
The Aspect-Oriented Interceptors’ Pattern for
Crosscutting and Separation of Concerns using

Conventional Object Oriented Programming Languages
John Zinky and Richard Shapiro

BBN Technologies
Cambridge MA, USA

jzinky@bbn.com, rshapiro@bbn.com
http://quo.bbn.com http://cougaar.org

Abstract
With disciplined use of the aspect-oriented interceptors’ pattern
[10], limited but effective crosscutting techniques can be used
with conventional programming languages such as Java and
C++. We have developed1 this pattern for use in Cougaar [7], a
comprehensive infrastructure for supporting distributed agents.
Cougaar can adapt to changes in the runtime environment,
supporting such dynamic features as performance tuning,
security, dependability, and agent mobility. Adaptation in this
context affects not what the system does, but how it does it.
Adaptive features, developed by various programming teams,
must be dynamically enabled at runtime based on policy
assertions and resource constraints. Adaptive features touch
every part of the system, hence they are said to crosscut the
dominant decomposition (which is based on class hierarchies).
The pattern presented in this paper helps control these features
by separating them into explicit components and by allowing the
components to be attached to the base system at multiple points.
The pattern shows interesting use of crosscutting, not only for
ease of implementation (reuse), but also for dynamic control and
composition of features. The paper presents some example
adaptive features to illustrate how aspect-oriented interceptors’
pattern is used in the implementation of the Cougaar agent-
based middleware. The paper concludes with a discussion of
how the aspect-oriented interceptors’ pattern compares with
emerging Aspect Oriented Programming languages.

1. Introduction
One category of crosscutting features is concerned with system
issues, such as performance, security, dependability, and time
constraints. This is because the application's dominant
decomposition is based on the functionality of the application
(what it does), and not on the system issues (how it is done).
Adaptive features gather information about policies and resource
constraints from many parts of the system, local and remote. The
system information is used to decide how the application should
implement its functionality and must be coordinated across all
the relevant parts.
Crosscutting is often equated with helping the software
engineering process by allowing a finer grain of code reuse
[1,2,5]. In the reuse case for crosscutting, the same block of

1 This work was sponsored by the DARPA Ultralog Program

under Contract MDA972-01-C-0025.

code can be woven into many different parts of the system. This
results in a kind of incremental implementation of classes from
many pieces. Also, it allows the different pieces to be named and
hence controlled independently at code-weave time. But code
weaving does not help with runtime control of crosscutting
features, in fact it may actually make that job harder. For
example, in AspectJ, when an aspect is added to a class, the
aspect's code fragments are added to the implementation of the
class. The class name does not change, but the class now
contains both the base functionality and the newly woven-in
feature. If at runtime the program needs to instantiate an object
without the new feature, it will not be able to do so because the
base class is no longer available (because AspectJ globally
replaced its implemenation). Even if the weaving process made
both classes available, the solution would only work for a small
number of feature weaves, until the combination of classes
explodes.
Crosscutting needs to be extended beyond weave-time to allow
for control of adaptive features at runtime. When objects are
instantiated, the instance needs to choose which features to
enable. When a client gets a reference to an object, the client
should be able to choose between an object instances that has
the feature and one that does not. Further, at runtime, the
features themselves must coordinate the interaction among the
many objects that contain them, implying that features need to
be first-class objects. Adaptive features must be made explicit at
runtime and they need to be named. Further, they need well-
defined inputs and outputs and they need to know their
dependencies on other features and on domain objects. Finally,
they need to know how to connect to domain objects to get
information and to assert control.
Large distributed applications, such as Cougaar [7], are written
in conventional programming language, such as Java and C++.
These adaptive features are developed by different software-
development groups and need to be enabled dynamically at
runtime. If two groups need to add their crosscutting features to
the same object implementation, both need to extend the base
class. Even though their features may not overlap, one feature
must extend the object through inheritance before the other
feature. Similarly, removing a feature requires using a different
class that was not extended with that feature. This implies that
the program needs to define all the combinations of features,
with some features in and some features out. If a feature needs to
be disabled at runtime, the right class must be chosen for all the
objects involved in the crosscut at instantiation time. Also, once

the object is instantiated, the feature cannot be removed without
destroying the object.

2. Aspect -Oriented Interceptors’ Pattern
The aspect-oriented interceptors’ pattern [10] is about
controlling adaptive features at run-time, rather than code
reuse. The pattern enables control of adaptive features at
multiple times in the application's runtime life-cycle. An
adaptive feature is encoded as a class and created as an explicit
object/component at runtime. Adaptive features decide at
runtime what adaptive code to attach, if any. Also, they can
expose interfaces for exchanging information among features
and other external clients. But since the patterns can only add
behavior to explicitly exposed places in the dominant
decomposition of the application, the actual feature code is
bound to the application and cannot be used in other contexts.
The requirements for using this pattern are very simple:

• Each of the objects over which the cross-cutting is
done must have an explicitly defined interface. We
call the objects that will participate in cross-cutting
Stations

• Each Station needs a base implementation class that
performs the core functionality described in its
interface.

• For each interface/implementation pair, the base
implementation instances should be made in a single
place (effectively, a Factory).

An Aspect is then an object that can create implementation
delegates for one or more Station interfaces. The Aspect class
will typically include inner implementation classes for each
Station interface for which the Aspect is providing a delegate.
Also, Aspects may keep state.
The mechanism is very simple. Suppose the Station interface in
question is Iface and the default implementation class is
IfaceImpl. In the one place where IfaceImpls are made (i.e., the
Iface Factory) we allow each known Aspect in turn to attach a
delegate for Iface if it wants to. This results in a cascaded series
of delegate objects, each of type Iface. The last object in the
chain is the original IfaceImpl. The first object in the chain is
returned as the newly created Iface (if no Aspect attaches a
delegate, the first object will of course be the IfaceImpl itself).
Any Aspect that wishes to attach a delegate to Iface would then
define its own Iface implementation class, typically as in inner
class.
One problem with this simple mechanism is that the Aspect
delegates always run in the same sequence. This ordering is too
restrictive. For example, in a communication subsystem, a
common paradigm is that the work done in the sender needs to
be accommodated in reverse order in the receiver. To handle this
we added a bit of complication to the attachment of delegates.
Aspects are in fact given two opportunities to attach delegates.
One set of delegates will run “forward” (i.e., earlier delegates
will run before later ones), the other will run in “reverse”
(earlier delegates run after later ones).

3. Example Application: Cougaar Message
Transport
Cougaar [7] is a comprehensive infrastructure for supporting
distributed agents. Cougaar Message Transport Service uses the
aspect-oriented interceptors’ pattern to add adaptive features to
communication among agents. Cougaar is a large system with
over 500k lines of code developed by several groups across
several independent projects. Ultra*Log is one such project,
designed to make Cougaar robust in the face of chaotic changes
in its environment such as simultaneous system failure, security
attacks, and global shifts in usage patterns. Using dynamic
adaptation to manage the interaction among agents is a key
feature that Ultra*Log will be adding. The Cougaar Message
Transport Service will be the locus of much of this adaptation,
and will be developed simultaneously by various groups.
The Message Transport architecture was designed to manage the
flow of messages among agents. The internal design is open, i.e.,
it consists of a number of abstract interfaces with a variety of
implementations. The constituents of the Cougaar Message
Transport are analogous to CORBA interceptors and pluggable
protocols; that is, new communication features can be added
without modifying the base code. Messages flow through the
abstract constituents, or “Stations”, in a predefined sequence,
but the behavior at each Station is determined dynamically.
The Cougaar Message Transport is divided into a dozen such
Stations. In the simple case, in which all the Stations provide
their default behavior and in which no errors have occurred, a
message flows from one Station to the next with minimal
processing. In this case the complexity of architecture may look
like overkill, since most Stations act as pass-throughs, at most

with buffering. In the real world, errors can occur and changing
system conditions can cause the default Station behavior to be
inadequate. In this more realistic case, the Stations need to do
their jobs differently, but in a coordinated way. Combining the
Aspect pattern with the Message Transport's open
implementation provides a clean solution via crosscutting. In
other words, an Aspect provides code that cuts across the
dominant decomposition provided by the Station interfaces.
The Stations are described in the “top view” diagram (see Figure
1). While strict layering is not used, Stations can be grouped
into the traditional communication layers. Stations handle issues
for end-to-end (on the left in the figure), routing (middle), link
protocols (right). Note that the “physical layer” is made from
full communication stacks, such as RMI, CORBA, Email, or raw
sockets. Adaptive features in the message transport tend to
reimplement the classic communication services, such as
addressing, flow control, retransmission, etc., but also employ
extra knowledge from the host and the application domains. The
reimplementation of lower-level services by higher-level
services is an ongoing issue addressed by several technologies,
such as micro protocols . We use crosscutting to insert the
features across multiple layers.

4. Example Aspects
Cougaar has over 20 Aspects implemented, which handle a
diverse set of adaptive features. Cougaar applications can be
configured to include any of these Aspects to match the external
requirements of the system. Hence Cougaar can be configured to
run as an embedded controler with minimal functionality, or as a
robust distributed system with security, robustness, and
performance-tuning features enabled.

The following examples show some different uses of Aspects.
The “side view” (Figure 2) shows how these Aspects could be
combined into a specific system configuration. Note how
various Aspects insert themselves into the message flow at
various Stations. Aspects allow an adaptive feature to obtain
access to the parts of the message flow where it needs to add
behavior, and to ignore the rest.

4.1 Message Statistics
Instrumenting code for debugging is the classic AOP
example[6]. All the trace and logging code is removed from the
Stations and placed in Aspects. The observation Aspects can be
hooked into any of the Stations and can correlate measurements
across interfaces. Also, the summary of the observations is kept
in the Aspect state. The Aspects can expose service interfaces so
that their observations can be viewed by external components or
other Aspects.

4.2 Message Multicasting
Message Multicasting detects the Multicast message type and
forwards it to all the agents in a society. The Multicast messages
are expanded at multiple levels. First the message is sent to all
the nodes in the society and then to each agent in the node.
Thus, Multicasting has to insert itself at many Stations, to
convert message types, to look up the addresses of remote nodes
and local agents, and to copy messages. Some of these tasks
happen when Multicast messages are sent and others occur when
agents register with its node or move. Thus, Multicasting
crosscuts the Station decomposition.
On the one hand, Multicasting is a single, fairly simple, concept.
One would expect a good software design for Multicasting to be
implemented in a single class. Otherwise it's a nuisance to
maintain. On the other hand, a typical message-handling system
would handle sending in one class and receiving in another, for
all the usual OOP reasons. Since Multicasting requires changes
both on the sender side and receiver side, we cannot use
traditional OOP to implement it unless we are willing to violate
the first point (i.e., keeping the Multicasting code as a self-
contained unit).
The Aspect pattern resolves this difficulty. By implementing
Multicasting using an Aspect, the core message-handling code
remains simple and stable, while all the Multicasting code lives
in a single place where it is easy to maintain.

4.3 Message Serialization
One of the Stations exposes an interface when a message is
serialized or deserialized. Different read and write filters can be
added dynamically, for such things as encryption, compression,
signiture, and byte-counting statistics. Some of these
serialization features need to be added at both the sender side
and the receiver side. For example, a compression Aspect may
want to add compression to the message serialization, when the
message goes to a destination that has a low bandwidth path, but
not to other destination that has a high-speed connection. The
Aspect must tradeoff CPU cost to compress the message against
the savings in bandwidth. When compression is used, the
sender-side Aspect must signal the receiver-side Aspect to add
the decompression filter to the deserialization Station. Signaling
is done by adding an attribute to the header of the message. The
message header actually carries a list of the Aspects to be called

to add filters on the receiver side. So the sender and receiver
Aspect instances cooperate to dynamically add behavior to the
system.

4.4 Heard-From status
Determining if the connection to a remote host/agent is work
requires correlating information that comes from many sources.
One indicator may be receiving a message from a remote agent,
implies that the agent’s host and communication path is
working. Likewise, when an acknowledgment is received for a
message sent to an agent. The heard-from Aspect inserts itself in
the connections to multiple agents, determines agent’s host and
maintains state about when the last time the host was heard-
from.

5. Comparison to other AOP technologies
The Quality Objects (QuO) Project [8] builds adaptive
middleware for distributed and embedded systems. The QuO
middleware offer support of QoS adative behavior at both
design time and runtime. The QuO is is used to implement some
of the Cougaar Aspect, helping to structure the implementation
of Service Proxies and Aspect Delegates But QuO has no direct
support for Cougaar Aspect objects themselves. QuO needs to
be extended to handle bind-time issues and managing Aspect
state based on information gathered from multiple delegates.
Aspectual collaborations [2] extend the concept of advice by
allowing aspects to be parameterized over the class and method
names that are to be advised. This extension is important for
connection aspects, where connection patterns may be reused
several times between Cougaar Stations. Collaborators are
analogous to reusable Cougaar Aspect objects. The
Collaboration roles are like the specification for where the
Aspect inserts its delegates. Also, Collaborations can have their
own state, just like Cougaar Aspects. The advantage of
Collaboration is they are like templates that can be bound to
different interfaces. Hence Collaborations could be used to reuse
adaptive behavior between Cougaar Aspect that modify a
specific Link Protocol, such as email or RMI.
AspectJ [5] implements aspects as wrappers (called "advice")
that can be executed before, after, or around program points
such as method calls. The Cougaar Aspect delegates are similar,
but they can only wrap the interaction at the server side and not
where the call is made (client-side) like AspectJ. AspectJ can
also insert advice at finer granularity, than just the predefined
Station interfaces.
Subject-oriented programming [4] and its derivative HyperJ
[3] are other AOP approaches. Hyper-J allows the extraction of
classes from an existing class decomposition. This allows would
allow the extensions to Station classes to be developed
independently and combined relatively easily. Hyper-J class are
composed at class loading time, which would allow some
dynamic composition. But Hyper-J does not support for
adaptation at service lookup time or message forwarding time.
Composition Filters [1] are similar in some respects to Cougaar
Aspect delegates, providing wrappers for class methods that can
change class behavior. Composition filters compose with formal
semantics so that they can be used to infer the composed
properties from its pieces. This is needed when Cougaar Aspects
begin to interact in more complicated situations. However, they

lack some of the features of Cougaar Aspects: the ability to
measure and react to external, systemic conditions and
coordination among filters that are inserted at several Stations.

6. Conclusions
The aspect-oriented interceptors’ pattern developed for the
Cougaar distributed agent system, allows the message transport
to be extended by multiple development groups without
modifying the base code. Dynamic adaptation at runtime is
supported by exposing multiple times and places in the code
base for which adaptive code can be inserted. Unfortunately,
coordinating this code is crosscuts the dominate decomposition
and new patterns were needed to keep the code maintainable and
to enable the dynamic adaptation at runtime. While current AOP
techniques hold promise for improving the maintainability of the
crosscut code, they offer very little support for runtime
adaptation. We hope that this paper will show a real world
application of crosscutting and an interesting pattern for dealing
with it. We hope that future programming languages will
support dynamic crosscutting

7. Bibliography:
[1] Bergmans L, Aksit M. "Composing Multiple Concerns
Using Composition Filters," Communications of the ACM,
special issue on AOP, October 2001.
[2] Lieberherr K, OvlingerJ, Mezini M, and Lorenz D, "Modular
Programming with Aspectual Collaborations", College of
Computer Science, Northeastern University , Tech report NU-
CCS-2001-04, March 2001

[3] Ossher H. and Tarr P, "Using Multidimensional Separation
of Concerns to Reshape Evolving Software. CACM) Oct 2001,
pp 43. http://www.research.ibm.com/hyperspace
[4] Ossher H, Kaplan M, Katz A, Harrison W, Kruskal V.
"Specifying Subject-Oriented Composition," Theory and
Practice of Object Systems, Vol. 2, No. 3, Wiley & Sons, 1996.
[5] Kiczales G, Hilsdale E, Hugunin J, Kersen M, Palm J,
Griswold W. "An overview of AspectJ," Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP), 2001.
[6] Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J and
Grisold W, "Getting Started with AspectJ" CACM Oct 2001,
page 59.
[7] Cougaar Distributed agent system, open source at
http://cougaar.org
[8] Zinky JA, Bakken DE, Schantz RE. Architectural Support
for Quality of Service for CORBA Objects. Theory and Practice
of Object Systems, April 1997. http://www.dist-
systems.bbn.com/tech/QuO
[9] Ultra*Log DARPA Program on Logistics Information
System Survivability, http://www.ultralog.net/
[10] Shapiro R, Zinky J., Rupel P. The Aspect Pattern.
OOPSLA 2002 Workshop. Patterns in Distributed Real-time
and Embedded Systems, November 5, 2002, Seattle,
Washington.

	Introduction
	Aspect -Oriented Interceptors’ Pattern
	Example Application: Cougaar Message Transport
	Example Aspects
	Message Statistics
	Message Multicasting
	Message Serialization
	Heard-From status

	Comparison to other AOP technologies
	Conclusions
	Bibliography:

