

Invasive Composition Adapters: an aspect-oriented
approach for visual component-based development

ABSTRACT
In this paper, we build on previous work that combines ideas

from visual component-based software development with aspect-
oriented software development. We introduced a composition
adapter to modularize crosscutting concerns in our visual
component-based methodology developed in earlier work. A
composition adapter can be visually applied onto a composition
pattern and the changes it describes are automatically inserted
using finite automaton theory. The expressive power of a
composition adapter is however limited to concerns that alter the
exterior behavior of a component. To overcome this limitation,
we propose to employ a new aspect-oriented implementation
language, called JAsCo, tailored for the component-based
context. An invasive composition adapter, which has an
implementation in the JAsCo language, is able to express
concerns that require more than mere filtering and re-routing. The
changes dictated by an invasive composition adapter are
automatically inserted into the components and composition
patterns.

1. INTRODUCTION
Aspect-Oriented Software Development (AOSD) argues that

some concerns exist that can not be confined to one single
module. Typical examples of such concerns are logging and
synchronization. The research to deal with this problem is under
constant evolution. Most of this research however is targeted to
Object-Oriented Software Development (OOSD). As a
consequence, these approaches are not very well suited to be
reused in a component-based context. This paper describes our
approach to introduce aspect-oriented ideas in Component-Based
Software Development (CBSD) from design to implementation.

In previous research [12-15], we developed a component-
based approach that lifts the abstraction level for visual
component composition. This research resulted in a visual
component composition environment called PacoSuite. PacoSuite
improves on standard visual composition tools as it allows
components to be wired together based on generic interaction
protocols, called “composition patterns”, rather than simple
event/method pairs. To introduce aspect-oriented ideas into
PacoSuite, we proposed a “composition adapter”. A composition
adapter transforms the original composition patterns to introduce
the specified aspects. Technically, a composition adapter is
applied by introducing the aspects in the glue code of a
component-based application. As a result, it is impossible to
introduce aspects in the components themselves. However,

several experiments revealed that it should be possible to adapt
the components’ interior to express aspects that require more than
mere filtering or rerouting. To solve this problem, we introduce a
new aspect-oriented programming language targeted at
component-based development, called JAsCo. An “invasive”
composition adapter is an enhanced version of a regular
composition adapter implemented in the JAsCo language. In this
way, concerns that require adaptations to the interior of
components can also be expressed.

This paper presents a complete overview of our approach. As
a result, technical details of algorithms and formal foundations are
not discussed. Section 2 briefly describes our component-based
methodology and presents the composition adapter model using
run-time checking of timing constraints as a concrete example.
Section 3 briefly presents the JAsCo aspect-oriented
programming language and the invasive composition adapter
model is introduced in section 4. Section 5 presents the tool
support we created to support our methodology. Finally, we
present some related work and state our conclusions.

2. RESEARCH CONTEXT
2.1 CBSD in PacoSuite

startJuggling

stopJuggling

Toggler Juggler

START
LOOP

STOP

Figure 1: Usage scenario of a Juggler component.

We mainly focus our component-based research on lifting

the abstraction level for component-based development. We want
to realize the plug and play idea of component-based
development. Therefore, we propose to document components
with usage scenarios that specify how to employ them. A usage
scenario is expressed by a special kind of Message Sequence
Chart (MSC) [4]. The main difference with a regular MSC is that
the signals are taken from a limited set of pre-defined semantic
primitives. Each of these signals is mapped on the concrete API

Wim Vanderperren
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 62

wvdperre@vub.ac.be

Davy Suvée
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 65

dsuvee@vub.ac.be

Viviane Jonckers
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 67

viviane@info.vub.ac.be

that performs them. As a result, the documentation of a
component is both abstract and concrete at the same time. Figure
1 illustrates a usage scenario of the well-known Juggler bean.
One participant of a usage scenario represents the component
itself and the other participants represent the environment the
component expects. In this case, only one environment participant
is specified, namely the Toggler participant. This usage scenario
documents that the Juggler component expects consecutive start
and stops. The START primitive is implemented by startJuggling
and stopJuggling implements the STOP primitive.

LOOP

ALT

Toggler toToggle

STOP

START

Figure 2: Toggling composition pattern.

We introduce explicit and reusable composition patterns that

are also expressed using MSC’s. A composition pattern is an
abstract specification of the interaction between a number of
roles. The signals between the roles originate from the same
limited set of semantic primitives. This allows comparing the
signals in a usage scenario of a component with these in a
composition pattern. Figure 2 illustrates a generic toggling
composition pattern. This composition pattern specifies that the
Toggler participant consecutively sends either a START or a
STOP to the toToggle participant. A possible application of this
composition pattern is a simple visual interface that allows
toggling the Juggler component from a single JButton
component. To build this application, the Juggler component is
mapped on the toToggle role and the JButton component is
mapped on the Toggler role. Notice that even this simple
collaboration can not be wired by most visual composition
environments because the collaboration itself requires state.

The documentation of components and composition patterns
allows checking the compatibility of a component with a role. The
glue-code that constraints the behavior of the components and that
translates syntactical compatibilities is generated automatically.
Both the algorithms are based on finite automaton theory. In this
paper we do not go into the details of these algorithms. The
interested reader is referred to [14, 15].

2.2 Composition Adapters
Some concerns can not be cleanly modularized using

composition patterns and components as are spread into different
entities. As a result, editing, adding and removing such a concern
becomes a cumbersome and error-prone task. To solve this
problem, we propose composition adapters. The next paragraphs
present this solution using the run-time checking of timing
constraints as a concrete example. If we want to check timing
constraints dynamically using our current concepts, every
composition pattern needs to be adapted in the same way. Of
course, when the application goes into the production phase, the
dynamic timing aspect needs to be removed from the application.

Consequently, the involved composition patterns need to be
altered again to remove the timing aspect.

Dest Source

SIGNAL

CONTEXT

Dest Source

ADAPTER

Timer

SIGNAL

ConstraintChecker

NOTIFY
SIGNAL

Figure 3: Dynamic timing verification composition adapter.

In order to modularize crosscutting concerns in PacoSuite,

we introduce a new concept, called a composition adapter. A
composition adapter is able to describe adaptations of the external
behavior of a component independently of a specific API. A
composition adapter is again documented using a special kind of
MSC and consists of two parts: a context part and an adapter part.
Figure 3 depicts the composition adapter that is used to
modularize the timing aspect. The context part of a composition
adapter describes the behavior that needs to be adapted. This can
be a simple signal send as in Figure 3, but can very well be a full
protocol. The adapter part specifies the adaptation itself. In the
case of the dynamic timing composition adapter, every signal
between the Source and Dest role will be rerouted through a
Timer role. The Timer role is responsible for taking a timestamp
and notifying the ConstraintChecker role. The ConstraintChecker
role is responsible to verify whether every signal it is notified of,
does not violate a timing constraint. The component that is
mapped on the ConstraintChecker role could do the verification
process offline and/or run on a different CPU to minimize the
disruption of the system.

When a composition adapter is applied onto an existing
composition pattern, the context roles of the composition adapter
need to be mapped onto roles of the composition pattern. For
example, suppose we want to time the communication between
the Toggler and toToggle roles of the composition pattern in
figure 2. The Source role of the timing composition adapter of
Figure 3 has to be mapped onto the Toggler role of the
composition pattern. Likewise, the Dest role has to be mapped
onto the toToggle role. As a result, the START and STOP signals
are not send directly to the toToggle/Dest role but are re-routed
through the Timer role. After sending the START or STOP signal
to the toToggle/Dest role, the ConstraintChecker role is notified.

To automatically apply a composition adapter onto a given
composition we developed an algorithm based on finite automata
theory. In this paper, we do not discuss this algorithm, a full
explanation can be found in [13].

2.3 Discussion
The critical reader might have noticed that the composition

adapter approach to enable run-time checking of timing
constraints is not very accurate. Currently, the timestamp of the
event is taken when it arrives at the component mapped on the
Timer role. So, there is at least an inaccuracy because of the delay
of this message send. If the application works distributed, this
delay can not be neglected. Certain sophisticated component

systems use a scheduler to pass messages to components. This
scheduling process imposes yet another delay, making the
timestamp even less accurate. As a result, our composition
adapter approach to check timing constraints at run-time is not
very well suited if a high precision is desired. The only way to
achieve a correct timestamp is to alter the mapped components
themselves so that the timestamp is taken before a message is sent
or received. However, a composition adapter is only able to alter
the exterior behavior of a component by ignoring or re-routing
messages. Aspects that require other adaptations can not be
described using a composition adapter, which is a major
limitation. To solve this problem, we enhance our current model
using an implementation in an aspect-oriented programming
language. The next section describes the language we designed
for allowing a composition adapter to specify invasive changes of
a component. Section 4 discusses how this new language is used
to realize an invasive composition adapter.

3. JASCO LANGUAGE
For enhancing the composition adapter model, an

implementation in an aspect-oriented programming language is
required. Several AOSD-approaches, such as AspectJ [2],
composition filters [3] and HyperJ [15], are available. These
technologies however, mainly aim at describing crosscutting
concerns in an object-oriented context. As a result, they are very
well not suitable for being deployed in a component-based
context, this because of several restrictions:

• Nearly all AOSD-approaches describe aspects with a
specific context in mind, which limits reusability.

• The deployment of an aspect within a software-
system is at the moment rather static, as aspects
loose their identity when they are integrated within
the base-implementation. As a result, aspects are not
able to exhibit the same plug-and-play characteristic
of components.

• The communication between components depends
on the employed component model. Current AOSD-
technologies however do not support to specify
aspects on these specific kinds of interactions.

For overcoming the problems mentioned above, we propose
a new aspect-oriented implementation language called JAsCo.
JAsCo has been developed with CBSD, and in particular
PacoSuite, in mind. The JAsCo-language stays as close as
possible to the regular Java syntax, and introduces two new
concepts: aspect beans and connectors. An aspect bean is a
regular Java bean that describes one or more logically related
hooks as a special kind of inner classes. A hook is a generic and
reusable entity and can be considered as the combination of the
AspectJ’s pointcut and advice. A connector on the other hand, is
used to initialize several logically related hooks with a concrete
context. To make the JAsCo language operational, we propose an
"aspect-enabled" component model, where components do not
require any adaptation whatsoever for aspects to be deployed.

The following two subsections describe the syntax of both
the aspect- and connector-language. For more information about
JAsCo and the JAsCo Beans component model, we refer to [9].

3.1 Aspect Syntax
Aspect beans are used for describing functionality that would

normally crosscut several components from which the system is
composed. The run-time checking of timing constraints,
introduced in section 2, is an example of such a crosscutting
concern. Whenever a specific method is executed, a timestamp
should be taken such that the defined timing constraints can be
checked. Figure 4 illustrates the implementation of this dynamic
timer aspect. Aspect beans usually contain one or more hook-
definitions (line 17 till 32), and are able to include any number of
ordinary Java class-members (line 3 till 15), which are shared
amongst all hooks of the aspect. A hook is used for defining
when the normal execution of a method should be cut, and what
extra behavior there should be executed at that precise moment in
time. For defining when the behavior of hook should be
executed, each hook is equipped with at least one constructor (line
21 till 23) that takes one or more abstract method parameters as
input. These abstract method parameters are used for describing
the context of a hook. The TimeStamp-hook specifies that it can
be deployed on every method that takes zero or more arguments
as input. The constructor-body defines how the join points of a
hook initialization are computed. In this particular case, the
constructor-body (line 22) specifies that the behavior of the
TimeStamp-hook should be triggered whenever method is
executed. The behavior methods of a hook are used for
specifying the various actions a hook needs to perform whenever
one of its calculated join points is encountered. Three kinds of
behavior methods are available: before, after and replace. The
TimeStamp-hook specifies two behavior methods (line 25 till 31).
The before behavior method describes that a timestamp should be
taken prior to the execution of method. In addition, the after
behavior method specifies that all the interested observers should
be notified of the timestamp.
1 class DynamicTimer {
2
3 private Vector obs = new Vector();
4 void removeTimeListener(TimeListener o) {
5 obs.remove(o);
6 }
7 void addTimeListener(TimeListener o) {
8 obs.add(o);
9 }
10 void notifyListeners(Method m, long t) {
11 for (int i = 0;i < obs.size();i++) {
12 ((TimeListener)obs.elementAt(i)).
13 TimeStampTaken(m,t);
14 }
15 }
16
17 hook TimeStamp {
18
19 private long timestamp;
20
21 TimeStamp(method(..args)) {
22 execute(method);
23 }
24
25 before() {
26 timestamp=System.currentTimeMillis();
27 }
28
29 after() {
30 notifyListeners(method,timestamp);
31 }
32 }
33 }

Figure 4: The JAsCo-aspect for dynamic timing.

When?

What?

3.2 Connector Syntax
Connectors are used for initializing a hook with a specific

context (methods or events). A hook initialization takes one or
more methods or event signatures as input. Figure 5 illustrates the
TimeConnector. This connector initializes a TimeStamp-hook
timer with the throwing of the actionPerformed-event of the
JButton-component (line 5), and with the startJuggling and
stopJuggling-methods of the Juggler-component (line 6 till 7).
After initializing this hook, the TimeConnector specifies the
execution of the before and the after behavior methods.
Consequently, the TimeConnector has following implication: take
a timestamp and notify all observers of the DynamicTimer aspect
bean whenever the JButton throws an ActionEvent and whenever
the Juggler starts or stops juggling.
1 connector TimeConnector {
2
3 DynamicTimer.TimeStamp timer =
4 new DynamicTimer.TimeStamp ({ onevent
5 JButton.actionPerformed(ActionEvent),
6 void Juggler.startJuggling(),
7 void Juggler.stopJuggling() });
8
9 timer.before();
10 timer.after();
11 }

Figure 5: The JAsCo-connector for dynamic timing of the
JButton and the Juggler.

4. INVASIVE COMPOSITION ADAPTERS

4.1 Documentation
One of the problems encountered with our current

composition adapter model is that it is not able to express aspects
that require interior adaptations of a component. To solve this
problem, we propose to employ the JAsCo language as an
implementation for a composition adapter. Hence, the
composition adapter model needs to be altered slightly.

Figure 6 illustrates the invasive composition adapter that
documents the DynamicTimer aspect bean of Figure 4. Messages
in the context part of an invasive composition adapter can be
mapped on a hook. In the case of Figure 6 the SIGNAL message
is mapped on the TimeStamp hook. As a result, every message
between the component that is mapped on the Source role and the
component that is mapped on the Dest role will be given to the
TimeStamp hook constructor. As a consequence, those messages
are changed to take a timestamp and to notify interested
observers. The adapter part of an invasive composition adapter
includes a new role that represents the aspect bean in the JAsCo
language. In the case of Figure 6, the DynamicTimer role
represents the aspect bean with the same name of Figure 4. The
adapter part documents what the effect of the application of the
DynamicTimer aspect bean will be. In the example of Figure 6,
every signal between a certain source and destination component
is still sent in the same way. However, the DynamicTimer aspect
bean declares that a timestamp has to be taken before an adapted
method is executed (see Figure 4, line 28-30). This behavior is not
documented in the composition adapter as it is internal to the
aspect bean and no communication with other components is
involved. As a consequence, this behavior is not relevant for
verifying compatibility and to generate glue-code. After the
original method is executed, the DynamicTimer aspect bean

notifies a ConstraintChecker component that verifies whether
certain timing constraints are violated (see Figure 4, line 32-34).
This behavior however, is documented in the composition adapter
because it requires communication with other components.
Messages that are sent or received by a JAsCo component require
an implementation mapping. In Figure 6, the NOTIFY message of
the DynamicTimer aspect bean is implemented by throwing the
timeStampTaken event. The implementation mapping is required
to be able to generate glue-code that will call the correct method
of the component that is mapped on the ConstraintChecker role
when the DynamicTimer throws the timeStampTaken event.
Notice that the component that will be mapped on the
ConstraintChecker role does not have to understand the
timeStampTaken event. Glue-code that translates the
timeStampTaken event into one or more methods of the mapped
component can be automatically generated using the
documentation of Figure 6.

Dest Source

SIGNAL

CONTEXT

Dest Source

ADAPTER

timing.DynamicTimer

SIGNAL

ConstraintChecker

NOTIFY

TimeStamp

timeStampTaken

Figure 6: Invasive Composition Adapter model for the

DynamicTimer aspect bean.

4.2 Applying an invasive composition adapter
An invasive composition adapter changes the composition

patterns in the same way a regular composition adapter does. As a
result, we can still use the same algorithm that was developed for
regular composition adapters to determine the effect of an
invasive composition adapter on a composition pattern.

An invasive composition adapter however also changes the
components themselves through the implementation in the JAsCo
language. The adaptations to a component caused by an invasive
composition adapter might affect the external behavior of the
component. As a consequence, the documentation of a component
becomes inconsistent. To be able to still verify the compatibility
of an adapted component with a given composition pattern, the
documentation of this component needs to be modified. This is
easily achieved by a similar algorithm as the one used for
adapting composition patterns to the specification of a
composition adapter [13]. The specification of an invasive
composition adapter is used to alter the documentation of the
components that are mapped on the context roles of the
composition adapter. In this way, we are still able to check
compatibility and automatically generate glue-code. In the case
of Figure 6, the documentation does not have to be altered
because the original behavior of the components that are mapped
on the Source and Dest roles is not changed.

As a last step, a connector in the JAsCo language is
generated to be able to apply the JAsCo implementation of the
invasive composition adapter onto the correct components. In

Where?

order to locate the concrete methods and events the aspect has to
be applied to, we have to calculate where the context part of the
composition adapter occurs. Luckily, this was already determined
in the previous phase. So, only the parts of the documentation of a
component where the context part occurs need to be analyzed. In
case of Figure 6, this means that all messages that are mapped
onto the signal with the TimeStamp hook as an implementation,
have to be altered by the composition adapter. For instance, if the
Juggler component of Figure 1 is mapped onto the Dest role of
the composition adapter of Figure 6, both the startJuggling and
stopJuggling methods would have to be adapted. Figure 5
illustrates the connector generated when the Juggler component is
mapped onto the Dest role and the JButton component is mapped
onto the Source role. The onevent keyword is used because
outgoing communication of Java Beans occurs through event
posting. When the connector is generated, the JAsCo compiler is
executed and the regular glue-code generation process of our
visual component composition environment is started. As a result,
the startJuggling end stopJuggling methods and the
actionPerformed event are timed. Timing constraints that act on
these points can be verified at run-time with a more accurate
precision than when using a non-invasive composition adapter.

4.3 Small Case Study

ProductDB Requester

REQUEST

CONTEXT

ProductDB Requester

ADAPTER

CaptureProduct

ANSWER
ApplyDiscount

REQUEST

ANSWER

Figure 7: OldProductDiscount invasive composition

adapter.
It can be argued that using an invasive composition adapter

for specifying timing constraints validation is not really
necessary. Indeed, a regular composition adapter is also able to
describe this concern, only the accuracy of the timestamps differs.
Therefore, we shortly present a small case-study that introduces
crosscutting concerns that really require an invasive composition
adapter. The case study at hand is a digital photo printing
laboratory. The system consists of two sub-applications: a client
that allows browsing and previewing pictures and a server
application that is responsible for printing and calculating the
price of an order. We identified four crosscutting concerns and
successfully modeled them using an invasive composition
adapter. Due to space constraints, only one of them is introduced,
namely a business rule that specifies a discount for obsolete
products. In this case, the obsolete product is a photo paper format
that is no longer in use. To introduce this concern, extra behavior
has to be inserted in the product database to be able to persistently
store and use the old product information. As a result, the product
database returns a discounted price for older products. Figure 7
illustrates the OldProductDiscount invasive composition adapter.
The context part declares that this invasive composition adapter is
applicable on a consecutive REQUEST and ANSWER. Notice
that a different hook is mapped on both the primitives of the

context part. The CaptureProduct hook is responsible for
capturing all relevant information of the price request of a certain
product. The ApplyDiscount acts on the answer of the request and
changes the result if the product is considered obsolete. The
adapter part of the OldProductDiscount invasive composition
adapter declares that the request and answer are sent in the same
way as before. Notice that the OldProductDiscount aspect bean
itself is not documented because it does not participate in the
interaction. Indeed, this invasive composition adapter only
changes the interior behavior of the component that is mapped
onto the ProductDB role.

5. TOOL SUPPORT

Figure 8: Screenshots of PacoSuite. The middle left and
bottom right screenshots illustrate the visual component
composition environment PacoSuite. The rectangles represent
components, the ovals stand for composition patterns and the
hexagonal shapes symbolize invasive composition adapters.
The top-right screenshot shows the documentation of a
Scrabble component in the PacoDoc tool.

The ideas introduced in this paper are implemented in a
visual component composition environment called PacoSuite.
PacoSuite consists of two visual tools, called PacoDoc and
PacoWire, and the command-line tools required by the JAsCo
language. PacoDoc is a visual editor for documenting
components, composition patterns and composition adapters.
PacoWire is our actual component composition environment that
allows visually applying a component onto a role of a
composition pattern. The drag and drop action is refused when the
component is detected to be incompatible with the composition
pattern. Composition adapters can also be visually applied on a
given composition of components. The changes dictated by a
composition adapter are automatically applied using the
algorithms mentioned in this paper. In case of an invasive
composition adapter, the JAsCo tools are executed transparently
to the user. When all the component roles are filled, the
composition is checked as a whole and glue-code is generated
automatically. Figure 8 illustrates some screenshots of this tool
suite.

6. RELATED WORK
One of the first approaches to integrate aspect-oriented

software development and component-based software
development is the aspectual component model of Lieberherr et al
[11]. The JAsCo language was partly inspired by this work and

quite some similarities exist between both languages. They both
employ a separate connector language to deploy an aspect within
a specific context. On a technical level, the aspectual components
approach uses byte code weaving, while we propose a new
component model. Our approach improves on aspectual
components by lifting the abstraction for applying aspects from
the implementation level to a visual composition environment.

Filman [7] proposes dynamic injectors to introduce aspects
into a given component configuration. He incorporates dynamic
injectors into OIF (Object Infrastructure Framework), a CORBA
centered aspect-oriented system for distributed applications. The
dynamic injector approach is very similar to our non-invasive
composition adapter idea because both approaches employ a
wrapping and filtering technique to insert crosscutting concerns
into a composition of components.

Another more recent approach to recuperate aspect-oriented
ideas in component-based software development is event based
aspect-oriented programming (EAOP). EAOP [4] allows
specifying crosscuts on events and event patterns using a formal
language. Similar to the composition adapter approach, EAOP
allows specifying aspects on a full protocol of events instead of a
set of methods. Since EAOP is based on a formal model, EOAP is
able to improve on our approach because of the advanced
detection and resolution of aspect interactions [5]. Our approach
extends EAOP by lifting the abstraction level for aspect
application from the implementation level to a visual composition
environment.

Duclos et al [6] focus on separating crosscutting concerns in
legacy systems built using CCM [3]. Similar to PacoSuite, they
specify crosscutting concerns at the architectural level. They also
employ two languages, one for declaring an aspect and one for
describing how the aspect should be used. Aspects are applied by
generating individually tailored CCM containers that include the
aspect’s logic. In that sense, their approach is similar to wrapping
because they do not allow interior changes to the components.

7. CONCLUSIONS
In this paper, we introduce an invasive composition adapter

in order to specify crosscutting concerns that require interior
adaptations of a component on a component-based design level.
An invasive composition adapter is an extended version of a
regular composition adapter and has an implementation in the
JAsCo aspect-oriented language. A component composer is able
to visually apply an invasive composition adapter on a given
component composition. The invasive composition adapter is
verified to be compatible with the composition and is
automatically deployed using algorithms based on finite
automaton theory. Likewise, an invasive composition adapter can
be easily removed from a collaboration when the concern is not
desired any longer. The main drawback of this approach is that it
is domain dependent. It is possible to agree on a set of semantic
primitives to document component interactions for a limited
application domain. However, it is unfeasible to come up and
agree on a general set of semantic primitives. Another drawback
is that this approach is resource intensive. Our current algorithms
are of exponential nature and in worst case scenarios this could
lead to state explosions. In addition, the glue-code to translate

syntactic incompatibilities between components adds an extra
level of indirection.

8. ACKNOWLEDGMENTS
We owe our gratitude to Prof. Dr. Viviane Jonckers for her

invaluable help during our research and for proof reading this
paper. Also, we like to thank Dr. Bart Wydaeghe who developed
the component based methodology during his PhD research. Since
October 2000, Wim Vanderperren is supported by a doctoral
scholarship from the Fund for Scientific Research (FWO or in
Flemish: “Fonds voor Wetenschappelijk Onderzoek”).

9. REFERENCES
[1] AspectJ Website. http://www.aspectJ.org.

[2] Bergmans, L. and Aksit, M. Composing Crosscutting Concerns
Using Composition Filters. Communications of the ACM, Vol.
44, No. 10, pp. 51-57, October 2001.

[3] Corba Component Model: see http://www.omg.org.

[4] Douence, R., Motelet, O. and Südholt, M. A formal definition of
crosscuts. In Proceedings of the 3rd International Conference on
Reflection. (Kyoto Japan, September 2001)

[5] Douence, R., Fradet, P. and Südholt, M. A framework for the
detection and resolution of aspect interactions. In Proceedings of
the ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering (Pittsburgh PA,
October 2002)

[6] Duclos, F., Estublier, J. and Morat, P. Describing and Using Non
Functional Aspects in Component-based Applications. In
Proceedings of the 1st international conference on Aspect-oriented
software development. (Enschede The Netherlands, April 2002)

[7] Filman, R.E. Applying Aspect-Oriented Programming to
Intelligent Synthesis. Workshop on Aspects and Dimensions of
Concerns, ECOOP, Cannes, France, June 2000.

[8] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence
Chart (MSC). ITU-TS, Geneva, September 1993.

[9] Suvée, D., Vanderperren, W., and Jonckers, V. JAsCo: an Aspect-
Oriented approach tailored for Component-based Software
Development .In Proceedings of the second international
conference on AOSD, Boston, USA, march 2003.

[10] Lieberherr, K., Lorenz, D. and Mezini, M. Programming with
Aspectual Components. Technical Report, NU-CCS-99-01, March
1999. Available at:
http://www.ccs.neu.edu/research/demeter/biblio/aspectual-
comps.html.

[11] Ossher, H. and Tarr, P. Multi-Dimensional Separation of Concerns
and The Hyperspace Approach. In Proc. of the Symposium on
SACT: The State of the Art in Software Development. Kluwer,
2000.

[12] Vanderperren, W. A pattern based approach to separate tangled
concerns in component-based development. ACP4IS workshop at
AOSD 2002.

[13] Vanderperren, W. Localizing crosscutting concerns in visual
component-based development.In proceedings of Software
Engineering Research and Practice (SERP) international
conference, Las Vegas, USA, june 2002.

[14] Vanderperren, W. and Wydaeghe, B. Towards a New Component
Composition Process. In Proceedings of ECBS 2001, April 2001.

[15] Wydaeghe, B. and Vandeperren, W. Visual Component
Composition Using Composition Patterns. In Proceedings of Tools
2001, July 2000.

