XDoclet: Attribute Oriented Programming, The
XDoclet team: http://xdoclet.sourceforge.net .

15. Shukla, D., S. Fell, and C. Sells, Aspect-Oriented
Programming Enables Better Code Encapsulation
and Reuse, in MSDN Magazine, March. 2002.

16. Bryant, A., et al. Explicit Programming. in 1st
International Conference on Aspect-Oriented
Software Development. 2002. Enschede, The
Netherlands: ACM press.

17. Kiczales, G., AOP .net? 2002: post to
users@aspectj.org,
http://aspectj.org/pipermail/users/2002/001846.ht
ml .

18. Kiczales, G., et al. Aspect-oriented programming. in
ECOOP '97 - Object Oriented Programming 11th
Europeann Conference. 1997. Jyvaskyla, Finland:
Springer-Verlag.

19. Kienzle, J. and R. Guerraoui. AOP: Does it Make
Sense? The Case of Concurrency and Failures. in
ECOOP 2002 - Object-Oriented Programming.
2002. Malaga, Spain: Springer.

20. JBOSS Home Page, JBOSS Group:
http://www.jboss.org .

21. Fleury, M., BLUE: "Why I Love EJBs". 2002, JBOSS:
http://www.jboss.org/blue.pdf .

22. Online EJB Tutorial: Writing the Enterprise
JavaBean class, Sun Microsystems:
http://developer.java.sun.com/developer/onlineTra
ining/Beans/EJBTutorial/step4.html .

23. Ossher, H. and P. Tarr, Using Multidimensional
Separation of Concerns to (re)shape Evolving
Software. Communications of the ACM, 2001.
44(10): p. 43-49.

24. Pawlak, R., et al., JAC: A flexible solution for
aspect-oriented programming in Java. Reflection
2001, 2001. LNCS 2192: p. 1-24.

25. Schmidt, D., Applying Patterns to Develop
Extensible ORB Middleware. IEEE Communications
Magazine, 1999(April).

26. Schmidt, D. The ADAPTIVE Communication
Environment: An Object-Oriented Network
Programming Toolkit for Developing

Communication Software. in 12th Annual Sun
Users Group Conference. 1994. San Francisco, CA.

27. Amsden, J. and A. Irvine, Your First Plug-In. 2002:
http://www.eclipse.org/articles .

28. Bodkin, R., A. Colyer, and J. Hugunin. Applying
AOP for Middleware Platform Independence. in
Practitioner Reports, 2nd International
Conference on AOSD - To Appear. 2003. Boston,
MA.

29. Rashid, A. and P. Sawyer, Aspect-orientation and
database systems: an effective customisation
approach. IEE Proceedings - Software, 2001.
148(5): p. 156-164.

30. Hunleth, F. and R. Cytron. Footprint and Feature
Management Using Aspect Oriented Programming
Techniques. in LCTES 02. 2002. Berlin, Germany:
ACM.

31. Hunleth, F., R. Cytron, and C. Gill. Building
Customizable Middleware using Aspect Oriented
Programming. in OOPSLA 2001 Workshop on
Advanced Separation of Concerns in Object-
Oriented Systems. 2001. Tampa, Florida.

32. Truyen, E., et al. Dynamic and Selective
Combination of Extensions in Component-based
Applications. in Proceedings of the 23rd
International Conference on Software
Engineering. 2001. Toronto, Canada.

33. Bergmans, L. and M. Aksit, Composing
Crosscutting Concerns Using Composition Filters.
Communications of the ACM, 2001. 44(10): p. 51-
57.

34. Rashid, A. A Hybrid Approach to Separation of
Concerns: The Story of SADES. in Reflection 2001.
2001. Kyoto, Japan: LNCS.

35. Apache Ant, The Apache Jakarta Project:
http://jakarta.apache.org/ant .

36. Pinto, M., L. Fuentes, and J.M. Troya, DAOP-ADL: An
Architecture Description Language for Dynamic
Aspect-Oriented Development.

37. Wohlstadter, E., S. Jackson, and P. Devanbu, DADO:
Enhancing Middleware to support cross-cutting
features in distributed, heterogeneous systems. To
Appear.

38. Choi, J.P. Aspect oriented programming with
Enterprise JavaBeans. in Fourth International
Enterprise Distributed Objects Computing
Conference. 2000. Makuhari, Japan: IEEE Computer
Soc.

39. Duclos, F., J. Estublier, and P. Morat. Describing
and Using Non Functional Aspects in Component
Based Applications. in 1st International
Conference on Aspect-Oriented Software
Development. 2002. Enschede, The Netherlands:
ACM Press.

40. Kim, H. and S. Clarke, The relevance of AOP to an
Applications Programmer in an EJB environment,
in First AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software (AOSD-
2002). 2002.

