
Idioms for Building Software Frameworks in AspectJ

Stefan Hanenberg1 and Arno Schmidmeier2

1Institute for Computer Science
University of Essen, 45117 Essen, Germany
shanenbe@cs.uni-essen.de

2AspectSoft,
Lohweg 9, 91217 Herbruck, Germany

A@schmidmeier.org

ABSTRACT

Building applications using AspectJ means to design applications
build upon the new language features offered in addition to Java.
The usual argumentation that AspectJ permits a better separation
of concerns in contrast to the traditional static typed object-
oriented code might be valid, but does not prevent developers to
misuse these language features. What's needed is a discussions of
how to apply the language features of AspectJ to achieve good
designed applications. In this paper we propose four idioms
whose application turned out to result in good designed
application in an appropriate context.

1. INTRODUCTION
AspectJ comes with a number of (more or less) new language
features which try to tackle the problem of crosscutting code.
Although the impact of these features on the object-oriented code
is already analyzed like for example in [6] it is not clear how to
apply these features to new problems. However, as noted by R.
W. Floyd : "To persuade me of the merit of your language, you
must show me how to construct programs in it. I don't want to
discourage the design of new languages; I want to encourage the
language designer to become a serious student of the details of the
design process" [2, p. 460].

In this paper we continue to describe idioms which turned out to
be used in good designed AspectJ applications and try in this way
to encourage the usage of AspectJ in large scale applications. In
[4] we already proposed some idioms which were closely related
to the language features of AspectJ. Here we propose idioms
which seem to be somehow more advanced. The idioms where
successfully used in a large scale AspectJ project on Enterprise
Application Integration (EAI) systems [9]. In [4] we already
discussed the relationship between the proposed idioms and
patterns. One of the major points in this discussion was, that the
proposed idioms did not have the pattern format. However, in this
paper we still neglect to put the idioms in such a format because
of two reasons. First, we feel that it is still more important to
discuss typical design decisions in aspect-oriented languages than
to claim that a number of good patterns are found. And second, it
is still not yet clearly determined what language features an
aspect-oriented language will provide in the future: the provided
language features still evolve from version to version. Hence, a
collection of good design decisions might be no longer valid in the
future because of language changes in AspectJ.

Furthermore, we do not give an example for each proposed idiom.
Instead, we discuss the design of an existing real-world example
which was influenced by the here proposed idioms at the end of
the paper.

In section 2 to 5 we discuss four different idioms. We concentrate
in this discussion on the core ingredients of those idioms, their
advantage and their consequences. In section 6 we discuss a real-
world example where such idioms were used. Since the example
comes from quite a large context we just can give a small glimpse
of it and we only concentrate on the considerations which lead to
the final design. In section 7 we conclude the paper.

2. TEMPLATE ADVICE1
A template advice is used whenever additional behavior which
should be executed at a certain join point contains some
variabilities. That means the code to be executed consists of a fixed
and a variable part whereby the variable part changes from
application to application. A template advice corresponds directly
to the template method design pattern [3] whereby the template is
specified inside an advice instead of a method.

<<aspect>>
AbstractAspect

m();
pointcut pc() = ...;
... around(): pc() {
 ...
m();

 ...

TargetClass

<<aspect>>
ConcreteAspect

m() {...}

*

Figure 1. Template Advice

Whenever the problem is given that the code to be executed at
certain join points is partly known and fixed, but might contain
(depending on the concrete join point) some variabilities, the
designer has to decide how to consider such variabilities. In case

1 It should be noted that the name template advice has been

already used in [4] for a different idiom. We regard the name of
the idiom in [4] a little bit misleading and renamed it to import
pointcut since this metaphor seems to describe its usage more
appropriate.

the join points are well-known, it is possible to implement a
number of different aspects for each of those different kinds of
join points. The disadvantage of this approach is, that all those
different join points usually have some commonalities. This
commonalities (which means, that some common pointcut
specifications are used) depict redundant code inside the
application. The problem can be reduced by using the composite
pointcut idiom [4]. However, the problem is still, that the advice
contains redundant code. This redundant code depicts those part
which are constant in each occurrence of the advice. To reduce this
redundancy the stable part of the advice is used as a template and
the variable part is put into a method. The property of AspectJ
that advice cannot be refined in subaspects means in such a
situation that the decision which part of the code is fix is final: it is
not possible to refine advice incrementally. Instead, the aspect
needs to be refactored.

The ingredients of the template advice are (in correspondence to
template method [3]):

• Abstract aspect: the aspect that contains declarations of a
number of primitive operations which are defined in sub-
aspects. Usually, these methods are abstract, that means they
are just declared but not defined. Furthermore, the abstract
aspect contains the advice (which is called the template
advice) which contains the invocations of the primitive
operations. Usually the pointcut referred by the template
advice is abstract.

• Concrete aspect: The concrete aspect defines or overrides the
primitive operations of the abstract aspect and implements in
that way the aspect-oriented adaptation of the target classes.

It seems questionable if the template advice is really a specific
AspectJ idiom since it is very similar to the template method.
However, we regards it as an specific idiom, because the
consequences of using a template advice are quite different than
the usage of a template method. First, in AspectJ only abstract
aspects can be extended by further aspects. That means, when the
corresponding aspect is written it must be clear whether or not a
contained advice inside the aspect tends to be a template advice or
not. Using pure object-oriented language features in a language
supporting late binding this question does not have to be
answered. For example in Java or Smalltalk almost every method
can be overridden by a subclass. That means every method inside
the superclass which contains invocations of an overridden
method depicts a potential template method. That means methods
might become template methods because of an incremental
modification of the class structure. Hence, the preplanning
problem of design patterns as mentioned in [1] is not that
significant for a template method. On the other hand, because of
the limited possibilities of incremental aspect refinement in
AspectJ this problem is more present in a template advice. Hence,
the consequences of using a template advice are much more
restrictive.

The consequences of using a template advice are:

• Separation of fixed and variable part of crosscutting code: the
advice depicts the fixed part of the crosscutting code, while
the abstract method depicts the variable part which can be
refined according to the special need.

• Limited incremental refinement: since AspectJ does not
permit to refine advice directly (via overriding) the advice
implementation is usually fixed.

• Conflict handling: if there are more than one concrete aspect
which refer to at least one common join point the developer
need to determine which advice should be executed. This can
be either realized by further idioms, or by an explicit usage of
dominate relationships between aspects.

• Limited knowledge on aspects internals required: the
adaptation of the aspect behavior just depends on the
concrete method definition. Hence, the developer performing
the aspect adaptation only needs little knowledge about the
concrete pointcut or the advice internals. However, a detailed
description of the contract belonging to the abstract method
is needed.

• Lost access to introspective facilities: since the reflective
facilities of AspectJ are just available inside an advice there is
no possibility to refer inside the method to the execution
context. This must be considered during the design. In case
the execution context might be needed, it has to be passed as a
parameter.

Template advice usually occur together with composite pointcuts
[5] where the concrete aspect defines the component pointcuts.
Also, template advice are often used in conjunction with pointcut
methods and chained advice (see section 3 and 4) where in both
cases the concrete aspect refines the pointcut definition. Hence,
different implementation of template advice usually differ in their
handling of the corresponding pointcut.

It should be noted that template advice is a very generic idiom
which builds in conjunction with template method and composite
pointcut the fundament of aspect-oriented frameworks in
AspectJ. It can be compared to [7] whose analysis of software
frameworks is based on the distinction between hook and template
coming mainly from the template method design pattern.

3. POINTCUT METHOD
A pointcut method is used, whenever a certain advice is needed
whose execution depends on runtime specific elements which
cannot or only with large effort expressed by the underlying
pointcut language.

The pointcut language of AspectJ is quite expressive. Dynamic
pointcuts like args(..) permit to specify join points which are
evaluated during runtime and permit in that way to specify a large
variety of crosscuttings. Typical examples where dynamic
pointcuts are used are the simulating dynamic dispatching on top
of Java (cf. e.g. [9]). However, sometimes the decision of whether
or not a corresponding advice should be executed is not that easy
to specify inside a pointcut definition. Such a situation is usually

given if the advice execution depends on a more complex
computation or includes a invocation history of the participating
objects.

The usage of if pointcuts can reduce this problem. However, if
pointcuts are somehow ugly since they permit only to call static
members of the aspect. Furthermore, the usage of if pointcuts
usually reduces the reusability of the enclosing aspect, because
they are usually very specific to a small set of join points.
Usually, the usage of the pointcut language seems to be
inappropriate when the decision whether or not a corresponding
advice should be executed can be better expressed by methods
than the pointcut language. In these cases the usage of a pointcut
method is appropriate.

<<aspect>>
AbstractAspect

boolean pointcutMethod();
pointcut candidate() = ...;
... around(): candidate() {
if (pointcutMethod()) ...
else proceed();

}

TargetClass

*

<<aspect>>
CandidateAspect

boolean pointcutMethod() {...}

Figure 2. Pointcut Method

The ingredients of a pointcut method are:

• Candidate pointcut: the pointcut which determines all
potential join points where additional behavior might take
place. However, the pointcut definition includes more join
points than needed to perform the aspect specific behavior.

• Pointcut Method: the method which is invoked from inside
the advice to determine whether or not the advice should be
executed. Typically the return type of a pointcut method is
boolean.

• Conditional Advice: the advice which contains the behavior
which might be executed at the specified join points. The
additional behavior is conditional executed depending on the
result of the pointcut method.

• Candidate Aspect: the aspect which refines the pointcut
method.

Implementations of pointcut methods vary in a number of ways.
First, usually a pointcut method's return type is boolean. That
means a pointcut method only determines whether or not the
additional behavior specified inside an advice should be executed.
On the other hand, a pointcut method can also include just any
computation whereby the conditional execution of the advice
depends on the pointcut methods result (and any other context
information). That means the decision whether or not the advice
should be executed not only depends on the pointcut method
itself.

Another important issue is how the computation of the pointcut
method depends on the execution context of the application.
Usually context information are directly passed by the advice to
the pointcut method. That means the referring pointcut either
passes some parameters to the advice or the advice extracts
context information using the introspection capabilities of AspectJ
like thisJoinPoint or thisStaticJoinPoint. Another
possibility is, that the aspect itself has a state that is set by the
application's execution context. The pointcut method can decide
because of this state whether the advice should be executed or not.

An advantage of using a pointcut method is its adaptability by
aspects: it is possible to specify further advice which refine the
pointcut method outside the aspect hierarchy. That means, the
condition whether or not an advice should be executed can be
modified incrementally. In case the pointcut is hard-coded by
using the pointcut language such an extension is not that easy. It
assumes a corresponding underlying architecture or rules of thumb
like discussed in [5].

The consequences of using a pointcut method are:

• Hidden pointcut definition: the user which specifies the
pointcut method does not need to understand the
implementation of the whole pointcut. He just needs an
acknowledgement that at least all join points he is interested
in are specified by the pointcut.

• Parameter passing: to determine whether or not the advice
should be executed, the pointcut method needs some inputs.
This might be for example property files, or (which is more
usual) parameters which are passed from the pointcut to the
advice and then from the advice to the pointcut.

• Possible late pointcut refinement: the pointcut method can be
refined by further aspects.

• Default advice behavior: in case the conditional advice is an
after or around advice, it is necessary to specify any default
behavior. Around advice usually call proceed, while after
advice usually pass the incoming return value.

• Little knowledge about advice internals needed: when
specifying the pointcuts it is not necessary to understand all
internals of the advice. Usually it is enough to have a
description in natural language what kinds of join points can
be handled by the advice and what kind of impact the advice
has on the join point.

The pointcut method idiom is similar to the composite pointcut
[5]. Both divide the pointcut into a stable and variable part
(usually a composite pointcut it used in conjunction with a
inheritance relationship between aspects). The difference between
both is, that for adapting a composite pointcut the application of
an inheritance relationship between aspects is necessary. This also
implies that a composite pointcut has some preplanned
variabilities (which are usually component pointcuts). A pointcut
method does not directly depend on an inheritance relationship.
The refinement might be either achieved via inheritance or by an
advice. In the first case a pointcut method plays the role of an

abstract method inside a template advice. In the latter case, a
pointcut method is often refined by a chained advice.

4. CHAINED ADVICE
Whenever there is (extrinsic) behavior of objects which is regarded
to be somehow fragile what means it seems as if these methods
might change because of a number of different decisions and
furthermore by a number of different aspects the usage of chained
advice is recommended.

Object-orientation already offers to extend the behavior of objects
via the inheritance mechanism. Often this extension is based on a
template method [3] where the pattern's abstract method already
contains a concrete implementation. However this does not really
solve the adaptation problem: the adaptation is achieved by
inheritance and that implies a new class has to be created which
overrides and adapts a known one. Furthermore, it must be
guaranteed that the request for creating new objects must be
redirected to the new class in certain situations. If (for the original
classes) no creational patterns [3] where used such a task tends to
be error-prone and the resulting design is usually unacceptable. In
such cases, where an application's behavior at (at least) one join
point depends on a number of concerns those concerns are usually
not orthogonal, but interact in some way. That means, the new
behavior should be modularized in separate aspects, but the
relationship between such non-orthogonal concerns must be
considered. In such cases we propose to apply the chained advice
idiom.

<<aspect>>
AbstractChain

final pointcut anchor(..) =
 ...

...<<aspect>>
ChainElement1

.. around(..):
 anchor(..) {...}

<<aspect>>
ChainElement2

.. around(..):
 anchor(..) {...}

TargetClass

*

Figure 3. Chained Advice

The ingredients of a chained advice are:

Abstract chain: the aspect containing the anchor pointcut.

Anchor pointcut: the pointcut which is used by every advice
within the chain. We call this the anchor pointcut, because each
chain of advice is anchored at each join points part of this pointcut
definition.

Chain element: The aspects extending the abstract chain and
containing the advice which refers to the anchor pointcut. The
chained advice have a predefined order. Usually each advice
contains a mechanism to redirect the execution to a different
advice.

In contrast to the previous mentioned idioms, a chained advice
comes with a number of different implementations. On the one

hand it is not necessary that the pointcut is inherited from a
super-aspect. Instead, we found either the usage of static
pointcuts, or even more complex aspect hierarchies than illustrated
in figure 3. We found implementations where the chain was
realized by an ordinary proceed-call, in other cases we found
more complex pointcut definitions (that means each chain element
offers a join point used by the following chain element). Also, in
many cases the execution of chained advice is mutually exclusive,
than means at most one chained advice is executed. But there are
situation where more than one chain element is executed. What
kinds of chained advice should be used depends on the concrete
situation.

The way how the mutually exclusive advice were realized differ in
different applications. On the hand (as we will illustrate in the
final example) pointcut methods were used, in other cases ordinary
advice in combination with composite pointcuts [5] were used.
Both implementations have their pro and cons. The advantage of
the first approach is that aspects do not need to have any
knowledge about each other, i.e. their implementations do not
depend on each other. But this also means that the advice
execution order has to be controlled in some way. The latter
approach assumes an explicit dependency of each advice.

The consequences of using the chained advice idiom are:

• Separate concerns for each advice: each advice represents
certain behavior coming from different concerns within its
own module.

• Independent composability: certain elements within the chain
can be composed independent of each other. The level of
independence of each chain elements depends on the
underlying implementation. The major benefit is usually, that
new chain elements can be added without the need to perform
any destructive modifications within existing chain elements.

• Parameter passing: a mechanisms is needed to pass the
responsibility from one chain element to another.

• Default behavior needed: often chained advice need to
provide a default behavior at the anchor join points.

Chained advice make often use of pointcut methods to determine
whether or not a chain element should be executed. Furthermore,
chained advice often make use of composite pointcuts to reduce
redundant pointcut definitions.

5. FACTORY ADVICE
Whenever the object creation of certain object depends on specific
aspects which might vary from application to application or the
execution context of an application, the usage of a factory advice is
recommended.

A factory advice is an advice which is responsible for the object
creation. It looks similar to the well-known design pattern factory
method [3]. The argumentation why we still regard this a specific
idiom in AspectJ is similar to the argumentation in section 2: the
consequences of using a factory advice differ widely from the
factory method.

Whenever the creation of objects depends on certain aspects (and
there might be more than one aspect) and such object creation
might differ in different applications or different execution
contexts it is usually not appropriate only to intercept the object
creation using a pointcut to the constructor and then redirecting
the creation using an around advice. The problem in such a context
is usually the restriction that around advice need to return the
same type than its join points.

<<aspect>>
ConcreteCreator

pointcut pc() =
 call(.. createObject()
Product around(..): pc() {
 ... new ConcreteProduct();
 ...
}

KnownCreator

createObject()

*

Figure 4. Factory Advice

The ingredients of a factory advice are:

• default create method: the method which is invoked by a
client to request a new object. Usually, the method just return
a null object.

• a concrete creator: the aspect which contains a pointcut to
the default create method and the specification what product
should be created.

• abstract product: the product expected by the client. Usually
the factory advice redirects the creation of the abstract
product to a different class extending the abstract product.

The relationship between a factory advice and the usual
application of advice can be seen like the relationship between the
factory method design pattern [3] and the template method [3]:
although both are similar in their relationship of hook and template
their differ mainly in the way their intention.

The consequences of using a factory advice are:

• deferred object instantiation: the aspect instantiation is no
longer hard coded inside the object structure, but moved to
the aspect definition. That means the instantiating aspect
must be woven to the application to guarantee its correctness.

• specified default behavior: an advice factory assumes a
specification of a default behavior of the default create
method. Usually, the advice overrides the whole behavior
specified there. But there are situations where the default
create method contains some meaningful code and the aspect
code is just executed in "special situations".

• composability: The advice factory permits to exchange the
object creation process without performing destructive
modifications within the object structure.

Factory are often used as chained advice in cases where the object
to be instantiated depends on some execution context. In this way
the factory advice looks even more like the abstract factory design
pattern [4].

6. Example
Object oriented component frameworks suffer always from the
problem of the construction of new component instances. The
creational patterns in [4] reduce but do not really solve the
problem. Each combination of these patterns violates at least in
one point the principle of "need to know", which leads to
somehow non transparent dependencies. Each component can
know everything from the framework but not the other way
round. When the framework is responsible to constructing new
component instances, the framework needs to know the
component. Delegating this kind of knowledge to framework
configuration files doesn’t solve that problem either. This
approach contains several other drawbacks: it is impossible to
implement the component in plain Java, a combination of Java and
XML is needed, several checks which modern compiler can
perform during compile time are no longer possible, code patterns

<<aspect>>
AbstractFactoryAdvice

pointcut create(P1 p1, P2 p1) = ..;

Entity around(...): create(...) {
if (accept(p1,p2)){

return createObject(p1,p2);
 } else return proceed(p1,p2);
}
Entity createObject(...);
boolean accept(…);

Factory

Entity createEntity(...)

<<aspect>>
Rounter1Creation

boolean accept(P1 p1, P2 p1) …;
Entity createObject(...);

<<aspect>>
Rounter2Creation

boolean accept(P1 p1, P2 p1) …;
Entity createObject(...); ...

1

Figure 5. Example: Object creation in large scale frameworks

which enforce all configurations are not possible, this approach is
not valid for high performance applications, because of the
additional overhead caused by the required use of the Java
Reflection API.

It is desirable, that every component connects itself to the
construction mechanism. We present a solution of this problem as
an example of a combination of the discussed idioms, which has
been applied in the EOS-product family [10].

The core functionality is that dependent of the passed parameters
the component decides on its own if it should be instantiated or
not. That means, it depends on the framework configuration what
objects have to be instantiated an in such a situation the
application of an advice factory is appropriate. That means the
request of an object creation is passed to a certain default creation
method (we neglect here the implementation of corresponding
pointcut create). However, the decision of what concrete product
should be created depends on the one hand on the passed
parameters and on the other hand on the available components
inside the framework.

Since it is possible to specify all join points and it depends on the
installed components whether or not they should be instantiated
we decided use a poincut method inside the advice factory as
illustrated in figure 5. Clients request a new abstract product (of
type Entity) from the factory (which is in the concrete example
an object). The factory object's default create method contains a
dummy implementation. The concrete creator defines a pointcut
for this method and defines a template advice and a pointcut
method. The pointcut method accept specifies whether or not a
concrete aspect should be responsible for the object creation or
not. The abstract method createObject is overridden by
concrete aspects and creates a concrete product.

In the here mentioned context we realized the concrete aspects as
chained advice where each installed component comes with its
own chain element for object creation. The reason for it is, that the
fixed part of the template advice can be easily implemented as a
chained advice and the responsibility which chain element creates
the object lies in each chain element's accept method. Since the
template advice either invokes createObject or proceeds with
the join points execution all chain elements are mutually exclusive.
Under the assumption that each element's pointcut method
accept is adequately implemented there is no need determine
any domination of the aspects.

Since the creational process differed widely from entity to entity
we decided the implement the object creation as the abstract
method inside the template method idiom.

7. CONCLUSION
In this paper we demonstrated a small collection of idioms we
found frequently inside AspectJ applications and demonstrated an
example which illustrated the usage of the idioms. The intention of

the paper is to demonstrate "good design decisions" in AspectJ
and discuss their advantages and disadvantages.

Although we found implementations of the here described idioms
in current AspectJ projects we are aware of the fact, that there is
no such clear distinction between the here described idioms and
the known GoF design patterns template method, chain of
responsibility, abstract factory and factory method. In that way it
looks like the here proposed idioms are more a implementation of
known design patterns as e.g. proposed in [6]. On the other hand
the consequences of each of the idioms is quite different from the
consequences of using the GoF patterns. Such consequences are
mainly determined by the restriction that concrete aspects cannot
be extended and advice cannot be overridden.

Nevertheless, the pointcut method seems to be an idiom which is
highly related to an aspect-oriented language features and seems in
that way rather a "pure aspect-oriented idiom" than the others.
However, we think that the here described idioms are good
examples of good AspectJ design which were successfully used
and should be therefore considered when designing AspectJ
applications if the application's context matches the idioms
contexts.

8. REFERENCES
[1] Czarnecki, K.; Eisenecker, U. W.: Generative Programming:

Methods Tools and Applications, Addison-Wesley, 2000

[2] Floyd, R. W.; The Paradigms of Programming,
Communications of the ACM, Volume 22, No. 8 (1979), pp.
455 – 460.

[3] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J: Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[4] Hanenberg, S.; Costanza, P.: Connecting Aspects in AspectJ:
Strategies vs. Patterns, First Workshop on Aspects,
Components, and Patterns for Infrastructure Software at
AOSD'01, Enschede, April, 2002

[5] Hanenberg, S., Unland, R.: Using and Reusing Aspects in
AspectJ. Workshop on Advanced Separation of Concerns in
Object-Oriented Systems at OOPSLA, 2001

[6] Hannemann, J., Kiczales, G., Design Pattern Implementations
in Java and AspectJ, OOPSLA 2002.

[7] Pree, W.: Design Patterns for Object-Oriented Software
Development, Addison-Wesley, Reading, 1995.

[8] Schmidmeier, A.; Hanenberg, S.; Unland, R.: Implementing
Known Concepts in AspectJ, 3rd Workshop on Aspect-
Oriented Software Development of the German Informatics
Association, March, 2003

[9] Sirius GmbH, Enterprise Object System, EOS, Functional
Product Overview, EOS Core System Version 3.5, 2002

