

Proceedings of the Third AOSD Workshop on
Aspects, Components, and Patterns for

Infrastructure Software

March 22, 2004

Held in conjunction with the Third International Conference
on

Aspect-Oriented Software Development (AOSD 2004)

Lancaster, UK

College of Computer and Information Science
Northeastern University

Boston, Massachusetts 02115
360 Huntington Avenue, 161CN

NU-CCIS-04-04

Yvonne Coady and David H. Lorenz (Eds.)

The Third AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software (ACP4IS)

Held as a one day Workshop at AOSD'04, The International

Conference on Aspect-Oriented Software Development, March 22-26,
2004, Lancaster UK

Aspect-oriented programming, component models, and design patterns are modern and actively evolving
techniques for improving the modularization of complex software. In particular, these techniques hold great
promise for the development of "systems infrastructure" software, e.g., application servers, middleware,
virtual machines, compilers, operating systems, and other software that provides general services for
higher-level applications. The developers of infrastructure software are faced with increasing demands
from application programmers needing higher-level support for application development. Meeting these
demands requires careful use of software modularization techniques, since infrastructural concerns are
notoriously hard to modularize.

Building on the ACP4IS meetings at AOSD 2002/2003, this workshop aims to provide a highly interactive
forum for researchers and developers to discuss the application of and relationships between aspects,
components, and patterns within modern infrastructure software. The goal is to put aspects, components,
and patterns into a common reference frame and to build connections between the software engineering and
systems communities.

Program Committee

Elisa Baniassad, Trinity College
Don Batory, University of Texas at Austin
Shigeru Chiba, Tokyo Institute of Technology
Yvonne Coady, University of Victoria (co-organizer)
Pascal Costanza, University of Bonn
Jeff Gray, University of Alabama at Birmingham
Stephan Herrmann, Berlin Technical University
Wilson Hsieh, University of Utah
Julia Lawall, University of Copenhagen
Cristina Videira Lopes, University of California Irvine
David Lorenz, Northeastern University (co-organizer)
Klaus Ostermann, University of Technology Darmstadt
Renaud Pawlak, University of Lille
Calton Pu, Georgia Tech
John Regehr, University of Utah
Mario Südholt, École des Mines de Nantes
Jan Vitek, Purdue University
Rob Walker, University of Calgary

Papers

Personalization as a Cross-cutting Concern in Web Servers: A Case Study on Java Servlet Technology
Jordi Alvarez, Ignacio Gutierrez, Miguel-Angel Sicilia

Encapsulating Crosscutting Concerns in System Software
Christa Schwanninger, Michael Kircher, Egon Wuchner

Supporting Product Line Evolution with Framed Aspects
Neil Loughran, Awais Rashid, Weishan Zhang, Stan Jarzabek

Transaction Management in EJBs: Better Separation of Concerns With AOP
Johan Fabry

Software Plans for Separation of Concerns
David Coppit, Benjamin Cox

Towards the development of Ambient Intelligence Environments using Aspect-Oriented Techniques
Lidia Fuentes, Daniel Jimenez, Monica Pinto

Towards an Aspect Weaving BPEL engine
Carine Courbis, Anthony Finkelstein

Separation of Concerns in Compiler Construction using JastAdd II
Torbjorn Ekman

The Proxy Inter-Type Declaration
Michael Eichberg

Applying Aspect Orientation to J2EE Business Tier Patterns
Therthala Murali, Renaud Pawlak, Houman Younessi

Aspect-Oriented Design and Implementation in Java Bytecode Analyzer Framework
Susumu Yamazaki, Michihiro Matsumoto, Tsuneo Nakanishi, Teruaki Kitasuka, Akira Fukuda

Posters

Software Connectors in COSA Approach
Adel Smeda, Tahar Khammaci, Mourad Oussalah

Addressing Ubiquitous Software Complexity with Mobile Containers
Vasian Cepa

Towards unifying aspects and components
Houssam Fakith, Noury Bouraqadi, Laurence Duchien

JAsCoAP: Adaptive Programming for Component-Based Software Engineering
Wim Vanderperren, Davy Suvee

Infrastructural support for data dependencies in data-centered software systems
Lieven Desmet, Frank Piessens, Wouter Joosen

Personalization as a Cross–cutting Concern in Web Servers: A Case Study on
Java Servlet Technology

Jordi Álvarez
IT and Multimedia Department
Open University of Catalonia

Avda Tibidabo 39–43, Barcelona (Spain)
jalvarezc@uoc.edu

Ignacio Gutiérrez
Carlos III University

Madrid (Spain)
nacho.gutierrez@worldonline.es

Miguel–Ángel Sicilia
Computer Science Department. Polytechnic School.

University of Alcal. Ctra. Barcelona km. 33.6
28871 Alcal de Henares, Madrid (Spain)

msicilia@uah.es

Abstract

Aspect–oriented design allows for a better modulariza-
tion of cross–cutting concerns in software systems. The de-
sign of personalized (adaptive) Web applications — which
can be considered as concrete realizations of hypermedia
systems — essentially adds user modeling actions (UMs)
and adaptive behaviors (ABs) to the associative hyperme-
dia structure comprised by nodes, contents and links. In
consequence, UMs and ABs are typically spread across
Web pages, becoming candidates for modularization in sep-
arate aspects, which would eventually result in improved
development and maintenance. In this paper, we de-
scribe an approach for the inclusion of aspect–based user
and adaptation modeling actions, based on the concep-
tual Labyrinth hypermedia model, along with a concrete
case study of their implementation in Servlet technology.

1. Introduction

Web systems are nowadays one the most important sub-
class of hypermedia systems, due to its widespread adoption
as a means for a variety of activities like electronic com-
merce, publishing, communication and advertising. Person-
alized Web systems (also called adaptive Web systems [4])
are in turn a subclass of Web systems that build and elab-
orate some kind of model about their users, using it subse-
quently to tailor the hypermedia structure to the knowledge,
preferences or objectives of each individual or group.

Building user models is a matter of spreading user mod-
eling actions across the Web pages, so that certain navi-
gation events are recorded or are used to conjecture about
the characteristics of the user [15]. In a similar fashion,
adaptive behaviors are spread across the generation of dy-
namic Web pages, since the process of tailoring requires
ultimately querying the user model and generating the ap-
propriate markup inside the span of a single HTTP request.
For example, the reordering of links in a page according
to the preferences of a concrete user (a technique often re-
ferred to as adaptive link sorting [3]) requires a query to her
preference representation that can be subsequently used to
sort the links. This cross–cutting structure of the code is
a consequence of the fact that personalization is a separate
concern in Web systems.

Existing Web personalization systems [7] provide spe-
cialized application programmer interfaces (APIs) that can
be invoked from server–side markup languages like Jsp
[16]. But even when such API calls are encapsulated in tag
libraries, their inclusion obscures presentation markup and
often produce tangled code. This nuisance becomes more
problematic in system that provide extensive, fine–grained
personalization, since the generation of personalized links
an contents involves many scattered calls for each single
page. In addition, it may be desirable in some cases to be
able to extend an existing Web system for personalization
without changing the code of their pages, and also to sepa-
rate personalization from the rest of business logic to avoid
interferences among the tasks of Web designers, Web pro-
grammers and personalization experts.

The techniques of aspect–oriented design (AOD) provide

improved modularity to software systems by focusing on
separation of concerns [18]. In consequence, AOD can be
considered a promising technique to obtain a better modu-
larization for personalization–oriented actions, as sketched
in [1].

AOD has already been applied to provide better modu-
larity to the structure of the code in specific Web systems,
like Atlas [9], and also to the internal architecture of Web
servers [11], but it has not been studied how it could be
applied to the Web implementation of systems based on
generic hypermedia models. These models provide sup-
port for the specific characteristics of Web applications as
concrete realizations of hypermedia systems, and therefore,
they provide a good point of departure for the identification
of the principal concerns of the architecture of Web applica-
tions. In addition, some preliminary work on early aspects
of personalization exists [12, 8], but design and implemen-
tation issues regarding the topic have not been still studied.

In this paper, we describe a novel approach that applies
AOD to the design of adaptive Web systems [4]. To do so,
we describe the extension of a concrete and widely used
Web technological infrastructure in terms of an existing
comprehensive hypermedia model. More specifically, we
have focused on the extension of Servlet–based technol-
ogy with aspects for the purpose of implementing user mod-
eling and adaptive behaviors based on the Labyrinth ab-
stract hypermedia model described in [5].

The rest of this paper is structured as follows. Section
2 provides a basic model of hypermedia as applied to Java
Web Servers, and the details of the AOD–based implemen-
tation of personalization are sketched in Section 3. Finally,
conclusions and future research directions are provided in
Section 4.

2. User Modeling and Adaptation as Cross-
Cutting Concerns

The Labyrinth hypermedia model is centered around
the notion of basic hyperdocument, representing a hyper-
media application defined by seven sets of conceptual ele-
ments and a number of associated functions [5]. Some of
these elements represent concerns for designers, e.g., the
set U of users and groups represents user modeling, sets N

(nodes) and C (contents) represent content modularity, sets
L and A of links and anchors represent navigation, and the
set B of attributes is a general–purpose facility for descrip-
tion of the rest of the elements of the model by means of
(name, value) pairs.

User modeling and content modularity can be charac-
terized — according to the definitions in [2] — as prob-
lem domain concerns, if we consider its users to be Web
designers, and they are also canonical, due to the generic
nature of the models. The arbitrary definition of attributes

is largely domain-independent, and as such, its applicabil-
ity extends the scope of hypermedia applications. In what
follows, we deal with a restricted model of Labyrinth
hyperdocument that can be described by the expression (1)
where lo (localization) describes the structure of contents as
constituents of nodes.

H = (N, C, U, L, A, B, lo) (1)

Prior to describing aspect–oriented implementation de-
tails, it becomes necessary to provide a mapping from the
elements in (1) to physical elements in Java Web server–
based applications, along with an account of the essential
mechanism for the implementation of adaptive behaviors in-
side the standard processing of HTTP requests. These two
issues are briefly described in the following sub–sections.

2.1 Mapping Users and Contents to Servlets

Java-enabled Web servers are based on the concept
of Servlet, which is an abstraction of the (arbitrar-
ily complex) resolution of an HTTP request. In addi-
tion, Java Server Pages (JSP pages), which are combina-
tions of HTML and Java code, are internally translated to
Servlets. In consequence, if we use JSP pages to rep-
resent both contents and nodes, the whole content structure
is managed by the Java runtime, providing the necessary
hooks to manage it in the server side. This does not con-
flict with the structuring of the application according to the
Model-View-Controller (MVC) architecture, since contents
and nodes can be static or dynamic, and their generation can
be carried out by Servlet calls combined with Jsp code.

In abstract terms, we can define two different sets of JSP
pages : one representing nodes (N) and another one repre-
senting contents (C). The distinction is left to the decision
of the designer, and contents of low granularity like single
image files, sounds or markup fragments can be designed as
contents by putting them inside a separate JSP file.

Nodes and aggregated contents are formed conceptu-
ally by composition of other contents (and physically, for
example, through server-side includes), so that the func-
tion lo(ni, cj) describes the position of content cj inside
the node ni (we have not considered time for simplicity),
and lo(ci, cj) can be used to describe aggregated contents.
Physically, this compositions can be achieved implicitly by
using <jsp:include> actions [16], for example.

Links can be embedded inside Jsp pages as usual HTML
markup, or they can be designed as independent entities (by
simply putting them in a separate JSP file just as contents)
if required to implement a concrete adaptive behavior like
contextual links, as described, for example, in [14]. For
the sake of simplicity, link anchors — i.e. link source and
destination points — will be restricted to entire nodes and

contents, not allowing finer grained specification1.
User modeling can be carried out by associating a

LabyrinthUser instance to the current session (anony-
mous users are simply an special case), which is automat-
ically maintained by the Java Web runtime. It should be
noted that user modeling encompasses every data collection
and data elaboration functionality regarding the models the
system builds about its users (by setting and/or updating ele-
ments in B), so that it includes simple profiling actions (like
recording the visits to a given node) but also complex pro-
cesses, perhaps entailing reasoning procedures (e.g. with
the help of rule bases).

2.2. Designing Adaptive Behaviors in Servlet–Based
Contexts

The above described straightforward mapping of hyper-
media concepts to Servlet technology enables a range of
adaptive behaviors to be implemented by manipulation of
the composition of dynamic Web pages. Since separation of
concerns is our main goal here, such manipulation will be
carried out by post–processing the HttpResponse gen-
erated by a Servlet, so that business logic for each page is
seen as a black–box. More elaborated and efficient imple-
mentation alternatives could be explored in the future.

Each adaptive technology [3] can be designed that way
at content or node–level. Objects attached to the current
session can be used to trace the process of composition of
the node for its constituents contents.

3. Case Study: Extending Servlet Technology
with Aspects for Personalization

As a proof of concept for our approach, we have used
the AspectJ framework [10] to extend the Tomcat Web
server2. Technically, it required the recompilation of a part
of Tomcat source code in order to make its JSP compilation
engine use the AspectJ compiler as the default internal
JSP compiler in order to generate .class servlet files.

This modification allows to integrate the definition of
user modelling behaviours into the Servlet’s protocol.
These behaviours can be attached around the dynamic joint
points involving method calls defined in the Servlet in-
terface, including instantiation (constructors), initialization
(initialize), request handling (service) and end of
service (destroy). With the use of aspects containing def-
initions for the corresponding joint points and advices, be-
haviours for each content and node (items in I = C ∪ N)
can be defined. The specification of aspects on concrete

1Recent XML–based languages like XPointer enable arbitrarily com-
plex anchor specifications that should be subject of future work.

2http://jakarta.apache.org/tomcat/

items can be realized by linking the aspect with the JSP
implementation class [16]

For example, behaviors can be attached to the end of the
visit to any item in I by writing an aspect with an advice
like the following:

after(HttpServletRequest req,
HttpServletResponse resp,
HttpJspBase h) returning :

execution(* _jspService(ServletRequest,
ServletResponse,HttpJspBase))

&& args(req,resp) && target(h) {
ServletContext c =

h.getServletContext();
// code (possibly manipulating
// session’s information)...

}

Figure 1 shows an example of an adaptive behaviour de-
fined using this technique. The example is further explained
in in section 3.2. Figure 1 shows how the use of AOP helps
in introducing adaptive behavior while a JSP page request
is being processed. The UML notation being used was in-
troduced in [17].

Figure 1. Introducing adaptive behavior into
a servlet container

In the rest of this section, the more relevant implemen-
tation details of user and content modeling actions and
the overall scheme to implement adaptive behaviors are
sketched.

3.1. User and Content Modeling

Two approaches to include aspect-based code have been
implemented, one for programmers and the other for Web

designers. Both of them can be considered an aspect-based
implementation of the concept of event in Labyrinth [6],
and have the main advantage of the separation of event im-
plementation from content elements (JSP pages).

Programmers can develop aspects by extending two pre-
defined abstract aspects: UserModellingAspect and
ContentModellingAspect. Both of them contain

The first one provides two attributes: one refers to
the LabyrinthUser instance (user) representing the
current user, and the other one corresponds to the type
LabyrinthContent (content) and represents the
current node or content being visited. The second aspect
only provides the latter attribute. In both cases, the at-
tributes are intended to write imperative code that updates
the user and content model.

Our current implementation only provides
setAttribute and getAttribute generic meth-
ods — with a number of variants that ultimately map
String names to Object instances — as a minimal
implementation of the B conceptual element for single-
and multi-valued attributes.

In addition, both aspects provide two methods
(setUserFilter and setContentFilter), that can
be redefined, and allow to specify whether the aspect is
applicable to a given content element or not. In our cur-
rent implementation, the expressions assigned by both set
methods to the corresponding attributes must be valid SQL
where clauses refering to user or content attributes. This
is illustrated in the following aspect fragment that records
“long” node visits:

aspect MyUserModellingAspect
extends UserModellingAspect {

void setUserFilter()
{ userFilter="age>25 and type=’student’";}

void setContentFilter()
{ contentFilter="name like lesson*";}

before(Servlet s) : any-node(s) {
if (!user.getAttribute("last-visit")

.equals(content.getName())))
if (System.currentTimeMillis() -
user.getIntAttribute("t-visit"))>

Const.TIME)
user.setAttribute("read",content.

getStringAttribute("last-visit"),true);
}

after (Servlet s) returning : any-node(s) {
user.setAttribute("t-visit",

System.currentTimeMillis());
user.setAttribute("last-visit",

content.getName());
}

}

In the example, any-node is a predefined pointcut de-
noting service requests on nodes. The aspect is only

applicable to “students above 25 years old” and only af-
fects “lessons”. The before advice stores as “read” those
lessons that have been visited at least once. The after
advice performs a typical simple user profiling behavior.

Web designers require more transparent interfaces, that
hide the complexities of AOP. As a first prototype for them,
we have designed a graphical interface that allows to per-
form two different kinds of operations: update content or
user attributes to literal string values, and increment numer-
ical attributes. This allows, as showed in Figure 2, to easily
define visit counters (“seguimiento visita”) for a set of con-
tents by specifying a new “counter” action associated to an
after service event (equivalent to the concept of advice).

Figure 2. Prototype for the Definition of Ac-
tions

3.2. Implementing Adaptive Behaviors

The post–processing of the HTTP request in
HttpServlets can be carried out by intercepting
successful returning service requests, and manipulating
the HttpServletResponse interface. As a proof of
concept, we have designed a generic mechanism to support
link hiding behaviors, so that certain links are removed
from the response if a given predicate about the user is not
satisfied.

aspect MyAdaptiveBehavior extends
LinkHidingBehavior{

void setContentFilter(){
contentFilter="name=’Welcome.jsp’";

}
void isUserCompatibleWithLink(){

predicate = "novice=true"
}
void setLinkName(String n){

linkSpec="name="+n;
}

}

The LinkHidingBehavior aspect (see also figure 1) al-
lows to determine whether the aspect is applicable to given content
elements by means of the setContentFilter method (simi-
lar to the methods described above), and carries out the removal
of the link specified in the setLinkName method depending on
the result of the isUserCompatibleWithLinkmethod. Link
names are provided by means of the id HTML attribute, but the
design could easily be extended to hide links identified by other
means (e.g. location, destination).

4. Conclusions and Future Research Directions

User modeling and adaptive functionality can be considered
as cross–cutting concerns in Web applications, spread across the
server–side processing of dynamic Web pages. Current Java–
enabled Web server technology can be enhanced with aspect-
programming capabilities. If an explicit approach to content mod-
eling based on JSP is used, these capabilities can be used as
a mean to implement user modeling behaviors in a modularized
ways; and also to attach adaptive processing to the markup stream
generated by application’s business logic components.

This enables the introduction of adaptive behaviors, and user
and content modeling actions with no need to add JSP tags, nei-
ther code attached to Servlets implementing MVC pattern. As a
result, a quite clean separation of end–user functionality, and sys-
tem internal actions required to personalize the application is ob-
tained. For that approach to be feasible, a minimal set of con-
ceptual hypermedia design elements are needed. Those elements
can be adapted from existing abstract hypermedia models like
Labyrinth.

Future work should address a comprehensive implementation
of Labyrinth and its extension to handle fuzziness called Maze
[13] on aspect-enhanced Java technology, including well–known
adaptive technologies [3]. In addition, attention should be paid
to the processing burden of the aspect–oriented approach, due to
the stringent requirements that many Web applications have with
regards to server response times.

References

[1] Gutiérrez, I., Sicilia, M.A., Garcı́a, E. (2003): On the Java Im-
plementation of aspect-design enabled web content and user
model. In: Proceedings of the 1st Workshop on “Desarrollo
de Software Orientado a Aspectos” Alicante, Spain.

[2] Akşit, M., Tekinerdoğan, B. and Bergmans, L: “The Six Con-
cerns for Separation of Concerns”. In: Proc. of the ECOOP
Workshop on Advanced Separation of Concerns (2001)

[3] Brusilovsky, P.: Adaptive hypermedia. User Modeling and
User Adapted Interaction, 11 (1/2) (2001): 87–110

[4] Brusilovsky, P. and Maybury, M. T.: From adaptive hyper-
media to adaptive Web. In P. Brusilovsky and M. T. Maybury
(eds.), Communications of the ACM 45 (5), Special Issue on
the Adaptive Web (2002): 31–33

[5] Dı́az, P., Aedo, I. and Panetsos, F.: “Labyrinth, an abstract
model for hypermedia applications. Description of its static
components”. Information Systems 22(8), (1997) 447–464

[6] Dı́az, P., Aedo, I. and Panetsos, F.: “Modeling the dynamic
behavior of hypermedia applications”. IEEE Transactions on
Software Engineering 27(6), (2001) 550-572

[7] Fink, J. and A. Kobsa (2000): A Review and Analysis of
Commercial User Modeling Servers for Personalization on the
World Wide Web. User Modeling and User–Adapted Interac-
tion 10(3–4), 209–249

[8] Robert Hirschfeld, Matthias Wagner, Wolfgang Kellerer,
Christian Prehofer (2003). AOSD for System Integration and
Personalization. In Proceedings of the Workshop on Com-
mercialization of AOSD Technology, Boston, Massachusetts,
USA.

[9] Kersten, M.A. and Murphy, G.C.: “Atlas: A Case Study in
Building a Web-based Learning Environment using AOP”. In:
Proc. ACM Conf. on Object-oriented Programming, Systems,
Languages and Applications (2000) 340–352

[10] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.
and Griswold, W.G.: “An Overview of AspectJ”. In: Proc. of
the European Conference on Object-Oriented Programming
(ECOOP) (2001)

[11] Kulesza, U. and Silva, D.M: “Reengineering of the JAWS
Web Server Design using AOP”. In: Proc. of the ECOOP
Workshop on Aspects and Dimensions of Concerns (2000)

[12] C. Mesquita, S. Barbosa, C. de Lucena (2002). Towards the
Identification of Concerns in Personalization Mechanisms via
Scenarios. In Proceedings of the 1st Aspect-Oriented Require-
ments Engineering and Architecture Design, 25–31

[13] Sicilia, M. A., Aedo, I., Dı́az, P., Garcı́a, E.: Fuzziness in
adaptative hypermedia models. In: Proc. of the Intl. Confer-
ence North American Fuzzy Information Processing Society
NAFIPS 2002, IEEE Press (2002): 268–273

[14] Sicilia, M.A., Garca, E., Daz, P., Aedo, I. (2002): LEARN-
ING LINKS: Reusable Assets with Supports for Vagueness
and Ontology-Based Typing. In Proceedings of the Interna-
tional Conference on Computers in Education, 1567-1568

[15] Sicilia, M.A. (2003). Observing web users: conjecturing
and refutation on partial evidence. In Proceedings of the
22nd North American Fuzzy Information Processing Society,
NAFIPS 2003, 530 -535.

[16] Sun Microsystems, “Java Server Pages Specification, Ver-
sion 2.0”, August 2002

[17] D. Stein, S. Hanenberg, R. Unland. An UML-based Aspect-
Oriented Design Notation for AspectJ. Proceedings of the 1st
International Conference on Aspect Oriented Software Design
(AOSD) (2002), 106–112

[18] Sutton Jr., S. M. and Tarr, P.: “Aspect-Oriented Design Needs
Concern Modeling”. In: Proc. of the Aspect Oriented Design
Workshop on Identifying, Separating and Verifying Concerns
in the Design (2002), Enschede, The Netherlands.

Encapsulating Crosscutting Concerns in System Software

 Christa Schwanninger, Egon Wuchner, Michael Kircher
 Siemens AG
 Otto-Hahn-Ring 6
 81739 Munich
 Germany
 {christa.schwanninger,egon.wuchner,michael.kircher}@siemens.com

ABSTRACT
System software has to encapsulate crosscutting concerns
properly. Aspect Orientation (AO) is a paradigm that
supports modularization of crosscutting concerns. But as
AO is relatively new it still lacks support suited for the
industry in many domains, e.g. support for the
programming languages C and C++ which are heavily used
in the embedded domain exists but not yet in the desired
scope and quality. To compensate for missing tools and
languages we need architectural solutions for the problems
around crosscutting concerns. Different system software
layers, starting from simple libraries to full blown
component containers can be used to provide support for
concerns that cut across whole applications. Patterns can
help to establish good architectures for this purpose. This
position paper briefly describes how design patterns can be
evaluated for their suitability to solve problems caused by
crosscutting concerns.

Keywords
System Software, Patterns, Frameworks, Components,
Aspect Oriented Programming.

1 INTRODUCTION
This position paper documents experiences in building run-
time system software in several domains. The company, for
which the authors work, typically does not build
commercial off-the-shelf (COTS) system software, but it
develops software for its hardware products. Those
hardware products stem from several domains, including
telecommunication, medical systems or automotive
systems. Associated with the hardware product families,
are the software product families, needed to operate the
hardware. Such software product families need to be
supported with frameworks or even custom made
component containers, which play the role of system
software for the software application developers. As system
software they foster reuse and help to develop good
software in short development cycles. With our experience
in building platforms for product families we want to
contribute to the field of system software.

During the last years, the authors saw several attempts to
build frameworks for system families fail, because the
architects of the frameworks were not aware of the

crosscutting concerns in the system. Because the project
did not capture and localize the concerns in the
architecture, the project faced several problems, such as
redundant implementations of the same functionality,
wastage of system resources, missing resource
consumption traceability, uniform error handling and
communication strategies resulting in cumbersome
integration.

This paper describes how crosscutting concerns can be
captured and localized in system software and how patterns
can help to build software that separates concerns properly.

Section 2 will explain our view on system software. Section
3 lists the software artifacts used to localize crosscutting
concerns, while section 4 enumerates selected patterns for
building architectures considering crosscutting concerns.
The paper concludes with a brief discussion of related work
and a conclusion in section 5 and 6, respectively.

2 SYSTEM SOFTWARE
According to [FODC00], system software is defined as:
“Any software required to support the production or
execution of application programs but which is not specific
to any particular application.”

System software can be aligned in to two categories:

• Production software – Production software
includes tools that help developers in the process
of designing, writing and managing software e.g.
compilers, linkers, debuggers, profilers or
complete IDEs, but also version control, building
tools, tracers, runtime checkers and analyzers,

• Run-time software – Software that is needed for
execution of applications at run-time or integrated
in the application, e.g. OS, supporting libraries,
middleware, services like persistency or event
services, frameworks or even component
containers, that offer their own runtime
environment.

Figure 1 shows typical layers in software. The layers range
from application software, to middleware, to the operating

mailto:christa.schwanninger
mailto:egon.wuchner
mailto:michael.kircher}@siemens.com

system. Besides those layers, also the supporting compilers,
configuration management software, etc. is considered as
system software.

• Event dispatching and handling

The listed crosscutting concerns (also referred to as
aspects) are non-functional. Many domains also have
additional functional aspects, for example mobile phones
require messages to be passed without copying of the
message data, or the sharing of personalization information
across all applications in an automotive multimedia system.

Applications
Dev. Tools
(Compiler,
CM,
Profiler …)

Frameworks Appl.Server
Generally, AO tries to achieve the following goals via
encapsulation and localization of crosscutting concerns
(CCC):

Services

Middleware
• Modularity – The code for one CCC should be

located in one source code file.
Libraries OS, Runtime

• Uniformity – A CCC should be treated uniformly
in the whole application.

Figure 1: System Software • Non-invasiveness – It should be possible to
change or extend the implementation of the CCC
non-invasively.

Software production tools, such as compilers and profilers,
are “stand-alone” applications and are usually not part of
any delivered system in our organization; therefore they are
not of interest for us in the context of this paper.

• Transparency – The CCC should be transparent to
the developers.

System software that runs or is part of the application
software, such as frameworks and component containers,
faces different challenges than stand-alone software. It has
to be built for reuse in various projects, or even domains, of
which many requirements are not known up front.
Additionally, the run-time system software has to be built
to integrate into other software.

• Reusability – Reusable software components have
to be developed that can not know about the
environment and the crosscutting concerns they
will be reused for.

The previous two lists show the big overlap between the
problems faced in system software and the promised
solutions of AO.

System software, in our context, mainly deals with resource
provisioning and management (OS), communication
(communication middleware), event handling (application
frameworks), and GUI management (GUI frameworks).

Encapsulation of Crosscutting Concerns

Once the crosscutting concerns are identified, there are
several ways how to capture them in an architecture:

In the next chapter we give an overview on the different
kinds of run-time system software and explain how they
can be used to support the localization of crosscutting
concerns.

The simplest way for handling crosscutting concerns is to
provide an implementation in form of a library together
with guidelines how to properly use this functionality. This
is something that is usually done for simple crosscutting
concerns such as tracing and logging, but also for resource
management, where a library is provided that is the only
access point for acquiring and releasing a specific resource.

3 CAPTURING CROSSCUTING CONCERNS IN

SYSTEM SOFTWARE
Depending on the layer, shown in Figure 1, and the domain
it is used in, system software has to handle one or several
of the following crosscutting concerns:

Libraries offer a collection of functions for dealing with
crosscutting concerns, frameworks do more. They not only
provide reusable code, but also influence the architecture,
for example by the inversion of the control flow. Also,
frameworks often address several related functionalities,
e.g. GUI frameworks implement GUI elements and the
mechanisms to deal with user events. Frameworks need to
be extensible, therefore they typically are built using
patterns, like Strategy and Interceptor, which allow
framework users to extend and customize the framework
functionality.

• Adaptability to application needs, e.g.
configuration of middleware, and exchangeability.

• Optimized resource management, e.g. memory
management or thread management.

• Transparent, non-invasive inter-process and
network communication.

• Initialization and destruction for efficient start up
and secure shutdown in resource restricted
systems

Component containers are advanced frameworks,
separating technical concerns, such as resource and

lifecycle management, from business concerns, containing
the actual logic and functionality. They provide a run-time
environment for components that relieves the developer
from the technical concerns. Commercial component
containers are often only suited for business or finance
applications because they mostly cover only enterprise-
specific technical concerns, but not those of typical
embedded software or at least not as configurable or
lightweight as required.

Aspect-oriented (AO) programming seems to be the most
appropriate way of implementing crosscutting concerns in a
modular way. AO brings a number of advantages. Appling
AO crosscutting concerns can be modularized in exactly
one place, they can be weaved in or out as needed, and their
implementation and application is transparent to the
developer. On the downside, AO is a rather young
paradigm and there are not enough proven languages and
tools on the market, yet. Except AspectJ [Kicz97]
[Referenz to AJDT] no language can claim to provide
industrial strength stability and tool support. AspectJ is an
AO extension to Java, especially in embedded systems the
dominant languages are C and C++. AspectC++ is a noble
attempt to provide the same functionality for C++ as
AspectJ does for Java, but the language and the tools (a
plug-in for an MS IDE) are not widely used and can’t be
considered stable enough to implement critical features in
reusable system software.

When trying to achieve the goal of reusability for a family
of applications, traditional platforms define extension
points where the application developer plugs in application
logic in a prescribed way usually through base classes,
interfaces and templates. System software defines a
contract; applications use its functionality by fulfilling their
part of the contract. For typical framework approaches the
application has to know how to handle the system software,
but not vice versa. The programming model of AspectJ like
languages is different. Since the connection between the
aspect and application code often requires detailed
knowledge of the application code, it is a lot harder to pre-
implement generic, reusable system software.

Further, how will the quality of the resulting software be
ensured after introducing so many variation points? The
original assets – the software that should be augmented by
an aspect - are typically not designed to be extended; for
example join points are defined only later, independent of
the software to be extended.

So other alternatives are needed, as long AO, as the most
appropriate way to modularize crosscutting concerns in
system software, is not mature enough to get ‘picked’.

4 PATTERNS FOR BUILDING EXTENSIBLE
ARCHITECTURES

Since AO is still in its infancy, but crosscutting concerns

have to be handled properly, we evaluate how patterns, as
alternative concepts, can be used to build libraries,
frameworks, and component containers, which fulfill the
requirements like non-invasiveness, exchangeability,
reusability, and modularity for crosscutting concerns. This
is an ‘architectural approach’ to solve crosscutting concern
related problems. In a first step, we study the rich pattern
literature to find design and architectural patterns that help
to address the above mentioned requirements.

The table on the last page shows part of our current state of
evaluation of design and architectural patterns regarding
their usefulness to capture crosscutting concern related
problems. All selected patterns touch the area of
extensibility and/or integration of concerns, which were our
selection criteria.

For AO it is not relevant if the reason for encapsulating a
crosscutting concern is to make the implementation easily
exchangeable, to make the encapsulation transparent, or to
make the encapsulated concern reusable. With AO
mechanisms they are all addressed at once. Investigating
design patterns shows, that they are focused on specific
problems of separating the concern. But this is not really a
problem, since often, only one or a small number of the
above mentioned requirements have to be fulfilled at the
same time. Applying one or two patterns is often sufficient
to solve the specific problem related to a crosscutting
concern.

For example Decorator [GOF95] helps to add functionality
transparently without changing the decorated class and thus
can be used to add part of a crosscutting concern
implementation without polluting the original class.
Additionally, an Abstract Factory [GOF95] helps to hide
the decorated functionality from the client.

If the goal is reuse the crosscutting functionality the above
combination of patterns can not be used, since the decorator
class has to provide the same interface as the decorated
class. The concern implementation therefore needs to be
encapsulated, for example by a Strategy [GoF95]. Further,
if the concern is resource management specific, one or
several patterns of [POSA3], such as Pooling or Caching
can be used directly.

Because patterns (can only) address specific forces in
encapsulating and localizing crosscutting concerns, they
have to be categorized accordingly. This is the intend of the
attached table. The table contains the following
information:

• Patlet: a short description of the pattern.

• Addressed problem: what is the main problem the
pattern solves?

• Modularity: does the pattern help modularize a
crosscutting concern; how does it help?

• Uniformity: does the pattern help implement a
CCC uniformly throughout a system?

• Non-invasive exchangeability and extensibility:
does the pattern help to exchange the crosscutting
concern implementation without having to change
all the places the concern crosscuts?

• Transparency: does the pattern help to keep a
concern implementation and application
transparent to the application developer?

• Reusability: does the pattern support the
reusability of the concern code and/or of the
component code that is crosscut by the concern?

• Improvability with AO (AspectJ): could AO
improve the implementation of the pattern? Or
does AO make the pattern obsolete?

• Possible solution in AspectJ: describes the AspectJ
means we would use to implement the patter

For every pattern one to three “+” say how well it is suited
to address a specific problem, a “-“ indicates that the
pattern is not suited at all to solve the problem. The
additional text explains the rating. Several patterns fulfill
one or several of these criteria, but none of them fulfills all
of them the same way AO does. Also, many patterns that
are useful in localizing crosscutting concerns can further
benefit from an AO implementation, as can be seen in the
last but one column of the table.

Let’s take the Strategy pattern [GoF95] as an example.
Strategy encapsulates application logic and makes it
exchangeable transparently. It pretty well modularizes the
logic, but still depends on the state of the entity to be
extended (Modularity: ++). It is not meant to be used to
solve one crosscutting concern uniformly over a whole
application, rather targets one specific task (Uniformity: -)
but it keeps exchanging of the contained logic perfectly
transparent to clients (Non-invasiveness +++). The
implementation of Strategy is not completely transparent to
the client, since the client has to hold an instance and
trigger the Strategy’s functionality (Transparency +). A
strategy requires state information and can only be reused if
the required state is provided (Reusability +).

We want to continue evaluating patterns for a pattern
catalogue that is dedicated to problems related to
crosscutting concerns only. The next step after that will be
the evaluation of successful product family frameworks to
find the best practices for encapsulating crosscutting
concerns in design and architecture beyond the currently
documented patterns.

By recovering how to capture and localize crosscutting
concern in system software by ‘traditional’ means, we hope
to also learn more about how to use AOP for capturing and
localizing crosscutting concern in system software in the

future.

5 RELATED WORK
Jan Hannemann and Gregor Kiczales implemented all 23
GoF design pattern in AspectJ [Han02] and found out that
modularity and reusability were improved with AspectJ
[Kicz97] remarkably.

Books like Patterns for Concurrent and Distributed Objects,
[POSA2], Patterns for Resource Management [POSA3], or
Security Patterns [SPC02], are a few examples for pattern
collections and languages that offer solutions to problems
that partially stem from crosscutting concerns in specific
domains.

The work of Eide et al [ER+02] analyzed patterns
regarding their static and dynamic structures. As solution
the authors suggest to make participants of pattern
implementations easier to exchange, based on the
understanding that participants in the pattern literature
[GoF] can only be objects.

6 CONCLUSION
In this paper we gave a brief overview over the different
layers of system software and how they localize
crosscutting concerns. We argued that AO is not yet mature
enough to be used in the domains of interest to us. Thus we
investigated how patterns can help to build crosscutting
concern aware architectures for system software. We
started to evaluate design and architectural patterns that can
help building frameworks and component containers that
solve the problems crosscutting concerns bring up. Doing
this we raise the awareness of architects and designer for
crosscutting concerns. This not only supports contemporary
software development, but also paves the way for AO
technologies in the future.

REFERENCES
[ERR+02] E. Eide, A. Reid, J. Regehr, and J. Lepreau,

Static and Dynamic Structure in Design Patterns, ICSE
2002, 2002

 [FODC00] “The Free On-line Dictionary of Computing”
http://www.nightflight.com/foldoc/, 2004

 [GoF95] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns-Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995

[Hann02] J. Hannemann, G. Kiczales, Design Pattern
Implementation in Java and AspectJ. Proceedings of
OOPSLA 2002

 [Kicz97] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda and C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect Oriented Programming. In Proc. of European
Conference on Object-Oriented Programming
(ECOOP), Lecture Notes in Computer Science Vol.
1241, pp. 220-242, 1997.

http://www.nightflight.com/foldoc/

[PLOPD4] N.B. Harrison, B. Foote, H. Rohnert, “The Role
Object Pattern” in Pattern Languages of Program
Design 4, p.14-31

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture – A System of Patterns, John Wiley and
Sons, 1996

[POSA2] D. Schmidt, M. Stal, H. Rohnert, and F.
Buschmann, Pattern-Oriented Software Architecture –

Patterns for Concurrent and Distributed Objects, John
Wiley and Sons, 2000

[POSA3] M. Kircher and P. Jain, Pattern-Oriented
Software Architecture – Patterns for Resource
Management, John Wiley and Sons, 2004

 [SPC02] Security Patterns Community: Security Patterns
Homepage. http://www.securitypatterns.de, 2004

http://www.securitypatterns.de/

Pattern Name Patlet Addressed
problem, domain

Modularity Uniformity Non-invasive
exchangeability,
extensibility

Transparency Reusability Comparison with AO
(AspectJ)

 Possible solution
in AspectJ

Decorator Attach additional
responsibilities to an object
dynamically. This provides
a flexible alternative to
subcalssing for extending
functionality

extending
existing
functionality

+;each decorator
encapsulates one concern
for a single class, it is not
suited to encapsulate
concerns that span several
classes

-; localized to one
class

'+++; a decorator class
can be directly
exchanged within a chain
of decorators, no effect
on the decorated class

++ transparent
for developer o

f

-, decorator has
to implement
the decorated
class’s
interface

original class but
not at
instantiation time

+++; with AspectJ no
code changes
necessary when
inserting a new
decorator class into a
chain of decorators

comparable to
before/around
advice using the
method arguments
as pointcut context

Proxy Provide a surrogate or
placeholder for another
object

transparent
integration

+++, encapsulates
additional functionality,

but not meant to
encapsulate crosscutting
functionality

-, one proxy for
several classes not
applicable, since
signature has to
match

++, though proxy classes
have to be instantiated
instead of original class

 +++ -, interfaces
have to match

 +++, adherence to
interface not
necessary, therefore
reusable for several
classes

all kinds of advice

Visitor Represent an operation to
be performed on the
elements of an object
structure. Visitor lets you
define a new operation
without changing the
classes of the elements on
which it operates.

encapsulation of

+++, Visitor encapsulates
additional operations on
an existing tree structure

operations on
tree structures

++, only for the
tree structure
possible

++, extending the tree
structure with a new
node type requires the
adaptation of the new
class; new visitors can be
added non-invasively

++, every class
has to implement
an accept method

-, visitor is
specific to
visited classes'
functionality

+++, AO allows to
implement the Visitor
non-invasively even
in case of extending
the original class
hierarchy

 introduction of
new method

Strategy Make application logic
exchangeable.

 extension of base
functionality

++, encapsulates specific
code, but depends on the
state of the entity to be
extended.

-, just locally +++, it is the main

purpose to exchange
application logic.

+, the original
entity must
foresee a hook.

+, if the state of

++, additional
(specific to the
extended application
logic) state might get
weaved in.

the entity is
represented
similarly.

Introduction with
new methods and
all kinds of
advices.

Interceptor Allow functionality to be
added transparently to a
framework and trigger
automatically when certain
events occur.

extending
functionality in
call chains

+++, interceptor
implementation can target
several classes

+++ +++ +++ +++ +++ also execution
join points possible

before and after
advices with calls
join points

Resource
Lifecycle
Manager

Decouples the management
of the lifecycle of resources
from their use by
introducing a separate
Resource Lifecycle
Manager, whose sole
responsibility is to manage
and maintain the resources
of an application.

encapsulated
lifecycle
management;
domain: resource
management

+, localizes the lifecycle
management of one or
several resources;
transparently provides
pooling and caching o

f

++, resources are
managed
uniformly
throughout the
application

resources; manages
interdependencies
transparently

+++, allows to exchange
the resource management
strategies transparently;
to support new types o

f

+, resource users
need to use the
resource lifecycle
manager instead
of existing
resource
providers;
changes to the
strategies are
transparent

resources, its interface
might need to get
extended.

++, the
implementation
of the resource
lifecycle
manager can
get reused

-, aspects must have
knowledge with
regards to when and
how resources are
acquired or released;
pointcuts are hard to
define

replace existing
acquisition and
release calls with
around advices

Policy
Enforcement
Point

Isolate policy enforcement
to a discrete component o

f

consistent
enforcement o

an information system;
ensure that policy
enforcement activities are
performed in the proper
sequence.

f

+++; localizes policy
related activities to one
point security policies;

domain: security

+++, guarantees
uniform policy
handling

+++, strategy easily
exchangeable

- only transparent
with additional
framework
support

+++ ++ policy

enforcement could be
made transparent

 introduction and
before advices

Supporting Product Line Evolution
with Framed Aspects

Neil Loughran1, Awais Rashid1, Weishan Zhang2 and Stan Jarzabek3

1Computing Department, Lancaster University, Lancaster LA1 4YR, UK
(loughran | awais) @comp.lancs.ac.uk

2School of Software Engineering, Tongji University, Shanghai, China 200311
zhangws@mail.tongji.edu.cn

3Department of Computer Science, National University of Singapore, Singapore 117543
stan@comp.nus.edu.sg

Abstract. This paper discusses how evolution in software product
lines can be supported using framed aspects: a combination of
aspect-oriented programming and frame technology. Product line
architectures and assets are subject to maintenance and evolution
throughout their lifetime due to the emergence of new user
requirements, new technologies, business rules and features.
However, the evolution process can be compromised by
inadequate mechanisms for expressing the required changes. It
maybe possible to anticipate future evolutions and, therefore,
prepare and design the architecture to accommodate this, but there
will eventually come a time when a certain feature or scenario
appears which could not have been foreseen in the early stages of
development. We argue that frames and aspects when used in
isolation cannot overcome these weaknesses effectively.
However, they can be addressed by using the respective strengths
of both technologies in combination. The amalgamation of
framing and aspect-oriented techniques can help in the integration
of new features and thus reduce the risk of architectural erosion.

1. Introduction
Software systems evolve over time as new requirements and
functionality emerge. It has been estimated that up to 80%[16] of
lifetime expenditure on a system will be spent on the activities of
maintenance and evolution. However, software product line
(SPL) evolution is a much more complex problem than traditional
single system evolution due to the differing configuration
requirements and possibilities for different systems within the
product family. Product lines, particularly those in volatile
business domains such as banking, will constantly be subject to
maintenance and evolution throughout their lifetime due to the
emergence of new requirements, new technologies, business rules
and features. Clearly, tools and paradigms which manage this
complexity, facilitate modification of the architecture or ease the
introduction of new features are needed if we are to reduce the
risk of architectural erosion [21]. In this paper we discuss how a
combination of two such techniques namely, frame technology [1]
and aspect-oriented programming (AOP) [2], can be used to
improve evolution of SPLs and their assets. We argue that both
techniques offer complementary support for software product line
evolution and, hence, improved support can be derived by using
them in combination.
The next section provides some background on evolution needs in
SPLs. Section 3 introduces frames and AOP and discusses their
respective strengths and weaknesses in supporting SPL evolution.
Section 4 describes our approach: framed aspects and
demonstrates its effectiveness in supporting evolution in

comparison with the frame-based and AOP implementations
discussed in section 3. Section 5 discusses some related work
while section 6 concludes the paper.
The discussion in sections 3 and 4 is based on the development of
an SPL for electronic city guide systems such as GUIDE [3].
Variation points in this SPL range from the customisation of GUI
components and stylings to the capability for the system to run on
devices with limited resources (such as PDAs and mobile
phones). The feature used as the basis for the discussion in this
paper is the implementation of a cache which stores previously
visited pages. Variants in this instance are maximum size of
cache, deletion strategy (i.e. delete least accessed records, oldest
records, etc.), percentage of records to delete and the ability for
systems to be configured to be cached or uncached.

2. Evolution Issues in Software Product Lines
Software evolution is difficult to predict and rarely uniform over
time. During software development requirements can change by
up to 30% [4]. Managing this volatility is difficult because the
changes can have major impacts on the design of the architecture.
Therefore, effective mechanisms are required which can handle
requirement changes through all stages of SPL development as
well as evolution of the architecture throughout its life.
Traditional generative approaches parameterise components and
leave hooks in the architecture for most likely evolutions. The
problem with this approach is that complex changes not thought
of cannot be effectively handled and often give rise to the need to
reorganise existing modules. Some of these issues have been
highlighted by [5] in the context of evolution of SPLs for
middleware.
Traditional approaches also mainly focus on the classic categories
of evolution [6] namely, corrective (fixing of bugs), adaptive
(adding a new feature), perfective (improving performance) and
preventive (preventing problems before they occur). While this
categorisation is useful in showing the type of evolution to be
performed, it does not demonstrate how the change affects the
software architecture itself. In order to support this, it is more
useful to think of crosscutting and non-crosscutting evolution.
When a proposed evolution requires changes to more than one
module it is said to be crosscutting, while non-crosscutting
evolutions can be localised. The need to address crosscutting
evolution is crucial in SPLs as a change can affect different
variants and branches. Note that an SPL can be subject to a
variety of changes over its lifetime ranging from addition,
retraction, restructuring and replacement of a feature to

introduction of a new product or an entirely new product line (in
instances when variability becomes too large). The example in
this paper focuses on evolutions pertaining to a particular feature.
Introduction of new products or product lines will form the
subject of a future paper.

3. Frames vs AOP
3.1 Frame Technology
Frame technology was conceived during the 1970s as a means to
providing a mechanism for creating generalised components that
can be easily adapted or modified to different reuse contexts.
Frame technology is essentially a language independent textual
pre-processor that creates software modules by using code
templates and a specification from the developer. Examples of
typical commands in frames are <set> (sets a variable), <select>
(selects an option), <adapt> (refines a module with new
functionality) and <while> (creates a loop around repeating
code).
To illustrate the use of frames, consider the object-oriented (OO)
implementation of the cache feature for the guide SPL. Using OO
alone we implemented the cache by creating a Hashtable instance
in the Editor class and then wrapped calls to a requestInfo with a
check to see if records existed in the cache before proceeding with
the requestInfo method call (cf. fig. 1).

Fig. 1. OO implementation of the Cache feature
The code shown in bold in fig. 1 is the code added by the
integration of a cache into a simple editor pane. Using a frame
processor such as XVCL [7] we can tag this code to ease its
retraction from the codebase (cf. fig. 2).
While the framing solution helps to clearly identify the caching
concern, it is not a particularly elegant solution to the problem as
the class now becomes cluttered with tags which can make the
code difficult to read, understand and therefore evolve.

Fig. 2. Using frame option tags to identify caching code
Another solution might involve making a copy of the
hyperlinkEvent method and having separate frames for the two
variants. While this would be a neater solution, it fragments the
module and future requirements pertaining to the hyperlinkEvent
method would require that the code is updated in both frames,
therefore inducing unneeded duplication.

3.2 AOP
AOP mechanisms such as AspectJ [8], Hyper/J [9] and emerging
frameworks such as AspectWerkz [10], JBoss AOP [17] and
Nanning [18], are now gaining considerable support as a means
for managing the separation of concerns and features which
would traditionally lead to unmanageable code tangled across
multiple classes in OO systems. Examples of concerns in OO
systems that exhibit this fragmentation of context are logging,
profiling and tracing. AOP languages such as AspectJ allow
multiple modules to be refined statically using introductions or
through injection of additional behaviour in the control flow at
runtime via advices.
AOP can alleviate the problem of tangled caching code (or tags in
case of frames). To illustrate this, consider the AspectJ
implementation of the cache in fig. 3, which can simply be
plugged into the Editor.
The key part of the aspect is the around advice which
encapsulates the following sequence of operations:

1 Whenever the requestInfo method within the Editor
class is called, grab the argument URL.

2 Search the cache for the URL.

class Editor extends JEditorPane implements HyperlinkListener

 {

 private Network network;

private Hashtable cache = new Hashtable();

 // .. methods for adding and retrieving data to/from cache

//.. constructor and editor initialisation

public void hyperlinkUpdate(HyperlinkEvent e)

 {

 if (e.getEventType() == HyperlinkEvent.EventType.ACTIVATED)

 {

 String url = e.getURL().toString();

 Document cachedPage = (Document)getFromCache(url);

 if(cachedPage == null)

 {

 network.requestInfo(this, url);

 addToCache(url, this.getDocument);

 }

 else

 {

 // get record from cache and display it

 this.setDocument((Document)cachedPage.getContent());

 }

 }

 }

 }

class Editor extends JEditorPane implements HyperlinkListener

 {

private Network network;

<option cache>

private Hashtable cache = new Hashtable();

 // .. methods for adding and retrieving data to/from cache

 </option>

 //.. constructor and editor initialisation

 public void hyperlinkUpdate(HyperlinkEvent e)

 {

 if (e.getEventType() == HyperlinkEvent.EventType.ACTIVATED)

 {

 String url = e.getURL().toString();

 <option cache>

 Document cachedPage = (Document)getFromCache(url);

 if(cachedPage == null)

 {

 </option>

 network.requestInfo(this, url);

 <option cache>

 addToCache(url, this.getDocument);

 }

 else

 {

 // get record from cache and display it

 this.setDocument((Document)cachedPage.getContent());

 }

 </option>

 }

 }

 }

3 If the URL doesn’t exist, proceed with the call and add
the content of the editor to the cache. If it does exist
then simply update the editor pane with the content
without proceeding with the call to requestInfo.

Note that PageContent is a data structure used to store the editor
content along with other data (i.e. number of accesses) in the
cache.

Fig. 3. AOP implementation of the cache using AspectJ

While the AOP implementation cleanly modularises the caching
code, no parameterisation support is available. Consequently, the
aspect needs to be modified to vary the caching behaviour.
Alternatively, an abstract aspect needs to be provided with
concrete aspects specifying the specific caching variants required
by a particular product. In deeper inheritance structures this can
lead to inheritance anomalies [11] and also require that the
developer or maintainer possesses an understanding of the
operations encapsulated by the abstract aspect as is the case for
hot spots exposed in such a white-box fashion [12].

3.3 Comparing Frames with AspectJ
The strengths and weaknesses of frames and aspects are
summarised in table 1.

Table 1. Comparing frames and AOP

Possible in JAC and JMangler.
Future versions of AspectJ will
have support.

Not supportedDynamic Runtime Evolution

Supports evolution of legacy
systems at source and byte
code level

Lim ited at presentUse on Legacy Systems

Constrained to implementation
language although this will
change as AOP gains wider
acceptance

Supports any textual document
and therefore any language

Language Independence

Generates code which (in the
case of advice) is bound at run
time.

Allows static autogeneration of
code and refactoring.

Code Generation

Not supportedAllows code to be generalised to
aid reuse in different contexts

Templates

Addresses problems of
crosscutting concerns and code
tangling.

Only non crosscutting concerns
supported

Separation of Concern

Not supported natively,
dependent on IDE

Very comprehensive
configuration possible

Configuration Mechanism

AOPFram ingCapability

Possible in JAC and JMangler.
Future versions of AspectJ will
have support.

Not supportedDynamic Runtime Evolution

Supports evolution of legacy
systems at source and byte
code level

Lim ited at presentUse on Legacy Systems

Constrained to implementation
language although this will
change as AOP gains wider
acceptance

Supports any textual document
and therefore any language

Language Independence

Generates code which (in the
case of advice) is bound at run
time.

Allows static autogeneration of
code and refactoring.

Code Generation

Not supportedAllows code to be generalised to
aid reuse in different contexts

Templates

Addresses problems of
crosscutting concerns and code
tangling.

Only non crosscutting concerns
supported

Separation of Concern

Not supported natively,
dependent on IDE

Very comprehensive
configuration possible

Configuration Mechanism

AOPFram ingCapability

We can observe that the strengths of one technique are the
weaknesses of the other and vice versa. A hybrid of the two
approaches can provide essentially all the combined benefits thus
increasing configurability, modularity, reusability, evolvability
and longevity of product line assets.

4. Framed Aspects
Our approach to framed aspects is based on using aspects to
encapsulate otherwise tangled features in the SPL and use frames
to provide parameterisation and reconfiguration support for the
feature aspects. The approach has been realised in the form of the
Lancaster Frame Processor which is a trimmed down
implementation of the functionality offered by XVCL. It only
takes certain frame constructs and forces the programmer to use
AOP techniques for the remainder. This balance of AOP and
frames reduce the template code clutter induced by frames alone
and at the same time provides effective parameterisation and
reconfiguration support through the ability to create meta
variables and options which can be bound to a specification from
the developer when the frame processor is executed.
Returning to our caching example, in the guide SPL, it should be
possible for the cache to be configured to different specifications.
Utilising framed aspects we have developed a cache that can be
configured with the following parameters: <Scheme,
MaxCacheSize, PercentToDel, ContentType> where Scheme =
Access or Date or Size, MaxCacheSize = any integer,
PercentToDel = any value between 1 and 100, and ContentType =
Document, String, etc.

CacheAspect

int cacheSize = <@MaxCacheSize>;
int percentToDel = <@PercentToDel>;

private Hashtable cache = new Hashtable();
// ..code
void around(Editor g, String url): args (g,url) &&

call (public void Network.requestInfo(Editor, String))
{
PageContent cachedPage=(PageContent) cache.get(url);
if(cachedPage==null)

{
proceed(g,url);
PageContent page=new PageContent(g.getDocument());
addToCache(url,page);
}

else
{
g.setDocument(cachedPage.getContent());
}

}
<adapt frame = “ContentType”>
<adapt frame = “Scheme”>

class PageContent
{
<ContentType> content;
// impl
}

Specification
<Scheme= “Access”, MaxCacheSize= “100”, PercentToDel = “50”, ContentType = “Document”>

Size

Date

Access

deleteRecords { impl }

Introductions on PageContent
New fields
New method implementations

Scheme

String

Document

Document methods

ContentType

CacheAspect

int cacheSize = <@MaxCacheSize>;
int percentToDel = <@PercentToDel>;

private Hashtable cache = new Hashtable();
// ..code
void around(Editor g, String url): args (g,url) &&

call (public void Network.requestInfo(Editor, String))
{
PageContent cachedPage=(PageContent) cache.get(url);
if(cachedPage==null)

{
proceed(g,url);
PageContent page=new PageContent(g.getDocument());
addToCache(url,page);
}

else
{
g.setDocument(cachedPage.getContent());
}

}
<adapt frame = “ContentType”>
<adapt frame = “Scheme”>

class PageContent
{
<ContentType> content;
// impl
}

Specification
<Scheme= “Access”, MaxCacheSize= “100”, PercentToDel = “50”, ContentType = “Document”>

Size

Date

Access

deleteRecords { impl }

Introductions on PageContent
New fields
New method implementations

Scheme
Size

Date

Access

deleteRecords { impl }

Introductions on PageContent
New fields
New method implementations

Scheme

String

Document

Document methods

ContentType

String

Document

Document methods

ContentType

Fig. 4. Using parameterised <adapt> to provide variations in the

cache aspect

The choice of different scheme strategies has an impact on the
data structure within the cache as well as the deletion method.
We can capture this within an aspect very easily by using the
introduction mechanism where new fields and methods are
inserted on defined objects. We could then use inheritance to
inherit these properties when we need them. However, a much
cleaner approach is to frame these properties and use a
parameterised adapt to incorporate them into our aspect (cf. fig.
4). To make the aspect more reusable across different platforms
(i.e. J2SE and J2ME) we could generalise parts of the cache

aspect CacheAspect

 {

 private Hashtable cache = new Hashtable();

 // ..code

 void around(Editor g, String url): args (g,url) &&

 call (public void Network.requestInfo(Editor, String))

 {

 PageContent cachedPage=(PageContent) cache.get(url);

 if(cachedPage==null)

 {

 proceed(g,url);

 PageContent page=new PageContent(g.getDocument());

 addToCache(url,page);

 }

 else

 {

 g.setDocument(cachedPage.getContent());

 }

 }

 // inner class for data structures

 }

1

2

3

aspect so that they can store information without being
constrained to the J2SE Document. The use of a framed aspect
for the cache has effectively created a reusable and simpler to
manage component, which would have been difficult to realise in
AOP or frames alone without inducing some degree of
complexity. We believe that the same technique can be applied to
ease the introduction of other features into product lines.
There are numerous ways of utilising the framed aspect approach.
In the previous example the aspect code was affected directly
with frame tags, however we have found an alternative approach
for use in more complex scenarios where there is a need for more
control of how different modules (alternative and optional
features) can be merged together in terms of constraints and rules
for configuration (cf. fig. 5).

Fig 5. Alternative approach to using framed aspects
We have found that this approach offers a very powerful
mechanism for removing even more of the invasive frame code
(mainly due to the moving of option and adapt tags from the
framed aspect code to the composition rules) and have developed
a methodology which allows a feature diagram using FODA [19]
for a given reusable aspect component to be created and mapped
directly to framed aspects. A future paper [20] will demonstrate
this approach in more detail.

5. Related Work
The framed aspect approach displays many similarities with
feature oriented programming (FOP, Genvoca et al) [13], where
modules are created as a series of layered refinements, SALLY
[14], where introductions can be parameterised and Aspectual
Collaborations [15] where modular programming and AOP
techniques are combined. In FOP, composition is performed by
layers stacked upon one another, with upper layers adding
refinements to the lower ones via parameterisation, however, the
technique is limited at present to static crosscutting feature
refinements. With regards to SALLY, only its special style of
introductions can be parameterised whereas in framed aspects any
AOP construct can be in any AOP language. Aspectual
Components have a similarity to framed aspects as they allow for
external composition and black box reuse. Emerging AOP
frameworks such as AspectWerkz, JBoss AOP and Nanning
Apsects allow for aspects to be created as standard classes and
configured via XML files which contain advice and other AO
details. The main difference with framed aspects over the
aforementioned is in the language independence of frames and the
flexibility of parameterisation where any programming construct
can be a parameter.

6. Conclusion
In this paper we have shown how aspects can benefit from the
parameterisation and generalisation support that frame technology
brings. We have demonstrated how the integration of new
features into a product line can be simplified and believe the same
technique can be applied to different concerns. We believe that
our approach offers an effective approach to achieve the best of
what both technologies have to offer in terms of flexibility,
reusability and evolvability. Product line engineering benefits
from the configurational power that framed aspects bring and
helps to improve the integration of features that would normally
crosscut multiple modules in OO and traditional framing
technologies. Utilising AO and Frames allows crosscutting
concerns to be localised thus improving system comprehensibility
and minimising design erosion of architectures.
References

[1] Bassett, P.: Framing Software Reuse - Lessons from the Real
World, Prentice Hall (1997).

[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C. V., Loingtier, J.-M., Irwin, J.: Aspect Oriented
Programming, Proc. ECOOP ’97.

[3] Davies, N et al.: Lancaster GUIDE Project homepage
http://www.guide.lancs.ac.uk/

[4] Cusumano, M.A. and Selby R.W.: Microsoft Secrets, Simon
& Schuster, New York (1998).

[5] Colyer, A., Blair, G., Rashid, A.: Managing Complexity in
Middleware. Workshop on Aspect Components and Patterns,
AOSD 2003.

[6] Lientz, B., Swanson, E., and Tompkins, G.: Characteristics
of Application Software Maintenance, CACM 21(6) June
1978.

[7] XVCL homepage, http://fxvcl.sourceforge.net

[8] AspectJ Team, "AspectJ Project",
http://www.eclipse.org/aspectj/, 2003.

[9] IBM Research, Hyperspaces,
http://www.research.ibm.com/hyperspace/

[10] AspectWerkz homepage, http://aspectwerkz.codehaus.org/

[11] Mikhajlov, L. and Sekerinski, E.: A Study of The Fragile
Base Class Problem. Proc. ECOOP ’98, Lecture Notes in
Computer Science, 1445, (Springer-Verlag 1998), pp. 355-
382.

[12] Fayad, M. E. and Schmidt, D. C.: Object-Oriented
Application Frameworks. CACM 40(10), pp. 32-38, (1997).

[13] Batory, D., Sarvela, J. N., Rauschmayer, A.: Scaling Step-
Wise Refinement. ICSE 2003.

[14] Hanenberg, S. and Unland, R.: Parametric Introductions.
Proc. of AOSD 2003, pp. 80-89.

[15] Lieberherr, K., Lorenz, D. H., Ovlinger, J.: Aspectual
Collaborations: Combining Modules and Aspects. The
Computer Journal, 46(5) 2003.

Specification Composition
Rules

Framed
Aspects

Customised Aspect
Declaration

[16] Lehman M. M., Ramil J. F. and Kahen, G. A Paradigm for
the Behavioural Modelling of Software Processes using
System Dynamics. Technical report Imperial College
London 2001.

[17] JBoss AOP homepage,
http://www.jboss.org/developers/projects/jboss/aop.jsp

[18] Nanning Aspects homepage, http://nanning.codehaus.org

[19] Kang, K. C. et al. Feature Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report, CMU/SEI-90-
TR-21,Software Engineering Institute, Carnegie Mellon
University, 1990.

[20] Loughran, N., Rashid, A. Framed Aspects: Supporting
Configurability and Variability for AOP, submitted to ICSR
2004.

[21] Van Gurp J. and Bosch J., Design Erosion: Problems and
Causes, Journal of Systems & Software, vol 61, issue 2,
2002.

Transaction Management in EJBs: Better

Separation of Concerns With AOP

Johan Fabry∗

Vrije Universiteit Brussel, Pleinlaan 2
1050 Brussel, Belgium

Johan.Fabry@vub.ac.be

March 8, 2004

1 Introduction

The long-term goal of our research is to enhance transaction management in
multi-tier distributed systems through the use of higher-level, semantical infor-
mation and advanced transaction models. As a part of this research, we have
performed an evaluation of transaction management in Enterprise JavaBeans,
and found it lacking in multiple respects.

Most relevant for this workshop is the bad separation of concerns, as we
will show below. In the worst cases, code handling the concern of transaction
management can be split in three distinct locations. We feel it would be better
to centralize this code into one location, by using a well-defined aspect. Our
current work is the implementation of such an aspect, which we introduce here.

This paper first details how Enterprise JavaBeans aims for container-based
separation of the transaction concern, and discusses how this concern remains
split. Second, we describe our proposed transaction management aspect for
EJBs, which aims to integrate this split concern into one. Third, we conclude
and project our future work.

2 Container-Based Tx Management in EJBs

Enterprise JavaBeans (EJB) [8] is a well-known and widely used Java com-
ponent architecture for middleware applications, which, among other services,
provides for Container-based Transaction management. The EJB Object, which
defines business code, lets its’ Container manage transactions by declaring trans-
actional properties for each method in a separate file: the deployment descriptor.

2.1 Declarative Transaction Management

In EJB, transaction management is provided by the container, and this behavior
is usually determined by the transaction attributes set in the EJB’s deployment

∗Author funded by the Institute for the Promotion of Innovation by Science and Technology
in Flanders (IWT) in the context of the CoDAMoS project.

descriptor. This is called declarative transaction management [5] and is an
instance of Container-based separation of concerns, since the Container will
perform transaction management.

In the deployment descriptor, the Bean declaratively states its transaction
requirements for every business method. For example, Required states that the
method must be executed within the scope of a transaction, and if needed, a
new transaction will start, while Mandatory states that the method invocation
will fail if not executed within a transaction scope.

Because all calls to an EJB Object are mediated by the Container, this Con-
tainer can now transparently start and end transactions. If a transaction is
created upon execution of a method, the Container will commit or rollback this
transaction when the method ends. The decision to rollback the transaction
is primarily based on exceptions thrown. If the method (or a nested method
called by this method) throws a system exception: a RuntimeException, a
RemoteException, or a subclass of these exceptions, the transaction will be
rolled back, and the method will throw a TransactionRolledbackException.
Also, a transactional method can mark itself for rollback by calling the
setRollbackOnly() method on the Container, and determine its rollback flag
by calling the getRollbackOnly() method on the Container. When a transac-
tional method that is marked for rollback ends, the transaction will be rolled
back but no exception will be thrown.

Declarative transaction management is said to achieve a greater separation
of concerns [5] and is said to allows the transactional behavior of the EJB to be
modified without needing to change the implementation of the business logic [8] .
Therefore, the same Bean should be able to be reused over different applications
with different transactional requirements.

However, while declarative transaction management is a promising evolution
in transaction management, this new concept, as implemented in EJB, has a
number of significant drawbacks. One of these drawbacks is especially relevant
here: the incorrect separation of concerns.

2.2 Separation of Concerns?

As said above, declarative transaction management is said to achieve a greater
separation of concerns, resulting in cleaner business method code. However,
if we further investigate how declarative transaction management is currently
implemented in EJB, we see that this is not really the case.

Consider commits and rollbacks: the decision to commit or rollback a trans-
action is made primarily based on exceptions thrown during method execution.
If a system exception is thrown, the transaction will be rolled back when the
method ends, if not, the transaction will be committed. Also, the method may
call the getRollbackOnly() and setRollbackOnly() methods on the Con-
tainer to obtain and set the rollback flag.

However, to call the above container methods, or to manually throw a sys-
tem exception breaks separation of concerns. Since the method now contains
code whose concern is to handle a section of the transaction, transaction man-
agement is not cleanly separated out. In other words: to cleanly use declarative
transaction management, the method may never get or set its’ rollback flag.
Manipulating this flag not only taints the method with the transaction manage-
ment concern, but also splits this concern in two disjunct parts.

Furthermore, consider what should be done in case of a rollback. Conceptu-
ally, handling of the rollbacks of transactions is a part of the concern of trans-
action management. Therefore, to have a clean separation, such error-handling
code should also be defined when stating the methods’ transaction requirements.
Sadly, in EJB this is not the case. When a transaction is rolled back due to a
system exception, the method will throw a TransactionRolledbackException
to the caller of the method, and when a transaction is rolled back due to the use
of setRollbackOnly() the caller will not be informed of this in any way. So,
when using the setRollbackOnly(), the method needs to additionally signal
this to the caller by either returning an ‘error’ value or throwing an exception.

The above implies that handling a rollback can only be done from within
the method callers’ code. Conceptually, this means not only that the caller is
now tainted with the error-handling part of transaction management, but also
that transaction management is split up in three disjunct sections: the trans-
action declaration, manipulation of the rollback flag and a-posteriori handling
of rollbacks. Furthermore, since the callers to the transactional method need to
specify the error-handling code, this may lead to code duplication if there are
multiple callers to the method.

In other words, declarative transaction management, as currently imple-
mented in EJB, only provides a clean separation of concerns in the most trivial
cases. This is when a transaction never rollbacks: no transactional system errors
may occur, deadlocks may not be broken through a rollback, and the application
itself may not decide to perform a rollback. In all non-trivial cases, declarative
transaction management, as currently implemented in EJB, provides a worse
separation of concerns than traditional transaction demarcation. This is be-
cause the transaction concern is forcefully split up in three distinct parts, in
different sections of the application, whereas in traditional transaction demar-
cation these three parts are contained within one location: the implementation
of the transactional method.

3 Toward a Comprehensive Aspect for Tx Ma-
nagement of EJBs

We feel it would be better to separate out transaction management of EJBs into
one complete section, instead of three disjunct sections. To do this, we propose
defining transaction management in one, comprehensive aspect.

There is a body of existing work on defining transaction management as an
AspectJ [1] aspect, either stand-alone by Kienzle and Gerraoui [4] or as a by-
product of specifying a persistence aspect by Soares et al.[7] and also by Rashid
and Chitchyan [6]. However, each approach not only is unrelated to EJBs but
also falls short of our proposed comprehensive aspect. Briefly put, the work
of Kienzle and Gerraoui [4] is inadequate with regard to exception-handling, as
stated by the authors themselves. The work of Soares et al. [7] has been deemed
as too application-specific [6], and the work of Rashid and Chitchyan [6] omits
the handling of rollbacks.

We have started work on defining a more comprehensive aspect, using the
technique of logic meta-programming to write our custom aspect weaver [9]. The
use of LMP for AOSD is not new: LMP has, among others, been used to define

3

domain-specific aspects [2], and to argue for more expressive crosscut languages
[3].

An integral part of our transaction management solution is a custom-built
transaction monitor. Woven code uses traditional transaction demarcation calls
to our transaction monitor, instead of using the Container’s transaction moni-
tor. This is because, in future work, we want to provide extended transaction
capabilities which are not available using the standard transaction monitor, as
defined in the EJB standard.

3.1 Declaring transactional methods

Our weaver uses logic programming to reason about the method code, and can
easily detect some of the methods’ properties, which helps in crosscut definition.
For example: if a method M calls getters and setters of an entity bean, it makes
sense to make M transactional. Furthermore, if M only calls getters, we can
mark the transaction as read-only1. Note that, at this time, we do not perform
any recursive analysis: methods called by M are not investigated for getters
and setters.

This automatic detection of transactional methods is the default behavior
of our weaver: all classes within a given package are investigated, and transac-
tion demarcation code is inserted for all methods that should be transactional.
This demarcation code also includes exception handling, equal to the standard
EJB behavior, i.e. the transaction is rolled-back in case of a system exception.
The woven code now behaves as if all transactional methods were declared as
RequiresNew in the EJB’s deployment descriptor.

The weaver can also be used in a more conventional manner, by specifying
which methods should be made transactional in a separate transactions aspect
file. In such a file, for a given bean, the method signatures are listed and
postfixed either with new or none, indicating whether a new transaction should
be started or the method is not transactional. For the parameter list of method
signature, the * wildcard may be used, indicating applicability regardless of
parameter types. Also, default behavior for a bean can be set to be either
new, none, or detect, this last signifying automatic transaction detection. An
example transactions aspect is below:

transactions CounterBean
{

increment(int count) new;
get(*) none;
default detect;

}

Note that we can also use the weaver to automatically generate these aspect
declarations, effectively explicitizing the information implicit in the code.

3.2 Adding Exception Handlers for Rollbacks

However, as we have said above, we want tot go further than this; our trans-
action aspect also centralizes exception handling for transaction-related excep-

1This information can be used by the transaction monitor at run-time to optimize through-
put

4

tions. Indeed, we can define exception handlers for methods, by simply ap-
pending a number of catch blocks, containing java code, to the transactional
declaration of the method. Within this code, the transaction can be rolled back
by simply calling a txRollback() method. If the transactional method throws
an exception that is not caught by these handlers, or the handlers do not call
the txRollback() method, the transaction will commit when the method ends.

Lastly, we add an extra feature which is not available in EJB transaction
management: restarting a transaction from an exception handler. When restart-
ing, the transaction rolls back and the method is restarted (by re-calling the
method), which implies the creation of a new transaction. Transaction restart
is indicated by using a catch block with as body the restart keyword.

An example aspect definition containing these kinds of exception handlers
is given below:

transactions CounterBean
{

increment(int count) new catch (RuntimeException ex)
{txRollback(); ex.printStackTrace(); System.exit(1)}

catch (RemoteException ex) restart;
get(*) none;
default detect catch(Exception ex)

{ txRollback(); ex.printStackTrace(); System.exit(1)};
}

This effectively centralizes transaction declaration and handling of rollbacks
due to exceptions in one location, and avoids unnecessary code duplication (for
exception handling) in callers of the Beans’ methods. One last element that is
missing in this centralized transaction aspect, is the use of setRollbackOnly()
to set the rollback flag. This occurs when, somewhere within the execution of
the method, some heuristic determines that the transaction should be rolled
back. At this time, we do not yet support this use of heuristics, we consider it
as future work.

While it may seem unnecessary to have rollback handlers in the aspect when
not being able to declare heuristics that will trigger a rollback, this is not the
case. Significant causes for a rollback can already be found in this setup: trans-
actional system errors may occur and deadlocks may be broken though a roll-
back. For these cases, our system is arguably better than the EJB implementa-
tion: instead of transaction declaration and rollback handling separated in two
places, these are now integrated into one.

4 Conclusion and Future Work

This paper started with a discussion of Container-Based Transaction Manage-
ment, as currently implemented by enterprise JavaBeans. Bean methods declare
their transaction properties in the deployment descriptor, and the Bean Con-
tainer automatically starts and ends transactions if required. Transactions are
rolled back if the method ends in a system exception, or if the method set the
rollback flag of the transactions.

Sadly, handling of exceptions and rollbacks produces a bad separation of
concerns: code concerned with transaction management is now not localized

5

in one place but in three places. First we have declaration of the transaction
properties in the deployment descriptor, second we have determining of rollbacks
in the bean itself and third handling of rollbacks in the beans’ callers.

After discussing transaction management in EJB’s, we proposed a better
solution with regard to separation of concerns. We have shown our current work,
which can detect the need for transactional methods, and integrates transaction
handling and the handling of rollbacks in one aspect. Heuristically determining
a rollback within the method code is not yet supported. However, the current
incarnation already has its merits because it is useful for handling exceptions
due to e.g. network outages, forced rollbacks due to deadlocks, and so on.

Also, as a result of explicitly treating rollback handling, we considered de-
fault strategies for handling a rollback, and have already implemented a trans-
action restart. This leads us into future work: we are further exploring handling
of rollbacks in the context of advanced transaction models, such as the use of
compensating transactions.

Lastly, as future work, we will investigate how we can integrate the ‘missing’
concern part: rollback heuristics, into the transaction aspect.

5 Acknowledgments

Thanks to Thomas Cleenewerck and Jessie Dedecker for proof-reading and Theo
DHondt for supporting this research.

References

[1] The AspectJ project. http://eclipse.org/aspectj.

[2] J. Brichau, K. Mens, and K. De Volder. Building composable aspect-specific
languages. In Proc. Int’l Conf. Generative Programming and Component
Engineering, pages 110–127. Springer Verlag, 2002.

[3] K. Gybels and J. Brichau. Arranging language features for more ro-
bust pattern-based crosscuts. In 2nd International Conference on Aspect-
Oriented Software Development. ACM, 2003.

[4] J. Kienzle and R. Guerraoui. Aop: Does it make sense? - the case of
concurrency and failures. In Proceedings of ECOOP 2002. Springer Verlag.

[5] R. Monson-Haefel. Enterprise JavaBeans. O’Reilly, third edition, 2001.

[6] A. Rashid and R. Chitchyan. Persistence as an aspect. In 2nd International
Conference on Aspect-Oriented Software Development. ACM, 2003.

[7] S. Soares, E. Laureano, and P. Borba. Implementing distribution and per-
sistence aspects with AspectJ. In Proceedings of OOPSLA 02. ACM.

[8] Sun Microsystems. Enterprise JavaBeans specification.
http://java.sun.com/products/ejb/docs.html.

[9] R. Wuyts. A Logic Meta-Programming Approach to Support Co-Evolution
of Object-Oriented Design and Implementation. PhD thesis, Department of
Computer Science, Vrije Universiteit Brussel, Belgium, January 2001.

6

Software Plans for Separation of Concerns
David Coppit

Department of Computer Science
McGlothlin-Street Hall

The College of William and Mary
Williamsburg, VA 23185 USA

david@coppit.org

Benjamin Cox
Department of Computer Science

McGlothlin-Street Hall
The College of William and Mary

Williamsburg, VA 23185 USA

btcoxx@cs.wm.edu

ABSTRACT
Complex software often has concerns which cut across the mod-
ules of the system. Aspect-oriented programming languages
such as AspectJ attempt to address this problem by providing a
new abstraction for encapsulating such concerns called aspects.
Aspects are integrated automatically during compilation with
the base code at well-defined join points. This approach is diffi-
cult to apply when concerns are highly context-dependent and
have complex relationships not supported by the language. In
this paper, we propose an alternative approach based on soft-
ware plans. In this approach, a specialized editor is first used to
annotate code segments as belonging to one or more concerns.
The user can then specify a limited view of the code, a plan,
which consists of some desired subset of the concerns. Using
this plan view, the user can directly implement any complex
relationship between overlapping, interdependent concerns. We
present our approach using a motivating example from the GNU
grep tool. We also present our prototype editor implementation.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques–
program editors.

General Terms
design, languages

Keywords
software plans, separation of concerns, aspects

1. INTRODUCTION
Complex software often has multiple overlapping and interde-
pendent concerns. The traditional approach is to attempt to ag-
gregate related concerns using a functional or object-oriented
decomposition of the code. More recently, language designers
have provided more powerful language abstractions for repre-
senting concerns as cross-cutting aspects [6,7]. In all of these
approaches, source code is re-modularized in an attempt to im-
prove the cohesion of code serving certain concerns while
minimizing the coupling between the modules.
Unfortunately, these approaches are difficult to apply to over-
lapping and interdependent concerns. In such cases, modulariz-
ing a system to improve the coupling and cohesion of one con-
cern may increase the tangling of other concerns. For example,
debugging code is often scattered throughout the software. At-
tempting to restructure the system to improve the cohesion of

the “debugging” concern would aversely affect the functional or
object-oriented decomposition.
Unfortunately, aspect-oriented programming languages only
partially address this problem. An inherent assumption of as-
pect-oriented programming languages is that it is possible to
provide general declarative mechanisms for specifying the loca-
tion of cross-cutting concerns, and that these mechanisms can be
used by the aspect weaver to automatically integrate the concern
code into the existing modular structure. AspectJ [7], for exam-
ple, allows the programmer to specify join points at calls to
methods and constructors, references or uses of fields, execu-
tions of exception handlers, object initialization, etc. Each of
these join points requires only limited context, and are suitable
for automatic integration by the weaver. None allow a concern
to be integrated into an arbitrary program location. Indeed, it is
not clear that this can be done automatically for concern code
which depends heavily on its context in the base code. For ex-
ample, trace messages used during debugging to record the flow
of execution of a program depend heavily on context, and can
not be integrated automatically by a weaver.
Carver and Griswold’s [2] analysis of concerns in GNU sort
demonstrates that such complex interdependencies between
concerns and base code, which they call “invasive composi-
tions”, do arise in practice. Proper integration of such concerns
by the weaver would require code modifications to be coordi-
nated at multiple locations, and for concerns to be composed in
the correct order. They note that one approach to dealing with
such difficulties using existing join point models is to decom-
pose complex expressions into a series of more “atomic” ex-
pressions, and extend the model to allow any series of state-
ments to be a join point.
Murphy et. al [10] describe the process of restructuring code so
that aspects can be encapsulated using the limited join point
mechanisms provided by languages such as HyperJ and AspectJ.
For example, they describe a somewhat byzantine approach to
dealing with concern-specific code in if-then-else branches.
For AspectJ, an “around” advice is used to bypass the original
implementation of a method, instead executing “concern-
optimized” versions of code which contain the appropriate
branch of the code depending on the concern. They also de-
scribe a similar approach in which concern-specific code is
moved to the beginning or end of a method, where the aspect
weaver can integrate aspects.
In this paper we propose an alternative approach which avoids
the difficulties associated with an automatic weaver, while still
allowing concerns to be conceptually separated. The code is

treated by the source editor as multiple inter-related layers or
plans. A plan is a view of the software that contains only the
code segments related to those concerns of immediate interest.
The developer can edit the code in this view, in which case the
editor automatically updates the concern information (e.g. tag-
ging new code as belonging to the same set of concerns as the
edited code). Because a particular code segment may be tagged
as belonging to multiple concerns, it may also be visible in a
different plan. When the source code is finally compiled, the
editor renders the tagged code as a traditional monolithic code
representation.
Currently, we have finished enhancing an integrated develop-
ment environment to support editing of plans. Our next step is to
test the approach in one or more case studies. Eventually we
hope to enhance the editor to provide better automated support
for tagging and editing of code related to particular concerns.
In Section 2 we present our approach in more detail, with a mo-
tivating example. Section 3 describes the implementation of
plans in the Eclipse IDE. Section 4 describes our planned
evaluation. Section 5 presents related work. Section 6 describes
key challenges, and Section 7 concludes.

2. APPROACH
In this section we present our approach in more detail. We will
use the GNU grep [4] program as a running example, showing
how even a simple program can have complex relationships
between concerns.

Figure 1 presents the key function in grep for searching a file,
directory, or input stream for a given pattern. 1 In this example,
we have used a line of code as the smallest code segment that
can be related to a concern. The bars to the left of the lines indi-
cate the concerns that are related to the line. The bars are col-
ored, and bars of the same color are aligned in the same column.
In this case, we have tagged the code with seven concerns:
▌Processing of input streams
▌Processing of a directory
▌Processing of a file
▌Error handling
▌Binary files
▌The -c option to output the number of matches
▌The -l option to output the matching filenames
For example, the first and last few lines are not tagged, indicat-
ing that they appear in all plans. The first conditional block is
tagged as belonging to the “Processing of input streams” con-
cern, and the next conditional block is tagged as belonging to
both the “Processing of a directory” and “Processing of a file”
concerns.

1 The code has been modified slightly to improve clarity.

 static int ▌▌▌▌ if((desc<0) && !isdir(file)) {
 grepfile (char const *file, struct stats *stats) ▌▌▌▌ suppressible_error (file, e);
 { ▌▌▌▌ return 1;
▌▌▌ int desc; ▌▌▌▌ }
▌▌▌ int count;
 int status; ▌▌▌ if(file!=NULL)
 ▌▌▌ filename = file;
▌ if(file == NULL) {
▌ //set file descriptor ▌▌▌▌▌ #if defined(SET_BINARY)
▌ desc = 0; //set file descriptor to standard input ▌▌▌▌▌ /* Set input to binary mode. Pipes are simulated with files
▌ filename = label ? label : _("(standard input)"); ▌▌▌▌▌ on DOS, so this includes the case of "foo │ grep bar". */
▌ } ▌▌▌▌▌ if (!isatty (desc))
 ▌▌▌▌▌ SET_BINARY (desc);
▌▌▌ if(file != NULL) { ▌▌▌▌▌ #endif
▌▌▌ //open file or directory
▌▌▌ while ((desc = open (file, O_RDONLY)) < 0 && errno == EINTR) ▌▌▌ count = grep (desc, file, stats);
▌▌▌ continue;
▌▌▌ } ▌▌ if(count < 0)
 ▌▌ status = count + 2;
▌▌▌▌ if((desc>0) && isdir(file)) {
▌▌▌▌ if (is_EISDIR (e, file) && directories == RECURSE_DIRECTORIES) { ▌▌▌ if(count >= 0) { //file or stream
▌▌▌▌ if (stat (file, &stats->stat) != 0) { ▌▌▌▌▌▌ if (count_matches) {
▌▌▌▌ error (0, errno, "%s", file); ▌▌▌▌▌▌ if (out_file)
▌▌▌▌ return 1; ▌▌▌▌▌▌ printf ("%s%c", filename, ':' & filename_mask);
▌▌▌▌ } ▌▌▌▌▌▌ printf ("%d\n", count);
 ▌▌▌▌▌▌ }
▌▌▌▌ return grepdir (file, stats);
▌▌▌▌ } ▌▌▌ status = !count;

▌▌▌▌ if (!suppress_errors) { ▌▌▌▌▌▌▌ if (list_files == 1 - 2 * status)
▌▌▌▌ if (directories == SKIP_DIRECTORIES) { ▌▌▌▌▌▌▌ printf ("%s%c", filename, '\n' & filename_mask);
▌▌▌▌ switch (e) {
▌▌▌▌ #if defined(EISDIR) ▌▌▌▌▌▌ if(file == NULL) { //stream error checking
▌▌▌▌ case EISDIR: ▌▌▌▌▌▌ off_t required_offset =
▌▌▌▌ return 1; ▌▌▌▌▌▌ outleft ? bufoffset : after_last_match;
▌▌▌▌ #endif ▌▌ ▌▌▌▌▌▌ if ((bufmapped ││ required_offset != bufoffset)
 ▌▌ ▌▌▌▌▌▌ && lseek (desc, required_offset, SEEK_SET) <
0
▌▌▌▌ case EACCES: ▌▌▌▌▌▌ && S_ISREG (stats->stat.st_mode))
▌▌▌▌ /* When skipping directories, don't worry about ▌▌▌▌▌▌ error (0, errno, "%s", filename);
▌▌▌▌ directories that can't be opened. */ ▌▌▌▌▌▌ }
▌▌▌▌ return 1;
 ▌▌▌ if (file != NULL) { //file or directory
▌▌▌▌ break; ▌▌▌ while (close (desc) != 0) {
▌▌▌▌ }//end switch ▌▌▌▌▌▌ if (errno != EINTR) {
▌▌▌▌ }//end if (directories == SKIP_DIRECTORIES) ▌▌▌▌▌▌ error (0, errno, "%s", file);
▌▌▌▌ }//end if (!suppress_errors) ▌▌▌▌▌▌ break;
 ▌▌▌▌▌▌ }
▌▌▌▌ suppressible_error (file, e); ▌▌▌ }

▌▌▌▌ return 1; ▌▌▌ }//end if (file != NULL)
▌▌▌▌ }//end if((desc<0) && isdir(file)) ▌▌▌ }//end if(count >= 0)

 return status;
 }

Figure 1: The grepfile function tagged with concerns

Note that even in this simple function there are many crosscut-
ting concerns that make the code difficult to understand. For
example, the binary filesystem concern is completely independ-
ent of the error handling concern. In this case, we could create a
plan in which either concern is viewed and edited without the
other.
There are also concerns that are dependent on other concerns.
For example, the error handling concern is dependent on the
directory, file and stream concerns. Viewing the error handling
concern code which deals with directories without also viewing
the directory concern would result in meaningless code. There is
also an implicit ordering dependency between the “Binary files”
concern and the file, directory, and stream processing concerns–
the file descriptor must be set to binary mode before calling the
grep() function.
The editor automatically tags new lines of code as belonging to
the concerns of the edited text. For example, if the programmer
is editing a block of code related to the “binary files” concern,
the editor will automatically tag new code as belonging to that
concern. While this approach suffices for the majority of editing
operations, it is not a complete solution. For less common edit-
ing of concern code, the developer can manually tag a code
segment as belonging to a concern. In using our prototype im-
plementation, we have identified several situations where pro-
gram analysis by the editor can provide automated assistance to
further reduce the need for manual tagging. We discuss this
issue in more detail in Section 6.
Once the code is tagged, the developer can specify a plan con-
sisting of one or more concerns. Plans allow the developer to
deliberately ignore concerns which are not apropos to the cur-
rent activity. For example, consider the plan shown in Figure 2,
a view of the system that contains the stream concern but not the
file, directory, or error-checking concerns. The code is more
than half as short and is easier to understand. In addition, the
plan provides a coherent, even compilable, view of the code.

Plans are easy to use and allow the programmer to focus on
different aspects of interest. The programmer can use plans to
manage complex overlapping concerns, and can easily resolve
interactions between two concerns by creating a new plan that
shows both. Tags also serve as documentation, helping a devel-
oper unfamiliar with the code to easily and quickly determine
the concerns associated with a given line of code, as well as
interactions between concerns.

3. PROTOTYPE IMPLEMENTATION
Figure 3 shows a screenshot of our prototype implementation. In
this view, the code for the grep utility is currently being edited.
In the left are the colors associated with the various concerns.
The programmer has selected some text to be tagged, and one
can see the names of the available concerns in the cascaded
context menu. As the programmer modifies the code, the IDE
will automatically update the concern meta-data.
In our current implementation, the smallest code segment that
the editor allows to be tagged is a single line. Currently the
source code is stored internally as a single monolithic represen-
tation (even though, in general, lines of code for unrelated con-
cerns can have any ordering). When the file is saved, the mono-
lithic representation is saved as the file, and the concern infor-
mation is saved separately. This provides backwards-
compatibility with tools that expect a traditional monolithic
format. Currently the tool does not perform any analysis for
automatic tagging of code.
In order to implement this functionality, we customized the
open source Eclipse IDE [2]. Eclipse provides an API for the
IDE which allows developers to extend its functionality. For
example, we mark ranges of text for a particular concern using
the Position class. Similarly, our annotations are implemented
using the Annotation and AnnotationRulerColumn classes.
We have also modified the Eclipse IDE to allow the user to
specify a plan as a set of visible concerns. Our current policy
allows the user to force concerns to be hidden, or to optionally
hide concerns. Code related to the latter type of concern will be
visible if it is also tagged with some other visible concern.

4. EVALUATION
In order to evaluate our approach we will conduct several case
studies in which our editor is used to develop several software
systems. While developing the software we will investigate the
theoretical as well as practical strengths and weaknesses of our
approach:

• Are concerns conceptually separable? It may be the case
that there is a poor correspondence between concerns and
code.

• Is an editor-based application sufficient to easily separate
the concerns? A primarily syntax-based tool may not be
powerful enough to allow the user to easily separate con-
cerns.

• Does this approach lower the conceptual complexity? Is it
easier to write and understand code with tangled concerns?
Is it easier to maintain code using this method?

• Is it possible to effectively filter irrelevant concerns while
preserving all the necessary details in a coherent manner?
We believe that our proposed approach to filtering lines

 static int
 grepfile (char const *file, struct stats *stats)
 {
▌▌▌ int desc;
▌▌▌ int count;
 int status;

▌ if(file == NULL) {
▌ //set file descriptor
▌ desc = 0; //set file descriptor to standard input
▌ filename = label ? label : _("(standard input)");
▌ }

▌▌▌ count = grep (desc, file, stats);

▌▌▌ if(count >= 0) { //file or stream
▌▌▌▌▌▌ if (count_matches) {
▌▌▌▌▌▌ if (out_file)
▌▌▌▌▌▌ printf ("%s%c", filename, ':' & filename_mask);
▌▌▌▌▌▌ printf ("%d\n", count);
▌▌▌▌▌▌ }

▌▌▌ status = !count;

▌▌▌▌▌▌▌ if (list_files == 1 - 2 * status)
▌▌▌▌▌▌▌ printf ("%s%c", filename, '\n' & filename_mask);

▌▌▌▌▌▌ if(file == NULL) { //stream error checking
▌▌▌▌▌▌ off_t required_offset =
▌▌▌▌▌▌ outleft ? bufoffset : after_last_match;
▌▌▌▌▌▌ if ((bufmapped ││ required_offset != bufoffset)
▌▌▌▌▌▌ && lseek (desc, required_offset, SEEK_SET) < 0
▌▌▌▌▌▌ && S_ISREG (stats->stat.st_mode))
▌▌▌▌▌▌ error (0, errno, "%s", filename);
▌▌▌▌▌▌ }//end if (file != NULL)
▌▌▌ }//end if(count >= 0)

 return status;
 }

Figure 2: The stream-only plan for the grepfile function

will yield coherent plans. However, it may be the case that
this approach, more often than not, results in plans that are
not understandable.

• What programming languages work well using this ap-
proach? Because of the line-oriented nature of this ap-
proach, procedural languages seem most suited. However,
object-oriented languages may also work well.

5. RELATED WORK
Aspect-oriented programming (AOP) [6] uses “aspects” to en-
capsulate the concerns. The aspects are then “woven” into the
code automatically by the compiler. The original formulation of
AOP required custom compiler support for weaving different
types of aspects. More recent efforts in the development of As-
pectJ [7] have attempted to provide a general method for writing
aspects and weaving them into the base object-oriented code.
Our approach is editor-oriented rather than language- or com-
piler-oriented, and can therefore be used with a range of lan-
guages. In addition, our approach allows (and requires) the pro-
grammer to express the complex relationships between overlap-
ping and interdependent concerns. In contrast, languages such as

AspectJ limit the integration of aspects and base code to only
those program locations (join points), which are supported by
the language. In particular, the language does not allow arbitrary
aspect code to be inserted into arbitrary locations in the main
code. For example, the two lines in Figure 1 which implement
the -l functionality (near the middle of the right column) are
dependent on the context. They are dependent on the execution
of the grep function call, as well as the previous line assigning
setting the value of status. The former is supported by As-
pectJ’s “after returning” advice, but AspectJ’s “set()” pointcut
designator does not provide enough context to allow the -l code
will be integrated after the assignment.
Lai and Murphy [8] analyze the relationship between concerns
and code structure. Their FEAT tool allows the user to tag lines
of code in a manner very similar to ours. However, their tool
does not support the notion of software plans—all code related
to all concerns is always visible. However, their tool does parse
the code to create an abstract syntax representation, which al-
lows them to analyze the relationship of a set of concerns to the
existing code structure. In particular, they measure the propor-
tion of files which contain code related to a concern (“spread”),

Figure 3: The grepfile function tagged with concerns

the proportion of tokens for a concern which are also involved
with another concern (“tangle”), and the proportion of tokens in
files for a concern which involve that concern (“density”).
Program slicing [11] attempts to reduce the complexity of code
by extracting only those lines of code that can alter, or are al-
tered by, a particular variable. The extracted subset is a working
program that is similar to our “plans”. Unlike their automated
approach, our approach is manual but more flexible in that any
set of lines can be associated with a concern. Also, it is not al-
ways the case that a program variable correlates to a single con-
cern. A variable may have multiple uses in different concerns in
a program; conversely, a particular concern may require the use
of multiple variables.
Information transparency [5] attempts to identify related sec-
tions of code that are dispersed throughout the source code, by
using inference and searching tools. The basic idea is to identify
concerns lexically, based on characteristics such as variable
names, or syntactically, based on characteristics such as loop
structure. Unlike information transparency, in our approach the
tool helps the programmer explicitly define which sections of
code are related, and does not involve after-the-fact deduction.
More effort is involved to tag lines of code, but our approach
can provide coherent views of the code, while information
transparency presents disconnected but related lines of code.
Finally, some editors support hiding of #ifdef/#endif text
based on user-specified values for the relevant symbols. Emacs
[3], for example, has a hide-ifdef-mode [9]. The basic idea is
similar to what we propose, although editor support is limited.
In fact, our early experiments to assess the feasibility of a line-
based tagging strategy used the C pre-processor in this manner.
However, using pre-processor directives is obviously tedious
and results in overly difficult to read code.

6. OPEN QUESTIONS
Initial use of our tool has already revealed a number of key open
questions. The first question is the extent to which the manage-
ment and tagging of code with concern information can be
automated. Aspect languages relieve the developer of the burden
of integrating aspects into base code. Our approach, in contrast,
allows the user to integrate highly context-dependent concerns
into the base code, but provides editor-based concern manage-
ment capabilities instead of automated integration. The costs
associated with manual integration of concerns are no worse
than that of code developed without aspects in mind. However,
tagging of concerns is an additional cost, and should therefore
be as inexpensive as possible. We are not yet sure of the extent
to which our current editing operations help the user to tag code.
One method to enhance automatic tagging is to employ program
analysis to infer that lines of code belong to the same concern.
For example, the use of a variable defined to be in another con-
cern would indicate that the code using the variable belongs to
that concern.
The second issue is the view consistency problem. Editing op-
erations in a given plan should modify the hidden code in a
consistent manner. For example, there are a number of ways to
handle the situation in which the user deletes a block of code
containing hidden text belonging to a concern not in the current
plan. Our tool’s current strategy is to detect this situation and
disallow the operation. In effect, this forces the user to make the

hidden text visible and resolve the conflict. An alternative is to
use an internal representation of the code which better models
concern dependencies—if the hidden concern is independent of
the current plan, the visible code can be deleted while leaving
the hidden concern. Obviously, a complete solution requires
program analysis to guarantee that the deletion of the visible
code does not change the semantics of the hidden code.
A third open question is the extent to which code can truly be
simplified in the manner illustrated in Figure 2. It seems that
some rewriting of the visible code in a plan is necessary in order
to arrive at a concise, easy-to-understand representation. We
took some liberty in Figure 1 by splitting an if-then-else
statement into the first two if-then statements. This allowed
us to tag the entire if-then statements as belonging to one
concern or the other. In the original representation, we would
have been forced to tag the contents of the branches and not the
if-then statements themselves in order to avoid else clauses
without associated if statements. A side effect of this strategy
is empty “{}” blocks in certain plans. Clearly some sort of
“pretty printing” of the code is necessary to remove such noise,
as well as careful management of editing operations.
Finally, we must expand our own evaluation of the approach
outlined in Section 4 to include evaluation via user studies. Ad-
dressing the issues described above can help reduce the costs
associated with using this approach. However, it should be pos-
sible to evaluate the basic idea using the prototype we have
already implemented.

7. CONCLUSION
In this paper we have presented a new, editor-based approach to
dealing with tangled concerns. Inspired by the use of plans in
other engineering disciplines, our approach attempts to provide
the developer with the capability to create complex relationships
between concerns, while, at the same time, providing mecha-
nisms for keeping them manageable.
While our approach shows some promise, evaluation is an obvi-
ous area of future work. In addition, there is an opportunity to
exploit information from analysis of the source code in order to
automate much of the manual labor required by our initial proto-
type. In addition, the filtering can be made “smarter” to address
anomalies such as empty “{}” brackets resulting from hiding the
body of the block.

ACKNOWLEDGEMENTS
We would like to thank the Eclipse developers, especially Tom
Eicher, for their technical assistance in modifying Eclipse to
support editing of plans. We would also like to thank the
anonymous reviewers for their helpful comments.

REFERENCES
[1] Lee Carver and William G. Griswold. Sorting out concerns.
Position paper for Multi-Dimensional Separation of Concerns
Workshop, OOPSLA 1999.
[2] Eclipse.org, The Eclipse homepage. URL: http://www.-
eclipse.org/
[3] The GNU Project, The Emacs homepage. URL: http://-
www.gnu.org/software/emacs/emacs.html
[4] The GNU Project, The grep homepage. URL: http://www.-
gnu.org/software/grep/grep.html

[5] W. G. Griswold. Coping with Crosscutting Software
Changes Using Information Transparency. In Reflection 2001:
The Third International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns, Kyoto, September
2001.
[6] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-oriented programming. In ECOOP'97: Proceed-
ings of the European Conference on Object-Oriented Program-
ming, pages 220-42. Springer-Verlag, 9-13 June 1997.
[7] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of As-
pectJ. In J. Lindskov Knudsen, editor, ECOOP 2001: Object-
Oriented Programming 15th European Conference, volume
2072 of Lecture Notes in Computer Science, pages 327-353.
Springer-Verlag, Budapest, Hungary, June 2001.

[8] Albert Lai and Gail C. Murphy. The Structure of Features in
Java Code: An Exploratory Investigation. Position paper for
Multi-Dimensional Separation of Concerns Workshop, OOP-
SLA 1999.
[9] Brian Marick and Daniel LaLiberte. hide-ifdef-mode.el.
URL: http://www.mit.edu/afs/athena/contrib/epoch/lisp/hideif.el
[10] Gail C. Murphy, Albert Lai, Robert J. Walker, and Martin
P. Robillard. Separating Features in Source Code: An Explora-
tory Study. In Proceedings of the 23rd International Conference
on Software Engineering, pages 275-85, Toronto, Canada, 12-19
May 2001. IEEE.
[11] Mark Weiser. Program slicing. IEEE Transactions on Soft-
ware Engineering, SE-10(4):352-7, 1984.

Towards the development of Ambient Intelligence
Environments using Aspect-Oriented techniques*

L. Fuentes, D. Jiménez, M. Pinto

Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga
Boulevard Louis Pasteur, 35 29071 Málaga (SPAIN)

Email: {lff, priego, pinto}@lcc.uma.es

* This research was funded by the CICYT under grant TIC2002-04309-C02-02.

Abstract
Nowadays the interest in Ambient Intelligence Environments

has grown considerably due to new challenges posed by the
evolution of society requirements to more friendly environments.
Ambient Intelligence technology is not fully developed and
integrated in everyday life, but a lot of organisations are interested
in it. On the other hand, Aspect Oriented Software Development is
considered a growing technology that improves the modularity and
adaptability of complex large-scale systems. Then, our goal is the
development of an Ambient Intelligence Aspect-Oriented platform
adapting DAOP, a component and aspect platform.

1. INTRODUCTION

Today computational devices are being used in hundreds of
human activities, ranging from office work, industrial
systems and domotic systems. Hardware and computational
technologies have evolved to satisfy the services demanded
from these activities, like phone communications or games.
This evolution has been in parallel with the development of
new kinds of devices. These new devices like the last
generation of mobiles and PDAs, pose high CPU and
storage capacity requirements demanded to perform the new
services. Examining carefully the current state-of-art we can
see that the future of all these new technologies is the
convergence to the Ambient Intelligence concept or AmI.

The origins of the AmI are first found in 1991, when Mark
Weiser wrote an article about Ubiquitous Computing [1].
For Weiser, the ubiquitous computing term is the opposed to
virtual reality. Where virtual reality puts people inside a
computer-generated world, the ubiquitous computing forces
the computer to live in the real world. The Ubiquitous
Computing is then referred as the capacity of integrating
autonomous computational devices in the real world. The
devices are able to extract data from the real world that
surrounds them and perform some data processing in order
to obtain results that can be used afterwards by others
devices. The main characteristic of the ubiquitous
computing is that minimises the computer device intrusion
in real world. Ideally, the human beings in an AmI
environment will not notice the devices.

As an example of this type of interactions we can consider
the communication between a humidity sensor device and a
garden irrigation device. The former device will inform the

later one about humidity variations, and the irrigation device
will take actions to preserve the environment humidity
according to the user preferences. Another example that we
will examine more carefully in this paper is the application
of AmI technologies to a car equipped with several devices
that communicate among themselves and provide some
useful services like user identification, local traffic
information services, road obstacle detection sensors or car
diagnostic services.

Weiser shows the need of finding new ways to obtain a
better integration of the information technology in everyday
life activities. He postulates that this integration must
include the people social behaviour and the technology
accessibility as main concepts. The proposed concepts are
very general, but the main idea from his work is that devices
will need to be adapted to people and that this will only be
possible by developing much more natural interfaces
between human beings and machines (voice, hand gesture,
etc.). But in spite of the efforts the project was not
successful, mainly because in that date, the available
technology does not meet the requirements necessary to
support the proposed ideas.

In the last few years, Weiser’s ideas were retaken when the
new technologies like mobile and wireless networks started
to evolve. In consequence, the AmI concept has been
adopted after several meetings of the European ISTAG [2]
(Information Societies Technology Advisory Group) and
encompasses a broader vision of the ubiquitous computing
idea proposed by Weiser. The meetings started in 2001 and
the goals were to promote and extend the use of ubiquitous
computing technologies in the 6th European Community
Programme for Research and Technological Development.

The initial meeting ended with the creation of several
documents for the IPTS (Institute for Prospective
Technology Studies). The documents can be found at
http://www.cordis.lu/ist/istag.htm. The ISTAG said that the
examples proposed in those documents would be
technologically viable for year 2010. In the documents, they
have also pointing out the critical development areas of
technology and the main fields of application (genomic,
biotechnology, information society technology, nano-
technology, nano-science, aeronautic and space, food
production security, sustainable development and economic
and politics sciences).

In addition to the advances in hardware and computational
technologies AmI should take advantage of the new
software development technologies that have emerged in the
last years. The importance of applying advanced software
technology have been made manifest after seeing the
difficulties of developing concrete AmI oriented projects
like Aura [12] or Oxygen [13]. In this sense, we think that
AmI applications are good candidates to be modelled using
Aspect-oriented Software Development techniques or
AOSD [3]. Since AmI environments are dynamic and are
characterized by the runtime changes of interactions among
users and devices, presenting strong requirements of
dynamic adaptability, they are good candidates to benefit
from aspect separation techniques.

In AOSD, aspects are defined as properties of an application
that cut across some or all the application objects or
components [11]. The AOSD tries to identify, isolate and
extract these properties from the application core
functionality, modelling these properties as aspects. Aspects
can evolve independently from component functionality, so
applications become more modular and, in addition, we can
reuse those aspects in others similar applications. Moreover,
we can replace the number and type of aspects that are
applied to an application without modifying the application
code. We think that identifying and separating aspects we
reduce the complexity of the evolution management of AmI
applications both at design and at runtime. In this paper we
will try to identify the most relevant aspects that are found
when decomposing an AmI application in software
components and how DAOP, a component and aspect
platform can help us in the application development process.

After this introduction we will show in section 2 the most
relevant aspects we found in AmI applications. In section 3,
we will show our proposal towards the definition of a
platform for AmI applications and finally, we will expose
our conclusions and future work.

2. ASPECTS IN AMBIENT INTELLIGENCE
ENVIRONMENTS

Before starting to explain which aspects we have identified
in AmI environments, we will provide a brief summary of
the characteristics that any AmI application must show and
the problems that arise when we develop these applications.
The three main characteristics are:

Ubiquitous Computing, that is the ability of providing
computational capabilities to any device everywhere in a
non-intrusive way. These devices range in size from a board
to a simple tag. There are three problems that we face when
developing Ubiquitous Computing applications. First, the
limited amount of energy [7] that those devices have
available to function. Second, the low computing power that
those devices provide and finally, the limited device storage
capability known as the “nomadic data” problem. See [5]
and [6]. This last problem appears due to the limited storage
capacity of devices that make impossible store and retrieve
all the information generated by them from everywhere.

Ubiquitous Communication, that is the ability to
communicate among them any kind of device. When we try
to implement this characteristic, we face several different
problems. The first one is the device and communication
protocol heterogeneity. This heterogeneity prevents good
communication interoperatibility between devices. The
second problem is the dynamic nature of these
environments. The applications are executed like being part
of a large distributed application and the coordination
between them is difficult. It requires a solid distributed
network system, a homogeneous interchange information
format, a communication coordination system, a dynamic
aware location mechanism and a homogeneous way to
achieve the heterogeneous devices interconnection. Another
problem is the scalability in a distributed network system.
When the system is crowded of devices, the
communications channels become saturated and
interferences and errors in communications start to rise.
When this happens, the need of scalable adaptation
strategies is a must. Finally, the last problem encountered is
the communication security and privacy. The special nature
of wireless communications makes them vulnerable to
intrusions or data interception problems. We must assure the
privacy of confidential and sensible data by encryption or
others procedures.

Natural Interfaces. The main goal of Weiser was the
integration of devices in a human world. We must develop
new ways of human-device interaction. To achieve this, we
must solve two problems. Non–intrusive hardware, the
hardware devices must be easily integrated into everyday
object and become “invisible” to people. So, people do not
have to care about how to interact with it. Natural interfaces,
the devices must provide alternative human interfaces like
voice or hand gesture recognition. While non-natural ways
of communication like keyboard or mouse interfaces must
tend to disappear.

Ambient Intelligence relevant Aspects

After describing the development problems that AmI
applications must face, our next goal is to identify the main
properties common to most AmI applications. Usually,
these properties are independent of the functionality of
different devices and therefore, it is a good approach to
model them as aspects. Now, we are going to describe the
most important properties that we have found:

Access Control. Most part of AmI services define
restrictions on which devices can access to them. For
example, it will be a really bad idea to allow a child to open
his parent door. The access control property applied to the
AmI service will handle which actions can be done and
which information will be available by defining a control
access list for hardware or software components. This is a
typical property that should be modelled as an aspect to
allow the replacement of the access control mechanism
without affecting the application code.

Authentication. All devices and users in the environment
must have a unique identifier. The authentication service is
provided by most part of non-trivial applications in AmI
environments. The device or user authentication can be
performed using a username and a password, a digital
signature, a user voice recognition mechanism, a digital
certificate or any other identification method. We can model
this property as an aspect and select the adequate method to
achieve the user or device authentication.

Awareness. The AmI environment is constantly changing,
new services and applications appear and others disappear
without warning. The awareness property will be
responsible of notifying the changes in the state of devices.
This property comes from the Collaborative Virtual
Environments [4], but it is also applicable to AmI
environments. We should select carefully the kind and
amount of information transmitted because we must not
flood the receiver with useless information. The awareness
notifications are captured by the environment devices and
the data retrieved keeps their environment perception
updated. We think that this would be modelled as an aspect
because detaching this code from device core functionality
allows us to manage different levels of information that is
sent or received and even modify this information before it
reaches the target. This aspect is crucial in AmI
environments due to their dynamic nature and the necessity
of most devices in the environment to be aware of changes.

Coordination. Occasionally it is interesting to perform
certain specials operations when several circumstances are
met in the environment. For example, when an event is sent
indicating that a user has opened an AmI car door, we
probably need to coordinate several AmI car components to
react to this event. A coordination aspect can be modelled to
handle the event and send adequate messages to the
involved components. It is interesting to model this as an
aspect because in AmI environments this kind of interaction
is very common.

Communication. AmI environments support heterogeneous
devices with different communications protocols and data
interchange structure. A communication aspect is useful to
act as a bridge to interconnect different devices that
normally cannot communicate. If we model this property as
an aspect it would be possible to adapt the device
communication protocol at runtime to accept
communications from others devices.

Encryption. Security in AmI environments is a must,
because all the communications are open and thus easy to
intercept and alter. We require a sophisticated mechanism to
adapt the communication trust necessities at any time. The
encryption property decouples the encryption security
system from devices. Modelling this property as an aspect
permits the replacement of the encryption model without
affecting the application. Another possible aspect use is
when the device is not capable of providing this encryption
mechanism due to processing or storage limitations and the

aspect can redirect the task to other specialised devices in
the environment.

Error handling and recovery. Applications in this moving
and dynamic environment encompasses a high error rate,
usually due to interferences, communication transmission
errors, communication channel saturation or application
unavailability. This aspect helps to achieve a better
performance in this field providing specifics solutions
considering the services and the devices available in the
environment. For example, imagine that we are in a
congress registration hall totally automated using AmI
automatic registration devices. If one or several of this
devices are out of service, an error handling aspect can
select other working registration device from the
environment and start the login process without reporting
the error to the user.

Language Internationalisation. In an AmI environment it is
possible that not all users understand the natural language of
AmI interfaces or the voice messages of certain devices. For
example, an English user probably does not understand a
Japanese character display or message. The applications
should be able to adapt automatically the interface language
to the user preferences. This property can be easily
modelled as an aspect since crosscuts several components,
and it is used to adapt a component to a user profile.

Persistence and Nomadic Data or Pervasive Data [5]. Due
to the fact that the information used by a device can be
distributed in different locations, we must provide a
mechanism to store it efficiently and the possibility of
migrating this information to different devices while the
user is moving. Thus, this property can be modelled as an
aspect. Another use of this aspect is to remotely store
information for devices that cannot locally store some
information due to storage restrictions.

To finish this section, we are going to show an example of a
simple AmI application modelled with aspects. Suppose that
we have a car that is equipped with AmI technology
devices. Each device executes one or more specialised
programs. The car has a navigation computer, a device
connected to a traffic station and some other utility devices
like proximity sensor, speech detection devices, car engine
diagnosis device, air conditioner, etc.

In the example, we are going to focus in devices that operate
the car doors and windows. These devices are controlled by
an AmI application modelled as a software component
called “Car Door Component” as shown in Figure 1. In an
AmI world there is no need of keys for cars. The user will
be recognised by his voice when he approaches and orders
the car to open the door. The authentication aspect will
perform the user recognition task before executing the open
door command. The authentication aspect is useful to avoid
that unauthorised people open the door. If the user is
correctly identified, the device will continue the order
execution. After the authentication aspect has been applied,
the car door device will open the door and finally the

awareness aspect will be evaluated as shown in Figure 1.
This aspect will deliver an event that contains information
about who has open the door. This event is broadcasted to
the environment so that all the components interested in it
can catch and evaluate it. For example the navigation
computer component after receiving the event executes a
personalised greeting or adapt the seat to the user stored
preferences, or notifying a traffic station about a new car in
this street.

Figure 1 Aspects and Car Door Component.

We justify the use of aspects to be able to change the
different authentication or awareness, methods without
changing the application code. For instance, we can use
digital signature or eye recognition instead of voice
recognition for the authentication aspect. We can also (re)
use the defined authentication and awareness aspects in
others devices, like a car navigation device, a device that
controls the driver seat preferences or an air conditioner
device.

To finish this section we will highlight several questions. In
our model, aspects can be executed in sequential or parallel
mode. We can also define if an aspect will be applied before
of after the component has processed a message. In the
example we have executed the two aspects sequentially,
authentication before the device command execution and
awareness after completing the command execution. If any
of the aspects fail during the evaluation, the execution
process stops and an exception is raised notifying the
problem. Finally the last issue is that most of the proposed
aspects like authentication, access control awareness or
encryption can be developed using any aspect platform or
aspect oriented language (for example AspectJ [14]).

3. ASPECT-ORIENTED AMBIENT
INTELLIGENCE PLATFORM

The CAM/DAOP platform has been designed by our group
to support the development of component and aspect based
distributed applications. We have successfully developed a
Java/RMI implementation of the platform and several
collaborative applications [4]. This platform defines
components and aspects as the application building blocks
and performs the weaving process at runtime [8]. You can
find additional information about how DAOP performs the
dynamic weaving between components and aspects in [8]
and [9]. The language we use to specify a kind of
component and aspect composition is performed using an
Architecture Description Language called DAOP-ADL [10].
This language uses XML to explicitly describe the
architecture of an application that can be modified by
DAOP at runtime. This is a powerful feature to reconfigure

systems such as AmI environments. Our actual efforts are
oriented to adapt the DAOP platform to the AmI
requirements.

The DAOPAmI platform

Following the Weiser's vision [1], in a typical AmI
environment there are hundreds of devices. This leads us to
a heterogeneous environment populated of devices with
very different capabilities and requirements. The current
DAOP platform kernel implementation exceeds the storage
and processing capabilities of many of the AmI typical
devices and the communication and security requirements of
AmI applications. So, we present a new platform, named
DAOPAmI that extends the DAOP platform capabilities and
the DAOP-ADL language to support the specific needs of
AmI applications. Now we are going to explain the
modifications performed upon the DAOP platform to adapt
it to the AmI applications requirements.

Figure 2 DAOPAmI kernel Architecture.

In [1] Weiser proposed three different devices categories
according to its capabilities (taps, tabs and boards). We
follow this standard division in our architecture classifying
the devices in three profiles (which are similar to J2ME [15]
profiles). Figure 2 shows the services that each profile
supports. Now, we are going to characterize each one.

 <component role=”temperature”>
….
 <delegatedComponent>
 <roleInstance>temperature1</roleInstance>
 <address > 150.214.108.46:1234</address>
 </delegatedComponent>
</component>

Figure 3 Component delegation definition.

Basic profile, this profile covers the simplest devices like
sensors, identification cards, calendars or calculators,
corresponding to Weiser’s taps. As is shown in Figure 2,
devices must implement at least the communication service
that allows them to send asynchronous or synchronous
messages to other devices. Currently, we have re-
implemented this service using the J2ME communication
API due to the low storage and processing capabilities of
these devices. Additionally, they delegate the rest of
platform functionality to other devices using a new service
delegation mechanism provided by the DAOPAmI platform.
Notice that devices not supporting the minimum DAOPAmI
platform functionality are modelled as components inside
other larger devices.

Figure 4 DAOPAmI Air-Conditioner device configuration.

DAOP uses role names to identify and address components
and aspects. So we extend the component definition in
DAOP-ADL with the physical address of the device
modelled by this component. We also add a role instance
name to identify individual components playing the same
role (see Figure 3). Likewise, in the device side we specify
the address of the software component that will receive the
device output messages.

Intermediate profile, this profile comprises most of the
typical AmI devices that have a medium computational and
storage capacity like PDAs, mobile phones or Laptops
corresponding to Weiser’s tabs. They implement the basic
profile functionality and additionally, as shown in Figure 2,
the component factory service to manage software
components. The property service that resolves some
component and aspect data dependencies and finally the
aspect evaluation service that manages the component-
aspect weaving mechanism.

Full profile, this profile implements all the platform
functionality including the intermediate profile and several
additional services like the decision-making service, that
performs automatic actions based on the environment and a
set of logical rules. This service is very valuable to model
flexible coordination aspects. The AAConfiguration service,
that serves to configure applications and runtime. A
persistence service to store temporal and persistent
application data and finally a security service that
guarantees the data and communications privacy. These
devices have large amounts of storage and processing
capabilities like advanced desktop computers and enterprise
servers. This kind of devices are equivalent to Weiser`s
boards.

In the current CAM/DAOP platform implementation, when
an application starts, it retrieves the application architecture
configuration from local storage or from an application
repository. But, what happens if the device does not
implement any storage facilities or cannot access directly to
an application architecture repository. In this case the
DAOPAmI kernel can be configured to retrieve this
information from other kernel, using the communication
service. After retrieving the application architecture data the
application execution starts normally. But a second problem
arises. What about if the application demands some services

that the device cannot support due to resource or hardware
restrictions? In this case, the kernel can be configured to
communicate with other kernels delegating the service
execution using the delegation mechanism.

Delegation mechanism example

Suppose that we have an air-conditioner device and a
temperature sensor located inside a car equipped with AmI
technology. The temperature sensor and the air-conditioner
devices both support an intermediate kernel, as is shown in
Figure 4. The first one is modelled as a temperature sensor
component and a coordination aspect that is applied to the
output messages of this component. The component takes
periodic heat measures and emits an event containing this
information. The coordination aspect evaluates this event
and distribute it to others components like the air-
conditioner. The air-conditioner device is modelled by a
component that manages the physical device plus two
aspects. The access control aspect ensures that the incoming
messages come from valid device sources and the
persistence aspect stores a list of received messages.

But, what happens if the sensor device cannot support this
configuration due to kernel memory constrains? To solve
this, the temperature sensor device delegates the services
execution to other kernel. In this new scenario, the
temperature sensor application architecture definition has
been modified, as explained before, to delegate all kernel
services, except communication service, to the kernel
executed in the sensor array device shown in Figure 5. The
temperature sensor components and aspect are executed
within the sensor array kernel, and all events and messages
sent to the temperature sensor component are redirected to
the sensor array kernel to be evaluated.

An example: an AmI car

Following the previous car example, now we are going to
show a more complete car door configuration using several
of the previously identified aspects. As shows Figure 6,
when a user approaches to the car and order “open the
door”, an authentication aspect will be executed in order to
determine the user identity before the voice reaches the
speech recognition component. After identifying the user
voice as a valid one, the speech recognition component

Figure 5 Temperature sensor service delegation.

Figure 6 Extended Car Door device kernel configuration.

processes the voice signal and sends a message to the car
door component notifying about the command.
Afterwards, the car door kernel receives the message and
the access control aspect is executed verifying that the
user has the right to perform the action. After the
verification, the component executes the requested
command and then, the persistence aspect is applied to
save an activity record. Finally the awareness aspect is
executed, which broadcasts information about the
performed action to the environment that can be used by
other components.

This example shows how the DAOPAmI kernel provides
support to AmI application development using an AOSD
approach. The use of aspects let us handle the AmI
applications dynamic behaviour in a natural way and
easily adapt it to unexpected situations. For example we
can adapt the previous example to prevent that children
can open the car door from inside. To achieve this, we add
a new aspect before the access control aspect that retrieves
the user location and profile including for example the
user age from the AmI environment. With this
information the new aspect determines if the command
execution can proceed or not. Thus, we have modified
completely the application behaviour without changing
the code of existing components; we have just added a
new aspect to the application architecture definition.

4. CONCLUSIONS AND FUTURE WORK

All ideas proposed in this article are a first approach to
determine the architecture requirements to develop AmI
applications and define the basic services that are needed.
The next step will be extending the CAM/DAOP platform
to support the new kernel services and the DAOP-ADL
language to express the new requirements. We think that
delegation mechanism is an improvement that solves
problems related to resource-constrained AmI applications
in the DAOP platform and proves that our AOSD
approach is feasible.

We think that AmI technology will be very important and
will affect not only the way we see the software
development but also the society and how people interact
with computers and technology in general in the near
future. We also think that the AOSD technology can help
to produce more configurable and easy to manage AmI
environments. AmI technology is still in its first stages
and we need to do a lot of work before reaching the
Weiser Ideas [1]. Our proposal tries to mix the best of

both AmI and AOSD technologies by adapting an
existing component-aspect dynamic platform. We think
that this eases the AmI application development process
and encourage the aspect reuse.

5. REFERENCES

[1] Weiser, M., “The computer for the Twenty-First
Century”, Scientific American 165, 1991, p. 94-104.
[2] Information Societies Technology Advisory Group.
http://www.cordis.lu/ist/istag-reports.htm
[3] Aspect-Oriented Software Development
http://www.aosd.net
[4] Pinto, M., Amor, M., Fuentes, L., Troya, J.M.,
”Collaborative Virtual Environment Development: An
Aspect-Oriented Approach”, Proceedings of DDMA'01,
2001.
[5] J. Kubiatowicz et al, “OceanStore: An Architecture
for Global-Scale Persistent Storage”. Proceedings of the
ASPLOS November 2000.
[6] The Coda File System. http://www.coda.cs.cmu.edu/
[7] Goldsmith A.J, “Design Challenges For Energy-
Constrained Ad Hoc Wireless Networks”, IEEE Wireless
Communications, August 2002.
[8] Pinto M., Fuentes L., Fayad, M.E., Troya, J.M.,
“Separation of Coordination in a Dynamic Aspect-
Oriented Framework”, Proceedings of AOSD’02, April,
2002.
[9] Pinto M., Fuentes L., Fayad, M.E., Troya, J.M.,
“Towards an aspect-oriented framework in the design of
collaborative virtual environments”, Proceedings of
FTDCS’01 workshop, November, 2001.
[10] Pinto, M., Fuentes, L., Troya, J.M., “DAOP-ADL: an
architecture description language for dynamic component
and aspect-based development”, Proceedings of GPCE
2003. pp 118-137, Erfut, Germany 2003.
[11] Kiczales, et Al., “Aspect Oriented Programming”.
Proceedings of ECOOP’97.
[12] Toward Distraction-Free Pervasive Computing.
Project Aura. IEEE Pervasive Computing 2002.
http://www-2.cs.cmu.edu/~aura/
[13] MIT Oxigen Project http://oxygen.lcs.mit.edu/
[14] AspectJ http://eclipse.org/aspectj/
[15] Java 2 Platform Micro Edition.
http://java.sun.com/j2me/

Towards an Aspect Weaving BPEL engine ∗

Carine Courbis
University College London

Department of Computer Science
Adastral Park - Martlesham

IP5 3RE, UK

carine.courbis@bt.com

Anthony Finkelstein
University College London

Department of Computer Science
Gower Street, London

WC1E 6BT, UK

a.finkelstein@cs.ucl.ac.uk

ABSTRACT
This position paper proposes the use of dynamic aspects and
the visitor design pattern to obtain a highly configurable and
extensible BPEL engine. Using these two techniques, the
core of this infrastructural software can be customised to
meet new requirements and add features such as debugging,
execution monitoring, or changing to another Web Service
selection policy. Additionally, it can easily be extended to
cope with customer-specific BPEL extensions. We propose
the use of dynamic aspects not only on the engine itself
but also on the workflow in order to tackle the problems of
Web Service hot deployment and hot fixes to long running
processes. In this way, composing a Web Service ”on-the-fly”
means weaving its choreography interface into the workflow.

Keywords
BPEL engine, dynamic aspect, visitor design pattern, Web
Service, SOA.

1. INTRODUCTION
Increasingly, applications are built from existing compo-

nents or services at a coarser-grain level than manipulating
classes. The advantage of using Web Services in comparison
to components is to enable the development of loosely cou-
pled distributed business applications that are highly inter-
operable and cross organisational boundaries. This paradigm
is called Service-Oriented Computing1 (SOC). There is a
fundamental shift toward a Service-Oriented Architecture
(SOA) supported by the use of standards: WSDL (Web
Service Description Language) to describe the business in-
terfaces of the services (i.e. the contracts), UDDI (Universal

∗This research is supported by the Generative Software De-
velopment project funded by BT Exact.
1The first international conference on
SOC has just taken place in Italy (see
http://www.unitn.it/convegni/icsoc03.htm).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The Third AOSD Workshop on Aspects, Components, and Patterns for In-
frastructure Software (ACP4IS)March 2004, Lancaster, UK
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Description, Discovery and Integration) to publish and dis-
cover them, and SOAP (Simple Object Access Protocol) to
exchange messages between them, independently of the un-
derlying communication protocol.

With Web Services, there is a layer of abstraction above
the components that makes it possible to integrate a wide
variety of incompatible systems (interoperability) to build
an application. This layer of abstraction is often called the
orchestration layer. The most well established orchestration
technology for Web Services is BPEL (Business Process Ex-
ecution Language) [1], originally created by BEA, IBM, and
Microsoft, and currently submitted for standardisation to
the OASIS consortium. This XML-based language is rather
small [10] but sufficient to handle variables with scopes,
loops, conditional branches, synchronous and asynchronous
communications, concurrent activities with correlated mes-
sages, transactions, and exceptions. With this language, a
business process can be described by gluing different Web
Services together, creating a new Web Service. This process
description is interpreted by a BPEL engine.

In our view, the BPEL engine should be minimal but easy
to configure and extend to cope with new requirements and
features. But orthogonal functionalities such as execution
monitoring do not need to be enabled at each BPEL inter-
pretation as they are themselves performance-inefficient. Se-
lecting Web Services is another example of a possible adap-
tation. Instead of choosing at design or deployment time
which Web Service to use, the engine can choose one at
runtime, in accordance with specified criteria, on the first
occasion the service is invoked.

As BPEL is an extensible language (that is new instruc-
tions can be used in a process description to cope with user-
specific needs), its engine also needs to be extensible to inte-
grate new behaviours for user-specific instructions. To build
a flexible BPEL engine, we uses two techniques: Aspect-
Oriented Programming (AOP) [7] and the visitor design pat-
tern [5, 12]. By using these techniques, the engine can be
extended both statically2 by inheritance and dynamically by
aspects.

We intend to apply dynamic aspects not only to the en-
gine itself but also to the BPEL process to tackle the prob-
lems of Web Service hot deployment and hot fixes to long
running processes. For example, it can be useful to add
an unforeseen Web Service at runtime. We have also been
investigating a specific case in which services are used to
support a large Grid-based computational chemistry appli-
cation. In this application, there is a need for steering, in

2Dynamically, if the engine supports dynamic class loading.

other words changing the end of the workflow depends upon
results identified in earlier stages.

Our BPEL engine will manipulate different types of as-
pects; it can be seen as an aspect weaver that orchestrates
Web Services.

The aim of this paper is to explain how such an adaptable
BPEL infrastructure engine can be created taking advantage
of the visitor design pattern and dynamic aspects. It is
organised as follows. Section 2 presents a brief overview of
related work. Section 3 describes the design of our BPEL
engine. We conclude the paper in Section 4.

2. RELATED WORK
It is important that ”systems infrastructure”software such

as application servers, virtual machines, middleware, com-
pilers, and operating systems be open and adaptable. Oth-
erwise no user-specific feature or requirement can be added
after implementation time. To integrate new functionalities
requires redevelopment of the whole software. For example,
Gilad Bracha et al have developed their own Java compiler
to create a superset of the Java programming language, GJ,
with generic types and methods [4]. It was not possible
to adapt the Java compiler to cope with this language ex-
tension. Other examples are the VM-based runtime MOPs
(Meta-Object Protocols) such as Guaraná [11] that have de-
veloped their own JVM (Java Virtual Machine) to intercept
operations at runtime (with a VM-based solution, the pas-
sage from the base level to the meta level is invisible to the
programmer).

One solution to build more adaptable system infrastruc-
ture software is to use dynamic aspects. They are appro-
priate for run-time adaptations in service architectures [15]
and more precisely as hot fixes. By contrast with static as-
pects such as the ones used in AspectJ [6], dynamic aspects
can be woven or unwoven into/from a program ”on-the-fly”.
Sato et al present [16] a good introduction to dynamic AOP.
They also describe their dynamic weaver, Wool, that is a hy-
brid of two aspect implementation approaches. At runtime
and on demand, it either embeds hooks into a class for ex-
ecuting the advices and reloads it into the JVM, or inserts
hooks as breakpoints into the JVM. At least two dynamic as-
pect systems, JAC [14] and Handi-Wrap [3], use static code
translation on the byte-code, statically inserting the hooks
at all the potential join points. Using aspects on SOAs will
make it possible, for example, to check constraints (design
by contracts), such as the ones proposed in the Web Service
Offerings Language (WSOL) [18], or to monitor the execu-
tion with agents.

Using design patterns when implementing systems make
them more flexible. In the case of interpretors, the visitor
design pattern is very often chosen. Recently, this pattern
was used, for example, to implement Joeq [19], a virtual
machine and compiler infrastructure.

The existing service description languages and Web Ser-
vice flow languages address business process dynamics and
non-functional properties poorly. For example, in the cur-
rent BPEL version, it is not possible to add on demand or
replace a Web Service (a partner) at runtime; the workflow
needs to be stopped to be adapted. The idea of using aspects
for dynamic workflow adaptations or execution controls has
been outlined in [2]. With aspects, new activities can be
added or replaced, the control flow modified, the policy res-
olution to assign resources to activities changed or extended,

and resource invocations replaced.
To address the problem of dynamic selection and compo-

sition of Web Services, DAML-S [9], an ontology of services,
proposes the use of semantic descriptions. These descrip-
tions will then be manipulated by different agents or soft-
ware such as a semi-automatic composer of Web Services
[17]. With the latter, compositions on demand are based
on semantic descriptions and are validated by human con-
trollers. Daniel Mandell and Sheila McIlraith describe in [8]
how to augment BPEL with Semantic Web technology.

3. AN OPEN, EXTENSIBLE, AND CONFIG-
URABLE BPEL ENGINE

To have more flexible BPEL processes, we have chosen to
design and implement an open, extensible, and configurable
BPEL interpreter. Its core logic will be rather small as the
language does not contain many instructions, but we plan
to enrich it with new features such as:

• To easily extend or modify its behaviour;

• To select or replace Web Services after deployment
time;

• To plug or unplug aspects in/from the engine on de-
mand;

• To hot-fix the workflow; for example, to compose on
demand new Web Services;

The advantages of these features and how we plan to imple-
ment them are now presented. At this end of this section,
we also briefly put together the architecture technical details
of our language interpreter.

3.1 Engine behaviour extension or modifica-
tion

BPEL is a language that can be extended with new user-
specific instructions such as launching an executable, or re-
placing a Web Service. This means that its engine needs to
be easy to extend. Also it would be useful to have the capa-
bility to modify the engine behaviour to take into consider-
ation user-specific requirements. The visitor design pattern
meets these requirements as it separates the data structures
and the semantics. The behaviour of each BPEL element is
represented as a visit method and the set of these methods
contained in a class (the visitor). As the engine code will be
modular, it will be easy to understand, maintain, extend by
inheritance, and modify by visit method overridings.

3.2 Selection and replacement of Web Services
Selecting a Web Service can depend on different criteria

and constraints: QoS (Quality of Service), price, the result
of a request, the trust you have in the provider, etc. In
the well-known Web Service example, the travel agency, the
selection policy for the airline company can be to take the
lowest fare from London to Morocco at Christmas time, or
the quickest trip without a stop, or to take British Airways
for the frequent flyer points. To find the lowest fare, each
airline company needs to be invoked; the selection policy can
be a minimal business process. Each partner (Web Service)
involved in a business process can have a different selection
policy. The selection may be performed at runtime on the
first occasion the service is invoked or at replacement re-
quest, not at design or deployment time. We plan to accept

one selection policy per partner and a generic one if none
is provided. This policy will be used at runtime by the en-
gine to select, from an UDDI registry, a Web Service that is
signature and constraint compliant.

There is also a need to be able to replace, at runtime, a
Web Service that is slow, unresponsive, or no longer useful
for the current iteration. In this way, the workflow can be
adapted to improve performance or QoS, to avoid termina-
tion because there is no answer from one partner, and to use
another similar service in a loop or on user demand. The
substitution can only occur if the new Web Service is service-
signature compliant (same WSDL description as there is no
service adaptor) and if the service to be replaced is in a sta-
ble state (not in a transaction, and without an initialisation
or one that does not impact on other partners).

To be compliant with the specifications, the core logic of
our BPEL engine (the visitor) should contain no Web Service
selection or replacement code. The solution is to set a hook
before service invocations (the invoke visit method) to add
these functionalities. In this way, services can be selected
and even replaced at post-deployment, as well as selection
policies.

3.3 Orthogonal concerns
It can be useful to enrich the core logic of the engine with

different concerns at post-implementation. In this way, the
engine is more modular, adaptable, and easy to maintain.
As some of the concerns can be impact-performant, such
as execution profiling or debugging, their corresponding as-
pects should be enabled to be woven or unwoven on demand
during execution. With these dynamic non-functional as-
pects, the engine can, for example, be controlled by agents
that monitor the execution and take actions if one service
provider is not responding. Such a concern can be useful es-
pecially for long running processes. We can also identify the
need for functional aspects between two service invocations
to perform local code execution such as converting the data
into another format.

We have defined an aspect BPEL-specific language using
XPath as a pointcut language to identify the join points
(matching the BPEL document) and Java as the advice lan-
guage3. In our first version, we have statically set hooks to
execute advices at all the potential join points; that is before
and after any BPEL instruction (visit method) such as in-

voke or receive, and at any process variable modification.
Plugging in an aspect means registering it on the current
process and also selecting the different nodes of the process
document (AST - Abstract Syntax Tree) identified by XPath
expressions to annotate them with the aspect name and the
name of the advice to execute. Before and after interpreting
an instruction, our system checks if there is any annotation
and calls the method to execute (advice) if this aspect is still
registered. Unweaving an aspect only means removing the
aspect from the registry.

3.4 Hot fixes applied to the workflow
For long running processes, adapting a workflow, accord-

ing to earlier results, by stopping it is not acceptable. There
is a need to modify, at runtime, the end of the workflow
by adding new computational instructions, and replacing or
deleting some instructions. This can also be seen as BPEL
aspects, using XPath to identify the join points but BPEL

3The implementation language of our engine is Java-based.

as the advice language (instead of Java for the aspects on
the engine). As these aspects act upon the workflow (func-
tional aspects) and have their advice in BPEL, we plan to
directly transform the process AST. These transformations
can only be applied to the workflow at some precise points
and under certain conditions that we need to identify to en-
sure the stability of the system. For example, deleting a
BPEL sequence can only occur if the engine has not started
interpreting it.

An important example of such hot-fixes is the composi-
tion, on demand, of a new Web Service and thus the addition
of its choreography interface. The dynamic aspect technol-
ogy is our solution to address dynamic composition of Web
Services: the choreography interface (BPEL instructions)
can be seen as advices and where to weave them as point-
cuts. Composing a new Web Service means transforming
the AST workflow to integrate the piece of its choreography
interface (BPEL advice). With this capability, the work-
flow can be extended to meet unforeseen post-deployment
requirements and user needs.

3.5 Architecture technical details
The core logic of our system (see Figure 1) is the BPEL

interpretor, implemented using the visitor design pattern.
It contains one visit method for each BPEL instruction and
traverses the typed structures, the BPEL trees, from top to
bottom. These trees are not only strictly typed to meet the
pattern requirements but are also based on the DOM API
to enable XPath selections of their nodes, which is useful for
the implementation of our BPEL aspect languages.

The code to handle the selection and replacement of Web
Services, and the engine aspects is represented as two as-
pects respectively that we can plug in or unplug from the
BPEL interpretor. In this way, the interpretor can be used
alone (faster) or extended, at runtime, with these function-
alities. Its code is independent from the BPEL aspect and
the Web Service selection code, and is compliant with the
BPEL specification. This possibility of plugging aspects is
due to our visitor design pattern implementation that checks
before and after each visit method call to see if some advices
need to be executed. More precisely, this check is done in the
visit method dispatcher (in our case, a generic visit method
instead of the different accept methods implemented in each
BPEL element class). More details about the visitor design
pattern implementation we are using can be found in [13].

The workflow aspect manager is also code independent
from the engine. It just needs to suspend the engine when
performing the transformations on the interpreted BPEL
document at some stable points and to get access to its data
environment to add or remove members (variables, partners,
etc.). Additionally, the annotations of the engine aspects al-
ready plugged in should be propagated onto any new BPEL
instruction added by insertion or replacement.

4. CONCLUSION
In this position paper, we argue that the visitor design

pattern and dynamic aspects can be used to implement an
extensible and adaptable BPEL engine, thus in SOAs. The
benefit of using the visitor design pattern is to write modular
code that is easy to extend by inheritance. This characteris-
tic, in the context of an extensible language such as BPEL, is
important so as to ease the incorporation of new instruction
behaviours into the interpreter. Involving aspects into the

AST

Engine aspect
repository

MyEngineAspect
...

<process ...>
 <partnerLinks></>
 <variables></>
 <faultHandlers></>
 <sequence>
 ...
 <invoke operation="treatData".../>
 ...
 </sequence>
</process>

class BPELEngine extends BPELTraversalVisitor {
 public visit(InvokeNode node) {...}
 public visit(ReceiveNode node) {...}
 ...
}

BPEL process

Parser

aspect MyWorkflowAspect {
 add/remove variable, partnerLink,
 partner, faultHandler, eventHandler,
 correlationSet, compensationHandler
 catch, catchAll in scope

 before //:invoke insert advice1
 after //.. insert advice2
 replace from //... to //... with advice3
 delete from //... to //...

 advice advice1
 <while condition="bpws:getVariableData(orders) > 100">
 ...
 </while>
}

Engine aspects

annotations

transformations

traversal

BPEL engine

Workflow aspects

Dynamic workflow
aspect manager

Dynamic engine
aspect manager

pointcuts of MyEngineAspect aspect {
 before //invoke[operation="treatData"] execute advice1
 after //invoke[operation="treatData"] execute advice2
}

class MyEngineAspect extends BPELAspect {
 public void advice1() {...}
 public void advice2() {...}
}

Members

Pointcuts

BPEL Advices

Web Service selection
and replacement manager

Partner selection
policy

Figure 1: Overview of the BPEL engine architecture

engine makes it possible to separate, in a modular way, the
different concerns, to focus only on its core logic in the first
place, and to rapidly integrate unforeseen concerns into it in
a non-invasive way. For greater flexibility, we have chosen
to have dynamic aspects to be able to weave and unweave
them into/from at runtime.

We also argue that dynamic aspect techniques can not
only be used in the engine itself but also on business pro-
cesses to address the well-known problems of Web Service
hot deployments and hot fixes. Additionally, we believe that
the BPEL engine should be customised with different selec-
tion policies as Web Service selection should be done after
deployment, and with Web Service replacement capability.

We have started the development of our system, using
SmartTools [13], a DSL (Domain-Specific Language) devel-
opment environment, to quickly prototype tools for our dif-
ferent languages (BPEL, the engine aspect language, and
the workflow aspect language). Later, we will need to re-
fine our aspect languages by identifying which pointcuts are
needed for advices either in BPEL (for the hot fixes such
as the choreography interface compositions) or in Java (for
orthogonal concerns).

5. ACKNOWLEDGEMENTS
The authors want to thank David Lesaint and George

Papamargaritis from BT Exact for the fruitful discussions,
as well as Ben Butchart from UCL.

6. REFERENCES
[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,

J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,

S. Thatte, and I. Trickovic. Business Process
Execution Language for Web Services version 1.1.
Technical report, BEA, IBM, Microsoft, SAP, Siebel
Systems, May 2003.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

[2] B. Bachmendo and R. Unland. Aspect-Based
Workflow Evolution. In Tutorial and Workshop on
Aspect-Oriented Programming and Separation of
Concerns, Lancaster, UK, August 2001.
http://www.comp.lancs.ac.uk/computing/users/marash/aopws2001/papers/bachmendo.pdf.

[3] J. Baker and W. Hsieh. Runtime Aspect Weaving
Through Metaprogramming. In First International
Conference on Aspect-Oriented Software Development,
pages 86–95, Enschede, The Netherlands, April 2002.
ACM.
http://www.cs.utah.edu/~wilson/papers/handiwrap-aosd02.pdf.

[4] G. Bracha, M. Odersky, D. Stoutamire, and
P. Wadler. Making the future safe for the past:
Adding Genericity to the Java Programming
Language. In Proceedings of OOPSLA’98, Vancouver,
Canada, October 1998. ACM Press.
http://www.cis.unisa.edu.au/~pizza/gj/Documents/gj-oopsla.pdf.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley Pub Co, January
1995. ISBN 0201633612.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In J. L. Knuden, editor, Proceedings of
European Conference on Object-Oriented
Programming, volume 2072 of LNCS, pages 327–355,
Budapest, Hungary, June 2001.

http://www.cs.ubc.ca/~gregor/kiczales-ECOOP2001-AspectJ.pdf.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira, and J.-M. Loingtier. Aspect-Oriented
Programming. In M. Aksit and S. Matsuoka, editors,
Proceedings of the 11th European Conference on
Object-Oriented Programming, volume 1241 of LNCS,
pages 220–242, Jyväskylä, Finland, June 1997.
Springer-Verlag.
http://www.cs.ubc.ca/~gregor/kiczales-ECOOP1997-AOP.pdf.

[8] D. J. Mandell and S. A. McIlraith. Adapting
BPEL4WS for the Semantic Web: The Bottom-Up
Approach to Web Service Interoperation. In D. Fensel,
K. Sycara, and J. Mylopoulos, editors, Proceedings of
the Second International Semantic Web Conference,
number to appear in LNCS, Sanibel Island, USA,
October 2003. Springer-Verlag.
http://www.ksl.stanford.edu/people/sam/iswc2003sam-djm-FINAL.pdf.

[9] T. D. S. C. D. Martin, M. Burstein, G. Denker,
J. Hobbs, L. Kagal, O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia,
T. Payne, E. Sirin, N. Srinivasan, and K. Sycara.
DAML-S: Semantic Markup For Web Services 0.9,
2003. white paper available online at
http://www.daml.org/services/daml-s/0.9/daml-s.pdf.

[10] N. Mukhi. Reference guide for creating BPEL4WS
documents. Technical report, IBM, November 2002.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpws4jed/.

[11] A. Olivia and L. E. Buzato. The Design and
Implementation of Guaraná. In Proceedings of the 5th
USENIX Conference on Object-Oriented Technologies
and Systems (COOTS’99), San Diego, USA, May
1999.
http://www.ic.unicamp.br/~oliva/guarana/docs/desimpl.ps.gz.

[12] J. Palsberg and C. B. Jay. The Essence of the Visitor
Pattern. In Proceedings of COMPSAC’98, 22nd
Annual International Computer Software and
Applications Conference, pages 9–15, Vienna, Austria,
August 1998.
http://www.cs.ucla.edu/~palsberg/paper/compsac98.pdf.

[13] D. Parigot, C. Courbis, P. Degenne, A. Fau,
C. Pasquier, J. Fillon, C. Held, and I. Attali. Aspect
and xml-oriented semantic framework generator:
Smarttools. In M. van den Brand and R. Lämmel,
editors, ETAPS’2002, LDTA workshop, volume 65 of
Electronic Notes in Theoretical Computer Science
(ENTCS), Grenoble, France, April 2002. Elsevier
Science.
http://www.elsevier.nl/gej-ng/31/29/23/117/52/33/65.3.009.pdf.

[14] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A Flexible Solution for Aspect-Oriented
Programming in Java. In A. Yonezawa and
S. Matsuoka, editors, Metalevel Architectures and
Separation of Crosscutting Concerns: Third
International Conference, Reflection’01, volume 2192
of LNCS, pages 1–24, Kyoto, Japan, September 2001.
http://jac.aopsys.com/papers/reflection.ps.

[15] A. Popovici, G. Alonso, and T. Gross. Just-In-Time
Aspects: Efficient Dynamic Weaving for Java. In
Proceedings of the 2nd international conference on
Aspect-Oriented Software Development, pages
100–109, Boston, USA, March 2003. ACM Press.
http://www.lst.inf.ethz.ch/research/publications/publications/AOSD_2003/AOSD_2003.pdf.

[16] Y. Sato, S. Chiba, and M. Tatsubori. A Selective,
Just-in-Time Aspect Weaver. In Springer-Verlag,
editor, Proceedings of Generative Programming and
Component Engineering (GPCE’03), number 2830 in
LNCS, pages 189–208, Erfurt, Germany, September
2003.
http://www.research.ibm.com/trl/people/mich/pub/200306_gpce2003.pdf.

[17] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic
Composition of Web Services using Semantic
Descriptions. In ICEIS2003, Web Services: Modeling,
Architecture and Infrastuture workshop, Angers,
France, April 2003. ICEIS Book.
http://www.mindswap.org/papers/composition.pdf.

[18] V. Tosic, B. Pagurek, and K. Patel. WSOL - A
Language for the Formal Specification of Various
Constraints and Classes of Service for Web Service. In
The International Conference On Web Services,
ICWS’03, pages 375–381, Las Vegas, USA, June 2003.
CSREA Press.
http://www.sce.carleton.ca/netmanage/papers/TosicEtAlResRepNov2002.pdf.

[19] J. Whaley. Joeq: A Virtual Machine and Compiler
Infrastructure. In The Workshop on Interpreters,
Virtual Machines, and Emulators, pages 58–66, San
Diego, USA, June 2003. ACM SIGPLAN 2003.
http://www.stanford.edu/~jwhaley/papers/ivme03.pdf.

A case study of separation of concerns in compiler construction
using JastAdd II

Torbjörn Ekman
Department of Computer Science, Lund University, Sweden

torbjorn.ekman@cs.lth.se

Abstract

This paper presents a case study of separation of con-
cerns in compiler construction using the JastAdd II
compiler compiler. A domain-specific specification
language, Rewritable Reference Attributed Grammars
(ReRAGs), is combined with Java to implement com-
pilers in a high-level declarative and modular fashion.
Three synergistic mechanisms for separations of con-
cerns are described: inheritance for model modulari-
sation, aspects for cross-cutting concerns, and rewrites
that allow computations to be expressed on the most
suitable model. Each technique is presented using a se-
ries of simplified examples from static semantic analy-
sis for the Java programming language.

1 Introduction

We present a case study of separation of concerns in
compiler construction using the JastAdd II compiler
compiler. Simplified examples from static semantic
analysis for the Java programming language [GJSB00]
are used to demonstrate the mechanisms for separation
of concerns provided in JastAdd II. This work is part
of a larger project where the entire static semantics of
Java 1.4 have been implemented. We believe that Java
is a suitable language implementation for experiment-
ing on language modularisation because of its advanced
scope rules with nested types and inheritance as well
as need for reclassification of contextually ambiguous
names during name analysis.

JastAdd II uses a declarative compiler specification
in the form of Rewritable Reference Attributed Gram-
mars (ReRAGs) [EH04] combined with imperative Java
code. ReRAGs provide three synergistic mechanisms
for separations of concerns: inheritance for model
modularisation, aspects for cross-cutting concerns, and

rewrites that allow computations to be expressed on the
most suitable model. This allows compilers to be writ-
ten in a high-level declarative and modular fashion.

The rest of this paper is structured as follows. Sec-
tion 2 describes JastAdd II and its specification lan-
guage. The three mechanisms for separation of con-
cerns are demonstrated in sections 3, 4, and 5. Section 6
discusses how the three mechanisms are used to deal
with interaction between aspects. Section 7 points out
some related work and Section 8 concludes this paper
and discusses some future work.

2 JastAdd II Background

JastAdd II is an aspect-oriented compiler compiler
tool using declarative Rewritable Reference Attributed
Grammars (ReRAGs) and Java as its specification lan-
guages. The grammars define attributes and equations
to specify computations and information propagation in
the abstract syntax tree (AST). The formalism is object-
oriented viewing the grammar as a class hierarchy and
the AST nodes as instances of these classes. Behav-
ior common to a group of language constructs can be
specified in a common superclass and specialized or
overridden for specific constructs in the corresponding
subclasses. Often the most appropriate AST structure
can only be decided after parial attribution of the AST.
Rewrites allow restructuring of the tree to simplify the
specification of the remaining attribution. The follow-
ing sections give an introduction to JastAdd II compiler
specifications.

2.1 The AST class hierarchy

The nodes in an Abstract Syntax Tree (AST) are viewed
as instances of Java classes arranged in a subtype hier-
archy similar to the Interpreter pattern, [GHJV95]. An

AST class correponds to a nonterminal or a production
(or a combination thereof) and may define a number of
descendents and their declared types, corresponding to
a production right-hand side. In an actual AST, each
node must be type consistent with its ancestor accord-
ing to the normal type-checking rules of Java. I.e., the
node must be an instance of a class that is the same or
a subtype of the corresponding type declared in the an-
cestor. Shorthands for lists, optionals, and lexical items
are also provided. All node types implicitly inherit the
common ancestor type ASTNode that support generic
access to node children. This is particular useful for
generic tree traversals. An example definition of some
AST classes is shown below.

// Expr corresponds to a nonterminal
ast Expr;

// Add corresponds to an Expr production
ast Add : Expr ::= Expr leftOp , Expr rightOp;

// Id corresponds to an Expr production
// id is a token
ast Id : Expr ::= <String id>;

2.2 Reference Attributed Grammars

ReRAGs are based on Reference Attributed Grammars
(RAGs) which is an object-oriented extension to At-
tribute Grammars (AGs) [Knu68]. In plain AGs each
node in the AST has a number of attributes, each de-
fined by an equation. The right-hand side of the equa-
tion is an expression over other attribute values and de-
fines the value of the left-hand side attribute.

Attributes can be synthesized or inherited. The equa-
tion for a synthesized attribute resides in the node it-
self, whereas for an inherited attribute, the equation re-
sides in an ancestor node. Note that the term inherited
attribute refers to an attribute defined in the ancestor
node, and is thus a concept unrelated to the inheritance
of OO languages. In this article we will use the term
inherited attribute in its AG meaning, unless explicitly
stated otherwise.

Inherited attributes are used for propagating infor-
mation downwards in the tree, e.g. propagating infor-
mation about declarations down to use sites, whereas
synthesized attributes can be accessed from the ances-
tor and used for propagating information upwards in
the tree, e.g. propagating type information up from an
operand to its enclosing expression.

RAGs extend AGs by allowing attributes to have ref-
erence values, i.e., they may be object references to

AST nodes. AGs, in contrast, only allow attributes to
have primitive or structured algebraic values. This ex-
tension allows very simple and natural specifications,
e.g., connecting a use of a variable directly to its dec-
laration, or a class directly to its superclass. Plain AGs
connect only through the AST hierarchy, which is very
limiting.

In the JastAdd II implementation of RAGs attributes
can be seen as methods where the method declaration
and method body may be separated. Inherited attributes
have their method body that defines the behavior in
an ancestral node. An inherited attribute equation de-
fines the behavior for a corresponding declaration of the
same attribute in the subtree where the targeted equa-
tion node is the root. That way the only dependency on
tree structure for that attribute is that the node holding
the equation must be an ancestor to the node holding a
declaration.

Aspects can be specified that define attributes, equa-
tions, and ordinary Java methods of the AST classes.
An example is the following aspect for very simple
type-checking.

// Declaration of an inherited attribute env
// of Expr nodes
inh Env Expr.env();

// Declaration of a synthesized attribute
// type of Expr nodes and its default equation
syn Type Expr.type() = TypeSystem .UNKNOWN;

// Overriding default equation for Add nodes
eq Add.type() = TypeSystem .INT;

// Overriding default equation for Id nodes
eq Id.type() = env().lookup(id()).type();

The notation for method invocation is used when ac-
cessing descendent nodes like leftOp and rightOp, to-
kens like id and user-defined attributes like env and
type. This API can be used freely in the right-hand
sides of equations, as well as by ordinary Java code.

2.3 Rewrite rules

ReRAGs extends RAGs with rewrite rules that automat-
ically and transparently rewrites nodes. The rewriting
of a node is triggered by the first access to it. Such an
access could occur either in an equation in the ancestor
node, or in some imperative code traversing the AST.
In either case, the access will be captured and a refer-
ence to the final rewritten tree will be the result of the
access. This way, the rewriting process is transparent to
any code accessing the AST.

A rewrite step is specified by a rewrite rule that de-
fines the conditions when the rewrite is applicable, as
well as the resulting tree. After the application of one
rewrite rule, more rewrite rules may become applicable.
This allows complex rewrites to be broken down into a
series of simple small rewrite steps.

A rewrite rule for nodes of class N has the following
general form:

rewrite N {
when {cond}
to R result;

}

This specifies that a node of type N may be replaced
by another node of type R as specified in the result ex-
pression result. The rule is applicable if the (optional)
boolean condition cond holds. Both the rewrite rule ap-
plication order and the tree traversal order are implicitly
defined by attribute dependences. A thorough descrip-
tion of ReRAGs implementation and application will
appear in [EH04].

3 Inheritance for model modulari-
sation

The subtype hierarchy generated from the grammar pro-
duction rules provide excellent support for model mod-
ularisation. Generic behavior is defined in the possibly
abstract node types and then specialized in the concrete
node types. A small example adding a reference at-
tribute to each expression referencing its corresponding
type declaration node is shown below. The production
rule hierarchy is in itself specialized in multiple steps,
e.g binary operands, arithmetic expressions, and addive
expressions are all succesive specializations from the
generic language element expression. The type refer-
ence is defined to be boolean for all relational types
while the type of arithmetic expressions is the widest
type of both operands. The approach is generic in the
sense that adding another arithmetic expression, e.g.
subtraction, does not affect type propagation but merely
requires implementation of the unique behavior, e.g.
code generation.

ast Expr ;
ast BinOp : Expr ::= Expr left, Expr right ;

ast ArithmeticExpr : Binop ;
ast AddExpr : ArithmeticExpr ;

ast RelationalExpr : Binop ;
ast LessThanExpr : RelationalExpr ;

syn Decl Expr.type() ;
eq ArithmeticExpr.type() =

widestType (left().type(), right().type());
eq RelationalExpr.type() = TypeSystem .BOOLEAN;

4 Aspects for cross-cutting con-
cerns

The examples shown so far are actually feature aspects
where attributes that cross-cut the AST subtype hierar-
chy are grouped into separate modules. This technique
is very similar to static introduction techniques used in
AspectJ [KHH

�

01], Hyper/J [OT01], and Multi Java
[CLCM00].

The example below is a simple name binding mod-
ule that binds a use-site to its declaration site through
the inherited attribute bind taking a name as its pa-
rameter. A block of statements is modeled as a list
of statements and a list of declarations for simplicity.
Each block introduces a new scope to search for decla-
rations and there are nested scopes since each statement
in a block can be a block itself. The inherited attribute
bind must thus have an equation in each scope, i.e. the
Block node, and if a matching declaration is not found
the search must be delegated to the surrounding scope.

ast Block : Stmt ::= Stmt stmt*, Decl decl*;
ast Name : Expr ::= <String name >;
ast Decl ::= <String name >;

protected inh Decl Name.bind(String name);
protected inh Decl Block.bind(String name);

eq Block.stmt().bind(String name) {
for(int i = 0; i < numDecl(); i++)

if(decl(i).name().equals(name))
return decl(i);

return bind(name);
}

public syn Decl Name.decl = bind(name());

To limit coupling between aspects such as name
binding and type checking it is useful to limit visibil-
ity of certain attributes outside the defining aspect. The
only attribute that needs to be exported outside a name
binding aspect is for instance the binding from a use-
place to its declaration, e.g. decl in Name. Attributes
that define scope rules, e.g. bind, only affect the name
binding and should thus be private to name binding
modules.

Aspects have proven a very powerful technique to
implement design pattern roles, [HK02], [NK01]. The
same technique can be used in JastAdd II to implement
reusable modules, illustrated below where the name
binding approach described above is generalized in a
generic module for nested scopes. The involved actors
are nodes that need to lookup declarations and nodes
that define new scopes. These actors are specified as in-
terfaces and later used to tag each tree node that takes
the role of an actor defined in the module. These inter-
faces also specify the equations that the implementors
must supply to define non-generic behavior, e.g. find-
ing declarations in its scope that matches the provided
name. In the example, Scope represents nodes that de-
fines a new scope and the non generic behavior is to
match a name to a declaration while Bind represents
the node that receives a reference to a declaration.

aspect NestedScopes {
interface Scope {

protected syn Decl lookup(String name);
}

interface Bind {
protected inh Decl bind(String name);

}

eq Scope.child().bind(String name) =
lookup(name) != null ?

lookup(name) : bind(name);
}

The module is generic in the sense that the only re-
quirement on the AST structure is that an enclosing
scope is defined by an ancestral node. It can be further
generalized by adding more scope types, e.g. inheri-
tance from super classes, and declare before use. Below
is a name binding module that uses the module with
the previously defined concrete node types Block and
Name. The only behavior that needs to be implemented
is the matching attribute lookup in Block and the use
of the provided attribute bind in Name. In a Java several
nodes implement a scope, e.g. block, class, interface,
and for statement, and thus share common properties.

aspect NameBinding extends NestedScopes {
declare parents: Block implements Scope;

declare parents: Name implements Bind;

eq Block.lookup(String name) {
for(int i = 0; i < numDecl(); i++)
if(decl(i).equals(name))

return decl(i);
return null;

}

public syn Decl Name.decl = bind(name());
}

5 Rewrites to create the most suit-
able model

Rewrites can improve separation of concerns by al-
lowing computations to be expressed on the most suit-
able model. The information acquired during the early
stages of static semantic analysis can be used to rewrite
the model to make that information explicitly visible in
the model structure for later stages.

We use an example from Java name analy-
sis to demonstrate the technique. When pars-
ing an expression containing qualified names, e.g.
java.lang.System.out, it is syntactically undecid-
able if a part of a name is a reference to a package,
type, field, or variable unless their context is taken into
account. In the above example, java is most often a
package, but only as long as there is no variable-, field-
, or type-declaration named java that would shadow
the package according to the Java scope rules. Thus,
a context-free grammar can only build generic name
nodes that capture all cases. The attribution will need to
handle all these cases and therefore becomes complex.
To avoid this complexity we would like to do semantic
specialization, i.e. we would like to replace the general
name nodes with more specialized ones. Other com-
putations, like type checking, optimization, and code
generation, can benefit from this rewrite by specifying
different behavior in the specialized classes rather than
having to deal with all the cases in the general name
node.

An aspect that models Java names and resolves syn-
tactically ambiguous names as described is shown be-
low. There are two different types of names in Java
from a syntactic point of view, simple names and qual-
ified names. A simple name is a single identifier and
a qualified name consists of a name, a "." token, and
an identifier. During parsing a context-free grammar is
used and thus general unbound names has to be build
during AST creation. Semantic specialization is used
to rewrite these general nodes into more specific ones,
e.g. variable- or type-names. The ast-declarations in the
aspect below model the described name structure.

Semantic specialization is implemented using a
rewrite that rewrites an ambiguous UnboundName node
into a VariableName-node or TypeName-node depend-

ing on the type of the binding received from the name
binding module. Finally the QualifiedName nodes
changes the scope rules for its right child to search the
type of its left child to provide, e.g. when trying to bind
out in the System.out expression the class System
should be searched for a field named out.

ast Name : Expr;

ast SimpleName : Name ::= ID id;
ast QualifiedName : Name ::=

Name left, SimpleName right;

ast UnboundName : SimpleName ;
ast VariableName : SimpleName ;
ast TypeName : SimpleName ;

// Resolve names depending on bound entity
rewrite UnboundName {
when (bind(). isVariableDecl())
to SimpleName new VariableName(id());
when (bind(). isTypeDecl ())
to SimpleName new TypeName(id());

}

// The left name in a QualifiedName changes
// the scope for the name to the right
eq QualifiedName.right().bind(String name) {
if(left() instanceof TypeName)

return left().decl().lookup(name);
if(left() instanceof VariableName)

return left().type().lookup(name);
}

6 Aspect interaction

While the aspects demonstrated to far define static fea-
tures we also use more pluggable aspects, e.g. a de-
clare before use aspect to complement the name bind-
ing module in Section 4 and optional code optimization
aspects. Pluggable aspects define rewrites that change a
run-time node instance to a subtype node with extended
behavior. That way an aspect can be added to the sys-
tem in a way transparent to other aspects.

The examples demonstrated so far deal with equa-
tions that cross-cut the type hierarchy only and not
cross-cutting concerns within equations. To override
and extend attribute equations we use inheritance of
the model structure in combination with rewrites that
change the type of a node instance at run-time. I.e. we
may have different/extended equations for Unbound-
Name and VariableName defined in the example in Sec-
tion 5. This technique, using run-time rewriting and
inheritance, is more powerful than static compile-time
point-cuts within equations in that it may take run-time

information into account but less powerful in that each
node may only be changed by a single aspect. There-
fore it would be interesting to combine the current ap-
proach with more fine-grained static point-cuts within
equations.

7 Related work

The introduction of attribute definitions and equations
to an exisiting class hierarchy in a modular fashion
used in JastAdd II is very similar to static introduction
in AspectJ [KHH

�

01], hyperslices in Hyper/J [OT01],
and open classes in MultiJava [CLCM00]. A func-
tional approach to attribute grammar aspects using the
same technique is presented in [dPJV00] where aspects
are first-class objects that can be freely combined us-
ing a combinator library in Haskell. ReRAGs further
improved modularisation support in that the current
model instance may be rewritten during run-time to a
more suitable model allowing each computation to be
expressed on the most suitable model and more fine-
grained separation of concerns within equations.

The Visitor pattern, [GHJV95], is often used in com-
piler construction for separation of concerns when us-
ing object-oriented languages. Visitors can only sep-
arate cross-cutting methods while static introductions
can be used for fields as well. AOP implementations of
the Visitor pattern need not rely on a delegation mech-
anism resulting in a cleaner more intuative implemen-
tation, [HK02]. ReRAGs aspects differs from AOP im-
plementations of the Visitor pattern in that an explicit
traversal strategy in the form of a Visitor is not spec-
ified but merely implicitly defined by attribute depen-
dences. Rewrites further improves modularisation in
that the underlying structure may change during run-
time to better fit the current computation.

Higher order attribute grammars (HAGs) [VSK89]
adds tree nodes computed reading the partially at-
tributed AST at run-time and can thus provide a more
suitable model. The process is, however, not transpar-
ent to other computations and is thus less flexible from a
separation of concerns view. The use of attribute gram-
mars and forwarding for modular language implemen-
tation is discussed in [VWMBK02]. Forwarding over-
rides attribute equation dynamically at run-time and for-
wards equation to a different part of the tree. Since it
is based on HAGs the target tree can be computed at
run-time and the approach is thus similar to semantic
specialization.

8 Conclusions and future work

We have demonstrated three synergistic mechanisms
for separations of concerns supported by ReRAGs in
the JastAdd II compiler compiler: inheritance for model
modularisation, aspects for cross-cutting concerns, and
rewrites that allow computations to be expressed on
the most suitable model. Examples inspired by static
semantic analysis of the Java programming languages
have been used to illustrate and motivate each tech-
nique. We believe that this allows compilers to be writ-
ten in a high-level declarative and modular fashion.

Our experiences indicate that the implementation
leads to flexible solutions to several traditional com-
piler construction problems, and we hope to generalize
some of these techniques and document them as design
patterns or frameworks for compiler construction using
ReRAGs.

We would also like to investigate the interaction be-
tween pluggable aspects and also how to better support
fine-grained cross-cutting within equations combining
AspectJ-like point-cuts with run-time rewriting imple-
mented using ReRAGs in JastAdd II.

References

[CLCM00] Curtis Clifton, Gary T. Leavens, Craig
Chambers, and Todd Millstein. Multi-
Java: Modular open classes and sym-
metric multiple dispatch for Java. In
Proceedings of OOPSLA 2000, volume
35(10), pages 130–145, 2000.

[dPJV00] Oege de Moor, Simon Peyton-Jones,
and Eric Van Wyk. Aspect-oriented
compilers. Lecture Notes in Computer
Science, 1799, 2000.

[EH04] Torbjörn Ekman and Görel Hedin.
Rewritable Reference Attributed Gram-
mars. In Proceedings of ECOOP 2004,
2004. Accepted for publication.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[GJSB00] James Gosling, Bill Joy, Guy Steele,
and Gilad Bracha. The Java Language

Specification Second Edition. Addison-
Wesley, Boston, Mass., 2000.

[HK02] Jan Hannemann and Gregor Kiczales.
Design pattern implementation in Java
and AspectJ. In Cindy Norris and Jr.
James B. Fenwick, editors, Proceedings
of OOPSLA-02, volume 37, 11 of ACM
SIGPLAN Notices, pages 161–173, New
York, November 4–8 2002. ACM Press.

[KHH
�

01] Gregor Kiczales, Erik Hilsdale, Jim
Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview
of AspectJ. Lecture Notes in Computer
Science, 2072:327–355, 2001.

[Knu68] Donald E. Knuth. Semantics of context-
free languages. Mathematical Systems
Theory, 2(2):127–145, June 1968. Cor-
rection: Mathematical Systems Theory
5, 1, pp. 95-96 (March 1971).

[NK01] N. Noda and T. Kishi. Implementing de-
sign patterns using advanced separation
of concerns. In OOPSLA2001 workshop
on Advanced Separation of Concerns in
Object-Oriented Systems, 2001.

[OT01] Harold Ossher and Petri Tarr. Hy-
per/j: multi-dimensional separation of
concerns for java. In Proceedings of the
23rd international conference on Soft-
ware engineering, pages 821–822. IEEE
Computer Society, 2001.

[VSK89] H. H. Vogt, S. D. Swierstra, and M. F.
Kuiper. Higher order attribute gram-
mars. In Proceedings of the SIG-
PLAN ’89 Conference on Programming
language design and implementation,
pages 131–145. ACM Press, 1989.

[VWMBK02] E. Van Wyk, O. de Moor, K. Back-
house, and P. Kwiatkowski. Forwarding
in attribute grammars for modular lan-
guage design. In R. N. Horspool, edi-
tor, Compiler Construction, 11th Inter-
national Conference, CC 2002, Greno-
ble, France, April 8-12, 2002, volume
2304 of Lecture Notes in Computer Sci-
ence, pages 128–142. Springer-Verlag,
2002.

The Proxy Inter-Type Declaration

Michael Eichberg
Software Technology Group,Dept. of Computer Science

Darmstadt University of Technology, Germany
eichberg@informatik.tu-darmstadt.de

ABSTRACT
Aspect-oriented programming [16] with its support for mod-
ularizing crosscutting concerns opens up the vision that com-
ponent middleware can be replaced by sets of collaborat-
ing aspects that implement the infrastructural services. In
this way, application servers could be customized on a per-
project basis, as they are no longer monolithic applications.

In order for this vision to become reality it should be pos-
sible to implement services offered by current containers as
aspects. In particular services targeting scalability and per-
formance issues, such as passivation and instance pooling
must be available. Such services build upon the concept of
virtual instances [25]. They are realized in the current appli-
cation servers by means of the (virtual) proxy pattern [11].

Implementing virtual instances represents a crosscutting con-
cern, as we will discuss in the paper. Unfortunately, no
current AOP language or framework has explicit support
for modularizing this concern. We propose to support the
generation of proxies as an inter-type declaration and ar-
gue that it is essential to allow the development of scalable
and efficient component containers. It would be a signifi-
cant improvement when compared with the current offered
possibilities.

1. MOTIVATION
Aspect-oriented programming [16] with its support for mod-
ularizing crosscutting concerns opens up the vision that com-
ponent middleware (e.g., application servers for Sun’s EJB
[9] or CORBA components [20] models) can be replaced by
sets of collaborating aspects that implement the infrastruc-
tural services. Before this can be done the question arises
how to achieve performance and scalability. Infrastructural
services such as instance pooling and passivation of compo-
nents are prominent solutions exploited by current applica-
tion servers. The implementation of these services requires
the use of virtual instances [25]: Instead of a component in-
stance a virtual instance is exposed to the client (clients are

all users of a component). To implement virtual instances
the proxy design pattern [6, 11] is used [25]. One proxy
object represents one virtual instance and the same proxy
might refer to distinct physical component instances (one at
a time) during its lifetime. All physical instances referred
to by one (virtual) proxy object represent the same logical
instance.

The concept of virtual instances is also used by the Enter-
prise JavaBeans component model [9]; the services which
must be implemented by every EJB compliant container re-
quire that a component (an Enterprise JavaBean (EJB)) is
not directly accessible; otherwise the services could be by-
passed and the container would be compromised. Proxy ob-
jects automatically generated by the container, called EJBObjects,
are the concrete realization of the virtual instances concept.
An instance of an EJBObject always represents the same
logical component regardless of its physical instance. It ex-
ecutes the explicitly requested services (in the deployment
descriptor), such as security, transactions, etc., as well as im-
plicitly provided services such as passivation, pooling, etc.

Although component passivation and pooling are services
that span all components of the system in the same way and
hence appear to be typical crosscutting concerns, we claim
in this paper that it is not well supported by common AOP
frameworks [3, 4] or AOP languages [15, 19]. Reports are
indeed available about applying AspectJ to resource pooling,
such as pooling JDBC connections [17,18]. However, pooling
of resources is different from pooling of components in two
significant ways:

1. A pooling aspect for resources is specialized to exactly
one type of resource (e.g. database connections using
JDBC) which is implemented by a fixed set of well-
known classes. Thus, it is easy to determine the correct
join points, i.e. to write the pointcut to be used by the
aspect in order to integrate pooling. A pooling aspect
for components, on the other hand, must be generic
to handle multiple different types of components, e.g.,
different types of entity beans as different as Order,
Book, Customer, etc., which are furthermore unknown
at aspect development time. That is, we should be
able to write the pooling functionality independently
of the concrete type of the components that will be
pooled. We will argue that this is not well supported
by current mainstream AOP languages.

2. Pooled resources can be directly reused, as they are not
client specific. On the contrary, when recycling physi-

cal components we need to keep their logical identity,
so that the pooling is transparent to the client. So, if
we want to reuse a pooled component, it is necessary
to (re-)assign it the logical identity that is hold by the
client. This forces us to integrate virtual instances in
a consistent way all over the system.

To implement these services the ability to fully control all
references to a component is required; a component can not
be pooled as long as at least one other component has a
direct reference to it that we cannot control. To implement
the concept of virtual instances we can use proxy objects
if and only if we simultaneously make sure that the proxy
object can not be bypassed. Only under this condition is the
proxy guaranteed to be the only one ever holding a reference
to a component. The proxy can then be used as a virtual
instance of a component.

To achieve the “non-bypassable” feature of a proxy the cor-
responding component needs to be transformed so that the
reference to itself (this) is never passed to another com-
ponent. Additionally, we have to check that this is not
otherwise available e.g. via a public field. So, the following
code:

1 class Order{
2 public void setCustomer(Customer c){ ...
3 c.addOrder(this);
4 } }

needs to be transformed into something similar to:

1 class Order{
2 public void setCustomer(Customer c){ ...
3 c.addOrder(getMyProxy());
4 } }

Also all component creations:

1 new Order();

needs to be transformed:

1 new OrderProxy(new Order());

This kind of transformation can be automatically performed
if we can distinguish between components and normal classes.
However, using standard pointcut and advice two solutions
can be considered to simulate the effect of the transforma-
tion. The first “solution” would be to manually scan all
component implementations and to write appropriate advice
which passes the proxy instead of this. The second solu-
tion is to write one general advice which checks if a passed
object is this and if so returns the proxy instead; given
that the advice is generic, which means it simply advices all
method calls to any component in the same way, it is neces-
sary to check every passed parameter to every method call
at runtime if the parameter is this. The effort to imple-
ment the first solution would be very high and also it would
be tedious and error prone since an ignored statement that
passes this to another component must not immediately
result in a compile-time or runtime error. The inefficiency
of the second solution would render any other optimization
useless. So, the implementation of virtual instances is not
well supported; the modularization of this cross-cutting con-
cern with the current techniques offered by AOP frameworks
or languages is hardly possible.

The reminder of this paper is organized as follows. In Sec. 2
we present our proposal by means of an example of a passi-
vation service and indicate that what we are proposing is not
well supported currently. In Sec. 3, we go into more tech-
nical details of the proposal. Then we discuss related work
and conclude this position paper with a short summary.

2. THE DECLARE PROXY CONSTRUCT
We first give an overview of the syntax and semantics of the
declare proxy construct by the example of the passivation
service. Next, we go into some more details about the se-
mantics of the proposed construct. Implementation details
are out of scope for this position paper. In the following list-
ings we use annotations and generics as they will be avail-
able in Java 1.5. However, we do not make any assumptions
about their support in future AspectJ versions.

2.1 Overview of the Proposal
To support virtual instances, we propose a new construct
for inter-type declarations in AspectJ: the declare proxy

statement. The proposed syntax of the statement is as fol-
lows:

1 declare proxy
2 extends AProxy :
3 implements AnInterface;

The effect is that proxy classes are generated that extend
the specified proxy class (line 2) and implement the speci-
fied interface (line 3). The interface (line 3) determines the
components for which proxies are to be used: Proxies of
type AProxy are generated for all classes that directly or in-
directly implement AnInterface. This means the interface
specified in the implements clause in line 3 has a selection
functionality picking the set of components to be equipped
with virtual instances, roughly comparable to a pointcut,
and also determines the super-type of the proxies and com-
ponents. The specified class (line 2) must not be final and
must extend (directly or indirectly) the system type Proxy.

To illustrate the syntax and semantics of the declare proxy

construct we consider its use within the implementation
of a passivation service as shown in the snippet from the
Passivation aspect below (line 2-4). Line 4 builds the
bridge between the generated proxies and the components
for which these proxies are to be used. On the one hand the
interface determines the common super-type of the compo-
nent and the proxy and on the other hand it determines
for which components a PassivationProxy (line 2) is to be
generated and used.

1 public aspect Passivation {
2 declare proxy
3 extends PassivationProxy :
4 implements SessionComponent;

To provide an accessible set of join points, the generated
classes not only implement the specified interface, they also
inherit a user supplied proxy class. In line 3 we addition-
ally specify that the generated proxies have to inherit from
the class PassivationProxy. This enables the definition of
pointcut and advice in relation to a specific proxy and its
subclasses and not only in relation to all classes that imple-
ment the specified interface.

Figure 1: The effect of declare proxy: “declare proxy extends PassivationProxy: implements SessionComponent;”

Figure 1 shows the class diagram after the generation of the
proxies, as the result of compiling the above declare proxy
statement. For the component ComponentAImpl a proxy
class (ComponentA $Proxy) is generated that implements the
interface of the component (ComponentA) and extends the
specified PassivationProxy. Assuming that a component
is always accessed via its interface, it is type safe to use a
proxy instance instead of a component instance.

As seen in Figure 1, the proxy classes do not only implement
the specified interface, they actually implement all interfaces
of a component. The proxy class for ComponentBImpl must
implement both interfaces (ComponentB and ComponentC)
even though ComponentC does not extend SessionComponent.
This is necessary to preserve the validity of the program.
Code that casts between the component’s interfaces is valid
and must remain valid; this can only be assured if a proxy
implements all interfaces. As a technical necessity, for every
component which implements multiple interfaces an artifi-
cial interface has to be generated that extends all of them;
this interface is then used to correctly bind the type param-
eter T. T determines the concrete interface type of a compo-
nent (the interface ComponentB C in Figure 1 is an example).

The interface (line 4) in the implements clause must be an-
notated Wrappable (see figure 1 for an example). For every
class inheriting the Wrappable annotation proxy classes can
be generated. The annotation with Wrappable enables us to
distinguish between “normal” classes and components and
to validate the later (see section on Implementation Restric-
tions). All component classes are transformed to no longer
expose this unless no proxy is generated for the compo-
nent. Further, it is assured that the program does not give
rise to errors by the declaration and use of a simple forward-
ing proxy (calls to the proxy are directly forwarded to the
corresponding method of a wrapped instance). To make this

possible the interface type of a component is always to be
used to access components. In addition, all created compo-
nents instances are automatically wrapped by an associated
proxy. This means every:
new ComponentAImpl()

expression is transformed into:
new ComponentA $Proxy(new ComponentAImpl()).
This requires that all classes of a project needs to be recom-
piled whenever a declare proxy statement changes.

An important property of the generated proxy classes is
that they are anonymous, Implying that we cannot write
a pointcut that selects a joinpoint in a specific proxy (e.g.
in ComponentA $Proxy; the concrete type of a proxy is un-
available during the implementation of an aspect). This is
due to the fact that the interface specified in the declare
proxy statement does not directly correspond to one com-
ponent; instead it determines a set of components that are
related by the implementation of the interface. However, we
can still refer to the proxies by their parent types as we will
illustrate in the following by the advice of the passivation
aspect.

Passivation (line 10) of components is executed asynchro-
nously (line 3,15) if a component has been idle for the spec-
ified time (line 5, 8 and 9).

1 Set<PassivationProxy> proxies
2 = new WeakHashSet<PassivationProxy>();
3 { Thread thread = new Thread(
4 new Runnable(){
5 final long x = ...;
6 final long t = ...;
7 public void run(){
8 for (PassivationProxy proxy : proxies){
9 if (System.currentTimeMillis() −

10 proxy.lastAccess > t){
11 passivate(proxy);
12 } }

13 thread.sleep(x);
14 }
15 }
16);
17 thread.start ();
18 }

In the default implementation of the proxies each method
call is directly forwarded to the corresponding component
method. Before this is done we want to make sure (as shown
by the following code snippet) that the component is not
passivated (lines 1-4) and after processing of the call by the
component the time of the last access (lines 5-8) is updated.1

1 before (PassivationProxy proxy) : execution (..)
2 && !within(PassivationProxy) && this(proxy) {
3 if (isPassivated(proxy)) activate(proxy);
4 }
5 after (PassivationProxy proxy) : execution (..)
6 && !within(PassivationProxy) && this(proxy) {
7 proxy.lastAccess = System.currentTimeMillis();
8 }

The aspect additionally defines the methods to passivate and
activate a component. The implementation details are omit-
ted because they do not further contribute to the discussion
of the declare proxy statement. The signatures are:

1 boolean isPassivated(PassivationProxy proxy){...}
2 void activate(PassivationProxy proxy){...}
3 void passivate(PassivationProxy proxy){...}

The last piece in the implementation of the Passivation

aspect is the PassivationProxy class. In this implementa-
tion the proxy object is not only a virtual instance it also
implements part of the logic of the service. The proxy class
has a field to store the time of the last access (line 3) and
also registers the proxy at the passivation service (line 6).

1 abstract class PassivationProxy<T>
2 extends DefaultProxy<T>{
3 long lastAccess ;
4 public PassivationProxy(T instance) {
5 super(instance);
6 Passivation.aspectOf().proxies .add(proxy);
7 }
8 }

2.2 Proxies – Design Space and Decisions
Multiple possibilities exist for the generation of proxy classes.
In the following we discuss them to determine the semantics
of our declare proxy statement.

A proxy class can be (1) a subclass of a component or (2)
an implementation of the interface of a component. The
first possibility does not impose any particular requirements
on the design of an application in order for it to be “deco-
rated” by proxies; it simply requires that a component is not
final, has no final methods and does not declare any non-
private fields, otherwise the proxy could be bypassed. The
problem with this alternative is that every instantiation of
a proxy also instantiates the superclass (the component).
So, a proxy object is in a sense also a component. This
is not feasible if a proxy is supposed to be a (temporary)
replacement of a component, e.g., to perform optimizations
such as passivation, pooling and lazy initialization. The sec-
ond solution assumes a particular design – every component

1Thread synchronization is not shown in the listings because
it is unrelated to the declare proxy statement.

must be implemented against an interface and the compo-
nent’s type is not allowed to be used directly (details are
given later). However, this is only a small restriction since
it is also considered good design to implement toward inter-
faces. Further, a proxy object is not a component, a proxy
instance is fully independent from a component instance.
So, we basically consider this solution the only feasible one.
However, an equivalent alternative to the second solution
is to require that every component fulfills implementation
restrictions so that we are able to generate the necessary
interfaces on demand and transform the program appropri-
ately. This approach is taken by Caesar [19]. While this
solution might me more convenient, it reliefs the developer
from the burden of implementing the interfaces on its own,
it is from a technical point-of-view no different.

A proxy can either be open or closed. A closed proxy, on the
other side, is the only class which ever holds a reference to a
component and no aliasing [14] of the component references
takes place. In the following we use the term wrapper and
proxy as a synonym for closed proxy.

Further proxies can either be replacing or forwarding. A re-
placing proxy processes a method call on its own and never
relies on a component instance. A forwarding proxy executes
functionality before or after forwarding the call to a compo-
nent instance. We support both replacing and forwarding
semantics. For this, the proxy class specified in the extends

clause of the declare proxy statement must implement either
a constructor with the following signature:

1 public MyProxy(Constructor c,Object []args){...}

or with:

1 public MyProxy(T instance){...}

The constructor determines whether the proxy replaces (first
case) or wraps the component instance (second case). In the
first case the parameters of the component constructor are
put into an object array and are passed to the proxy along
with the original constructor. The constructor is necessary
(e.g. for lazy initialization) if the object array alone would
not allow the determination of the correct constructor (e.g.
if a value is null the type can no longer be determined).

Additionally, a proxy must not only be able to wrap a com-
ponent but also any other proxy generated for the same
component. Otherwise, it would not be possible to chain
proxies generated for a component by two or more declare
proxy statements.

To sum up the generative semantics of our declare proxy

construct (the properties are named R1 - R4): generated
proxies (R1) are closed, (R2) implement the interface of the
component, (R3) must support the wrapping of other prox-
ies as well as components and (R4) can be either replacing
or forwarding.

2.3 Implementation Restrictions
Implementation restrictions are imposed on components an-
notated as Wrappable in order to ensure the following prop-
erties:

P1 it is possible to control the aliases of a component; that

the proxy is the only owner of a reference to a compo-
nent.

P2 the use of proxies does not give rise to type errors at
run time.

These properties depend on each other. We can control
the references to a component if we are able to always use
a reference to a proxy instance instead of a reference to a
component instance. In this case, it is possible to transform
the component such that it always returns its associated
proxy instead of this. If now a newly created component
instance is immediately wrapped by a proxy we can ensure
that only the proxy holds a reference to the component.
Note that we do not require any kind of alias protection
mechanism [24, 8, 12, 7]. We only need to make sure that
we are able to confine the reference to a component to a
single proxy if needed; in other words, that we can control
the aliases for components.

To guarantee the properties P1 and P2 the following re-
strictions need to be imposed:

• the type of the component must not to be used di-
rectly; neither in field-, local variable- or method dec-
larations nor in type checks or type casts. ⇒ except
for component creation, the only way to access a com-
ponent is via its interface type(s).

• The supertype of a component must also be a compo-
nent. Otherwise it would be possible to cast from a
component interface type to the type of the superclass
and invoke methods, which violates P1.

• Every subclass of a component is also considered a
component and the first two restrictions apply.

To enforce these restrictions the IRC tool [10] can be used.
It allows the definition of restrictions as checks on Java byte-
code. We consider it important that these implementation
restrictions are explicitly checked before the creation of prox-
ies. Since all restrictions can be checked in one pass and no
full program analysis is necessary the compile time overhead
should be acceptable. Provided that a component complies
with all implementation restrictions the generated proxies
fulfill the requirements R1-R4

3. RELATED WORK
To the best of our knowledge, there has been no attempt
to implement services such as passivation and pooling of
components. So we can discuss only related implementation
techniques.

The Dynamic Proxies [23] feature of Java can be used to
create proxies. But, its usage would have the following
drawbacks which makes it a “no-go”: (1) It leads to a
tighter coupling between aspects. The advantages of
using proxies especially if they are used for optimizations
vanish if each service that requires a proxy generates its
own one. So, an aspect that generates a proxy and makes
it available for other aspects would be required in order to
enable the integration of multiple services using one proxy
instance. In the proposed model this would happen im-
plicitly if the declare proxy statements are identical. Fur-
ther, the functionality to define precedence of aspects needs

to be duplicated since the “normal” declare precedence

functionality does not impose an order on the execution of
InvocationHandlers (implementing the advice) associated
with dynamic proxies. (2)The generated dynamic prox-
ies are open. So, their use to simulate virtual references is
very limited – as discussed especially in the motiviation. (3)
It forces to use reflection. Even though the support for
and performance of reflection is improving the source code
remains harder to read and maintain and is also more error
prone when compared with the proposed solution. This dis-
cussion applies equally well to AOP frameworkds based on
the interceptor pattern [22] (e.g.: [3, 4, 21]) or native AOP
languages (e.g.: [15,19])

Hibernate [2] generates proxies at runtime using CGLib [1].
CGLib is more powerful than Java Dynamic Proxies – it pro-
vides default implementations for different types of proxies.
Nevertheless, the base mechanism is comparable and thus
suffers from the same problems as described above.

Generic Wrappers [5] is an language integrated approach to
generate wrappers / proxies at runtime. E.g. the statement
class PassivationProxy wraps SessionComponent gener-
ates wrappers for SessionComponents and all subtypes of
it. However, two main differences exist: (1) wrappers are
not automatically used; to create a wrapper for a com-
ponent it is necessary to explicitly instantiate a wrapper
(e.g. PassivationProxy p = new PassivationProxy<new

AComponent()>()) while in our case the proxies are auto-
matically used. (2) The generated wrappers are subtypes
of the wrapped objects - which means subclasses of compo-
nents in our terminology. This is in our case not generally
applicable – as discussed in the section on the design space
of proxies.

Parametric Introductions [13] enable the parameterized in-
troduction of e.g. methods and fields in existing classes.
The introductions can be parameterized with the static in-
formation which will be available when the introduction is
actually carried out, such as the type of the target class,
the name of methods and their parameters, etc.. With a so-
called unnamed introduction it would be possible to intro-
duce complete sets of methods in a specific class without ex-
plicitly enumerating them. This mechanism could be used to
introduce generic method implementations in proxy classes.
However, as the name suggests parametric introductions can
only be used to “introduce” code into an existing class or
interface. The generation of completely new classes (the
concrete proxy classes in our case) and the transformation
of the components is out of scope for this approach. Nev-
ertheless, it could supplement the generation of the proxy
classes.

4. SUMMARY AND FUTURE WORK
In this position paper we have proposed an inter-type dec-
laration to declare that specific classes are wrapped by au-
tomatically generated proxies. This gives us the ability to
implement infrastructural services in a more straightforward
manner than supported by current approaches. Further, the
implementation is very robust since it only relies on types
and not on names. The aspect’s functionality is directly wo-
ven in the generated proxies by using standard pointcuts and
advice. Further, it is shown which programming restrictions

needs to be imposed on the implementation of components
and how to check them.

In future work we are going to investigate how proxies can
help in the implementation of other infrastructural services.
Additionally we are going to investigate if other mechanisms
are needed to implement infrastructural services.

Acknowledgment
The author would like to thank the anonymous reviewers,
Christoph Bockisch, Mira Mezini, Klaus Ostermann and
Thorsten Schäfer for comments on earlier versions of this
paper.

5. REFERENCES
[1] Code Generation Library (cglib).

http://cglib.sourceforge.net/.

[2] Hibernate2 Reference Documentation.
http://hibernate.bluemars.net/. Version 2.1.1.

[3] JBoss AOP.
http://www.jboss.org/developers/projects /jboss/aop.

[4] Jonas Bonr and Alexandre Vasseur. Aspectwerkz.
http://aspectwerkz.codehaus.org, 2003.

[5] Martin Büchi and Wolfgang Weck. Generic wrappers.
In Elisa Bertino, editor, Proceedings of ECOOP 2000,
volume 1850 of Lecture Notes in Computer Science,
pages 201–225. Springer Verlag.

[6] Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, and Michael Stal. Pattern-Oriented
Software Architecture – a System of Patterns. John
Wiley & Sons, 1996.

[7] Dave Clarke, Michael Richmond, and James Noble.
Saving the world from bad beans: deployment-time
confinement checking. In Proceedings of OOPSLA
2003, pages 374–387. ACM Press.

[8] David G. Clarke, John M. Potter, and James Noble.
Ownership types for flexible alias protection. In
Proceedings of OOPSLA ’98, volume 33:10 of ACM
SIGPLAN Notices, pages 48–64, New York. ACM
Press.

[9] Linda G. DeMichiel. Enterprise JavaBeansTM

Specification, Version 2.1. Sun Mircosystems, 4150
Network Circle, Santa Clara, California 95054, U.S.A,
November 2003.

[10] Michael Eichberg, Mira Mezini, Thorsten Schäfer,
Claus Beringer, and Karl Matthias Hamel. Enforcing
system-wide properties. Melbourne, Australia. IEEE
Computer Scociety. Proceedings of ASWEC 2004 (to
appear).

[11] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns : elements of reusable
object-oriented software. Professional Computing
Series. Addison Wesley, 1995.

[12] Christian Grothoff, Jens Palsberg, and Jan Vitek.
Encapsulating objects with confined types. In
Proceedings of OOPSLA 2001, pages 241–255. ACM
Press.

[13] Stefan Hanenberg and Rainer Unland. Parametric
introductions. In Proc. of AOSD 2003, pages 80–89.
ACM Press.

[14] John Hogg, Doug Lea, Alan Wills, Dennis
deChampeaux, and Richard Holt. The Geneva
Convention on the treatment of object aliasing. OOPS
Messenger, 3(2):11–16, 1992.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In Proceedings of ECOOP 2001, volume 2072
of Lecture Notes in Computer Science, pages 327–355,
Budapest,Hungary. Springer.

[16] Gregor Kiczales, John Lamping, Anurag Menhdhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-Oriented Programming. In
Mehmet Akşit and Satoshi Matsuoka, editors,
Proceedings of ECOOP 1997, volume 1241 of Lecture
Notes in Computer Science, pages 220–242. Springer.

[17] Ivan Kiselev. Aspect-Oriented Programming with
AspectJ. Sams, July 2002.

[18] R. Laddad. AspectJ in Action. Manning, 2003.

[19] Mira Mezini and Klaus Ostermann. Conquering
aspects with caesar. In Proceedings of AOSD 2003,
pages 90–99. ACM Press.

[20] OMG. CORBA Components. Object Management
Group, June 2002. Version 3.0, formal/02-06-65.

[21] Renaud Pawlak, Lionel Seinturier, Laurence Duchien,
and Grard Florin. JAC: A Flexible Solution for
Aspect-Oriented Programming in Java. In
A. Yonezawa and S. Matsuoka, editors, Proceedings of
REFLECTION 2001, volume 2192 of Lecture Notes in
Computer Science, Kyoto, Japan. Springer.

[22] Douglas Schmidt, Michael Stal, Hans Rohnert, and
Frank Buschmann. Pattern-Oriented Software
Architecture – Patterns for Concurrent and Networked
Objects. Software Design Patterns. John Wiley &
Sons, 2000.

[23] Sun Microsystems. Dynamic Proxy Classes.
java.sun.com/j2se/1.3/docs/guide/reflection/
proxy.html.

[24] Jan Vitek and Boris Bokowski. Confined types in
Java. Software Practice and Experience,
31(6):507–532, 2001.

[25] Markus Völter, Alexander Schmid, and Eberhard
Wolff. Server Component Patterns. Software Design
Patterns. John Wiley & Sons, 2002.

Applying Aspect Orientation to
J2EE Business Tier Patterns

Therthala Murali
murali_therthala@yahoo.com

Renaud Pawlak
pawlakr@rh.edu

Houman Younessi
houman@rh.edu

Rensselaer Polytechnic Institute- Hartford Graduate Campus
275 Windsor St, Hartford, CT 06120 USA

ABSTRACT
J2EE Design Patterns [1] offer flexible solutions to common software
problems encountered in the design and construction of distributed
systems for the J2EE platform. A number of J2EE patterns involve
crosscutting structures in the relationship between the roles in the
pattern and classes in each instance of the pattern, thus making the
resulting components increasingly complex. This complexity is at
odds with one of patterns' key goals - to make it easier to build
simple, elegant and high-quality systems that work. This paper
analyzes the problem of crosscutting within the implementation of
J2EE patterns in the Business Tier and demonstrates how Aspect-
Oriented techniques can be used to generate improvements within the
business layer components from the perspective of better code
locality, reusability, composability and (un)pluggability.

1. INTRODUCTION
Software Patterns are designed to communicate expert knowledge
about system construction. Useful Patterns address structural
problems and are carefully written to be readable.

Prior research [2] shows that aspect-based implementations of the
GoF design patterns showed modularity improvements in 17 of 23
cases. These improvements were in terms of better code locality,
reusability, composability and (un)pluggability. These results suggest
that it would be worthwhile to undertake the experiment of applying
aspect-oriented techniques to J2EE pattern implementations.

Constructing an application under the J2EE platform involves the
assembly/composition of prefabricated, reusable and independent
components. The J2EE design patterns [1] offer flexible solutions to
construct high-quality, reusable, evolvable components for the J2EE
platform. While a lot of the J2EE pattern literature is focused on
highlighting the benefits of the J2EE applications constructed using
the patterns, there is hardly any discussion of how the patterns have
introduced code tangling and code scattering within the core
functionality of the J2EE components.

In our study, we highlight the problems caused by code scattering and
code tangling within the J2EE business tier due to the implementation
of the patterns. We develop and compare Object-Oriented and Aspect
-Oriented implementations of the J2EE patterns for this tier. We
retain the purpose, intent and applicability of the J2EE patterns but
only allow the solution structure and solution implementation to
change.

The rest of the paper is organized as follows. Section 2 highlights
some of the problems created within the business tier due to the
implementation of J2EE design patterns and present them. Section 3
introduces the format of study that we have undertaken. In section 4,
we present our AspectJ implementations for some patterns and
highlight the improvements we observed. Section 5 summarizes our
work.

2. CHALLENGES

2.1 Established Challenges
The three major problems [2] in systems realized using patterns are
related to pattern implementation, pattern documentation and pattern
composition.

Implementations of patterns are often governed by the instance of use
and context owing to the fact that pattern implementations heavily
influence system structures and vice versa [3]. This makes it hard to
distinguish between the pattern, its concrete instance and the pertinent
object model [4]. Changes to a pattern within a system are often
invasive and tedious. Consequently, while the design pattern is
reusable, its implementations usually are not [2].

As stated in [2], the impacts of design patterns on programs are of
two different natures. In the first case, they can superimpose roles. An
initial functional class could be enhanced to define a role in the
design pattern. In the second case, they could add new classes to the
program that are independent from the initial functional program and
define new roles. In both the cases, the design patterns are not
completely modular. In the first case, the design pattern
implementation is invasive since it modifies a class of the initial
program. In the second case, the newly created role has to be used
eventually by a class of the functional program and this reflects the
existence of an associated superimposed role.

Thus, non-modularization in the business layer of the J2EE
applications due to patterns introduces code scattering and code
tangling within the program. Code Scattering is caused because
several instances of the patterns or of a given role will be used within
several classes of the program. Code tangling occurs when several
pattern or role instances overlap in a single class. This last effect is
particularly troublesome because, when a particular class is involved
in more than one pattern, it becomes difficult to compose the patterns
together because the structure of the application becomes less
straightforward. Moreover, documenting the patterns and their
participants within the application also becomes cumbersome.

2.2. Crosscutting in J2EE Patterns
This section presents the standard J2EE design patterns and discusses
the problems caused by their implementation in terms of crosscutting.

2.2.1 Business Delegate
The Business Delegate hides the underlying implementation details of
the business service, such as lookup and access details of the EJB
Container and JNDI Directory Services and thereby reduces the
coupling between presentation-tier clients and business services.
However, interface methods in the Business Delegate may still require
modification if the underlying business service API changes. The
reference to the Business Delegate layer, within every client that
accesses the business services layer, is a crosscutting concern. While
location transparency is one of the benefits of this pattern, a different
problem may arise due to the developer treating a remote service as if

it was a local one. This may happen if the client developer does not
understand that the Business Delegate is a client side proxy to a
remote service. Typically, a method invocation on the Business
Delegate results in a remote method invocation under the wraps.
Ignoring this, the developer may tend to make numerous method
invocations to perform a single task, thus increasing the network
traffic.

It would be worth exploring if there exists a way to leverage the
advantages offered by the business delegate layer, without
implementing the business delegates and eliminating the coupling
with the client.

2.2.2 Service Locator
The Service Locator pattern reduces the client complexity that results
from the client’s need to perform lookup of distributed services and
their creation, which are resource-intensive. However clients that use
the Service Locator are faced with a plethora of crosscutting
problems.

A client of the Service Locator such as a Business Delegate has to
explicitly reference the interfaces (javax.ejb.EJBHome and
javax.ejb.EJBLocalHome) within the javax.ejb package and the
exceptions within the javax.ejb, java.rmi and the
javax.naming packages. The clients ought to capture these
exceptions and handle them appropriately. The references to the
interfaces and classes are a crosscutting concern.

A reference to the Service Locator within the client that needs to
lookup services is in itself a crosscutting concern. The Service
Locator is an implementation of the GoF Singleton pattern and has a
private constructor. Hanneman et al [2] have demonstrated how a
plain old java object can be turned into a Singleton by weaving into it,
the Singleton Protocol via an aspect. It would be worth applying this
idea to the Service Locator to see if it offers any advantages within the
J2EE world.

2.2.3 Transfer Object
When clients require more than one value from the business services
layer, it is possible to reduce the number of remote calls to the Session
Façade and to avoid overhead by using Transfer Objects to transport
the data from the enterprise bean to its client.

In order to be transportable over the wire via Java’s Remote Method
Invocation (RMI), the Transfer Objects have to implement the
java.io.Serializable interface. If a client that is located within
the same virtual machine as the Session Facade, desires to invoke the
same business service,the client need not invoke the service via RMI
and hence the implementation of java.io.Serializable by the
Transfer Object becomes redundant.

The Client and the Session Facade that use Transfer Objects reference
these objects within their implementations. Thus it would be worth
investigating whether the benefits offered by Transfer Objects can be
obtained, without them implementing the java.io.Serializable
and also not cross-cutting the client and Session Facade
implementations.

2.2.4 Session Facade
The Session Facade in a J2EE application is usually a Session
Enterprise Bean that manages the business objects, and provides a
uniform coarse-grained service access layer to the clients. The
benefits of a facade have been highlighted in the GoF literature and
also in Core J2EE Patterns [1]. The Session Facade bean ought to
implement the javax.ejb.SessionBean interface.

It would be worth exploring whether the Session Facade can be made
to leverage the features of the EJB Container by realizing it as a plain

old java object (POJO) and without implementing the
javax.ejb.SessionBean.

2.2.5 Transfer Object Assembler
The Transfer Object Assembler can be a POJO or a Session Facade. If
the Transfer Object Assembler is implemented as a Session Facade,
then the problems discussed in section 2.2.4 for the Session Facade
would apply.

2.2.6 Value List Handler
The Value List Handler can be a POJO or a Stateful Enterprise
Session Bean. In either of the implementations, the Value List
Handler is coupled to the Value List Iterator interface. If a Session
Bean, the Value List Handler becomes tied to the
javax.ejb.SessionBean interface and the problems discussed in
section 2.2.4 for the Session Façade would apply.

2.2.7 Composite Entity
The Composite Entity’s implementation of the Entity Bean interface
is a crosscutting concern and is not beneficial from a system
adaptability standpoint. It would be worth pursuing the realization of
the Composite Entity as a POJO, without implementing the
javax.ejb.EntityBean but still leveraging the container managed
persistence features.

2.2.8 Application Service
The Application Service is usually a POJO and is implemented either
as a Command pattern or as a Strategy pattern. The problems of
Command and Strategy have been highlighted [2] and we shall
implement the Application Services using the AspectJ versions of
Command and Strategy as demonstrated in [2].

2.2.9 Business Objects
The Business Objects are usually implemented either as POJOs or as
Enterprise Entity Beans. When realized as POJOs, they are
implemented by composing any of the GoF patterns depending on the
problem domain. In such a scenario, their AspectJ implementations
could be realized as outlined in [2]. When realized as Enterprise
Entity Beans, the BusinessObject has to implement the
javax.ejb.EntityBean interface. Hence if the BusinessObject is
to be reused in another J2EE application that does not use Entity
Beans, the BusinessObject becomes useless and needs to be converted
to a POJO.The implementation of the javax.ejb.EntityBean interface
by the BusinessObject is a crosscutting concern and does not facilitate
seamless component adaptation. It would be worth pursuing the
realization of the BusinessObject as a POJO, without implementing
the javax.ejb.EntityBean interface and yet leveraging the EJB’s
container-managed persistence features.

3. STUDY FORMAT
The methodology for study involved the design and implementation
of a contrived distributed application in accordance with the J2EE
specification on a J2EE platform using J2EE patterns, first using the
classical Object-Oriented approach and later employing aspects using
AspectJ 1.1.4. The core business model of the application provides a
Currency component that performs conversion between currency
values as shown in the interface listing below.

public interface ICurrency {
 public double dollarToPound(
 double aDollarValue) throws
 TooLargeValueException,RemoteException;
 public double dollarToEuro(
 double aDollarValue) throws
 TooLargeValueException,RemoteException;
 public CurrencyTO getCurrencyTable()
 throws RemoteException;
 public CurrencyTO getCurrencyByCountry()

 throws RemoteException;
 public String getUsCurrency()
 throws RemoteException;
 public String getUkCurrency()
 throws RemoteException;
 public String getFranceCurrency()
 throws RemoteException;
 public String getPolandCurrency()
 throws RemoteException;
}

The application’s business tier is fronted by EJB Session facades
while the client tier consists of java application clients. The
application was packaged and deployed on Sun ONE Application
Server. The Java implementations correspond to the samples
presented in the Core J2EE Patterns book [1]. Each J2EE pattern has
a number of implementation variants and alternatives. If a pattern
offered more than one possible implementation, we picked the one
that seemed the most widely used. Our modularization goals in
implementation of J2EE patterns using AspectJ were consistent with
those in [2]. In this paper, we will mainly focus on the aspectized
implementation of the Business Delegate, the Service Locator, and the
Transfer Object patterns.

4. RESULTS
This section presents a comparison of the aspect-oriented and pure
object-oriented implementations of concrete instances of the J2EE
Business Tier patterns. We focus on the Business Delegate, the
Service Locator, and the Transfer Object patterns.

4.1 Business Delegate and Service Locator
In the classical implementation, the Business Delegate pattern
manages the complexity of distributed component lookup and
exception handling for the calling client, yet the reference to the
delegate within the client's implementation is a crosscutting concern.
The delegate's presence is truly valuable only when invoking a remote
service.

The following code shows the implementation of a typical client. It
explicitly uses the Business Delegate that uses the Service Locator
pattern.

public class TestClient {
 public static void main(String[] args) {
 try {
 // delegate is used here
 CurrencyDelegate delegate =
 new CurrencyDelegate();
 logger.debug(
 delegate.dollarToPound(10.0) + "GBP");
 // a transfer object is used here
 // it reduces network traffic
 CurrencyTO to =
 delegate.getCurrencyByCountry();
 logger.debug(" US Currency -> " +
 to.getUsCurrency());
 } catch(Throwable t) {

[...]

The following code sample shows the implementation of Currency
Delegate using regular Object-Orientation. It has to lookup distributed
services by using the Service Locator and deal with the exceptions
that can be thrown by the invocation of remote services. In a real
application, several delegates are created, usually one per facade. This
introduces crosscutting within the clients and a dependence on the
JNDI (Java Naming and Directory Interface) and EJB technologies
that reduces the adaptability of the application.

public class CurrencyDelegate {
 private static ServiceLocator locator;

 private void init() throws SystemException {
 try {
 locator = ServiceLocator.getInstance();
 } catch(NamingException ne) {
 throw new SystemException(

 ne.getMessage());
 }
 }

 private Currency getServiceFacade()
 throws SystemException {
 Currency currency = null;
 try {
 CurrencyHome home = (CurrencyHome)locator
 .lookupHome(Currency.class);
 currency = home.create();
 } catch(ClassNotFoundException cne){
 throw new SystemException(
 cne.getMessage());
 } catch(NamingException ne) {

throw new SystemException(
 ne.getMessage());
 } catch(CreateException ce) {
 throw new SystemException(
 ce.getMessage());
 } catch(RemoteException re) {
 throw new SystemException(
 re.getMessage());
 }
 return currency;
 }

 public CurrencyDelegate()
 throws SystemException {
 if(locator == null)
 init();
 }

 public double dollarToPound(double aValue)
 throws SystemException {
 Currency currency = getServiceFacade();
 try {
 return currency.dollarToPound(aValue);
 } catch(RemoteException re) {
 throw new SystemException(
 re.getMessage());
 } catch(TooLargeValueException te) {
 throw new SystemException(
 te.getMessage());
 }
 }
 // same principle with other delegating
 // methods
 [...]

The code snippet below shows how the ClientAspect and the
LocatorAspect combine to make the Business Delegate obsolete.
The pointcuts and their corresponding advices provide the necessary
J2EE plumbing that enables a plain java client to invoke the business
services offered by components within the EJB container.

public class TestClient {
 public static void main(String[] args) {
 try {
 TestClient client = new TestClient();
 ICurrency currencyService =
 (ICurrency)client.getServiceFacade(
 Currency.class);
 logger.debug("GB POUNDS -> " +
 currencyService.dollarToPound(10.0));
 logger.debug("GB CURRENCY -> " +
 currencyService.getUkCurrency());
 logger.debug("US CURRENCY -> " +
 currencyService.getUsCurrency());
 } catch(Throwable t) {
 t.printStackTrace();
 }
 }

 public Object getServiceFacade(Class aClass)
 throws SystemException {
 // empty method that is automatically
 // implemented by the client aspect
 return null;
 } [...]

As is evident from the discussion, the Client does not need to (i) use a
Business Delegate, (ii) provide an implementation of the
getServiceFacade method. The LocatorAspect introduces into

the client the implementation for the getServiceFacade method
which is used to lookup the Service Facade. This facade directly
implements the business component’s interface and appears to be co-
located with the client. This technique offers two main advantages.
Firstly, it simplifies the overall design by removing the delegate in
most cases (usually, delegates have the same interfaces as the facade
they delegate to – note that the use of a specific delegate is still
possible). It makes the code more local because as seen in the
implementation of the LocatorAspect, all the delegating code is
confined to a unique aspect. Secondly, the code has no distributed
semantics.

The final code is:
 less technology dependent – it can use the EJB component

model or any other distributed computing technology or none at
all.

 independent of deployment semantics– in case the client is
finally deployed in the same virtual machine as the server, then
the getServiceFacade implementation can be easily changed
to return a direct reference to a local object and not the
delegate.

The following sample code shows the main parts of the Locator
aspect.

public aspect LocatorAspect {
 public static final String CURRENCY_SERVICE =
 "edu.rh.cs.j2ee.business.Currency";
 private EJBServiceLocator ejbLocator;
 private JDBCServiceLocator
 jdbcConnectionLocator;
 private JMSServiceLocator jmsObjectLocator;

 // pointcut to capture calls made to
 // getServiceFacade.
 pointcut ejbservice(Class aClass):
 call(* *.getServiceFacade (Class))
 && args(aClass);

 // same principle for databases
 pointcut connectionservice(
 String aDataSource):
 call(* *.getDatabaseConnection(String))
 && args(aDataSource);

 // same principle for JMS
 pointcut jmsservice(String aJMSObject):
 call(* *.getJMSObject(String))
 && args(aJMSObject);

 // EJB service locator -> EJBHome
 Object around(Class aClass)
 throws SystemException:
 ejbservice(aClass) {
 Object service =null;
 try {
 if(ejbLocator == null)
 ejbLocator = new EJBServiceLocator();
 Object home =
 ejbLocator.lookup(aClass);
 // all the lookups can be centralized
 // right here...
 if(aClass.getName()
 .equals(CURRENCY_SERVICE)) {
 CurrencyHome currencyhome =
 CurrencyHome)home;

 service = currencyhome.create();
 }
 } catch (NamingException ne) {

 throw new SystemException(
 ne.getMessage());
 } catch (ClassNotFoundException cne) {

 throw new SystemException(
 cne.getMessage());
 } catch(CreateException ce) {

 throw new SystemException(
 ce.getMessage());
 } catch (RemoteException re) {

 throw new SystemException(
 re.getMessage());
 } catch (Exception e) {

 throw new SystemException(
 e.getMessage());
 }
 return service;
 }

 // -> java.sql.Connection
 Object around(String aDataSource)
 throws SystemException:
 connectionservice(aDataSource) {
 [...]
 }

 // -> JMS Object
 Object around(String aName)
 throws SystemException:jmsservice(aName) {
 [...]
 }

 public pointcut exception():
 call(* edu.rh.cs.j2ee.business..*+.*(..)
 throws *Exception)
 && !within(LocatorAspect);

 // soften thrown exceptions
 declare soft:RemoteException: exception();
 declare soft:TooManyItemsException:
 exception();
 declare soft:TooLargeValueException:
 exception();

 Object around():exception() {
 Object value = null;
 try {
 value = proceed();
 } catch(Exception e) {
 throw new RuntimeException(
 e.getMessage());
 }
 return value;
 }
}

The LocatorAspect removes the Client’s need to reference the
Service Locators explicitly to lookup objects and locate services. This
task is seamlessly done within the advices for the pointcuts
ejbservice, connectionservice, and jmsservice. The Locator
Aspect also introduces into the client, the reference to the Service
Locator and the references to the classes and interfaces within the
java.rmi and javax.naming packages. The remote exceptions are
captured and logged by the LocatorAspect (see the exception()
pointcut). If the application requirement is such that a certain
exception is to be handled consistently for all incoming client
transactions, then the exception handling can be implemented within
the LocatorAspect itself and a user friendly error message can be
encapsulated within a generic runtime exception
(CompositeRuntimeException) and passed onto the client. If the
application requirement is such that a certain exception is to be
handled differently depending on the type of incoming client
transaction, then the LocatorAspect can pass the exception onto the
client, by wrapping it within the CompositeRuntimeException.
The client layer can then choose to handle the exception
appropriately. Finally, the LocatorAspect also introduces into the
client, the reference to the classes and interfaces within the
javax.ejb package.

The actual remote invocation performed previously by the delegate is
performed within the ClientAspect. The code below shows the parts
of the ClientAspect responsible for the invocation of the
dollarToPound method of the remote service. Note that it uses
getServiceFacade, which is implemented by the LocatorAspect.

public aspect ClientAspect {
 [...]
 // should write a more general pointcut
 pointcut currencyConversion(double aValue):
 call(* edu.rh.cs.j2ee.business.ICurrency+
 .*(*))
 && args(aValue)
 && !within(ClientDataTransferAspect);

 [...]
 double around(double aValue)
 throws java.rmi.RemoteException:
 currencyConversion(aValue) {

 Signature sig =
 thisJoinPointStaticPart.getSignature();
 String name = sig.getName();
 ICurrency currency = null;
 if(name.equals("dollarToPound")) {
 try {
 currency = (ICurrency)
 getServiceFacade(Currency.class);
 } catch(SystemException se) {}
 return currency.dollarToPound(aValue);
 } else if [...] // other methods
 }
 [...]

The Client implementation is conscious only of the Business
interfaces and knows nothing about any of the classes or interfaces
within the javax.ejb package. The client layer is EJB technology
agnostic. So if an existing EJB based J2EE solution is implemented
using the LocatorAspect and ClientAspect and, if later there
arises a need to convert the existing EJB based implementation to a
non EJB solution, then the conversion can be accomplished
effortlessly by simply not weaving the aspects into the client, during
the compilation phase.

The Service Locator's implementation as a Singleton is based on the
techniques outlined in [2]. The Service Locator can be instantiated
like a POJO using the new constructor instead of using a factory
method like getInstance. However this feature can lead to some
confusion among J2EE developers. A factory method makes it clear
that the Service Locator is a singleton but the new constructor does
not. So it is conceivable that the Singleton might extend another class
that can be cloned and developers might call the clone method of the
Singleton. In order to prevent the cloning of the Singleton, the
SingleProtocol aspect's Singleton interface has been modified as
shown below.

public Object SingletonProtocol.Singleton.clone()
throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
}

So if an attempt is made to clone the Singleton, a
CloneNotSupportedException is thrown.

4.2 Transfer Object
The implementation of the TestClient in the typical J2EE
application references the transfer object CurrencyTO. The Transfer
Object reduces the network traffic by carrying multiple data items.
The Aspect-Oriented version of the TestClient does not use the
Transfer Object. As shown in the implementation below, the Client
Aspect captures the join points of a logical set of remote calls made
by the client to the business service within a pointcut. The advice to
this pointcut allows the remote invocation during the first call and
fetches all the data for the remainder of the invocations within a
transfer object. The ClientAspect caches the transfer object locally
to service subsequent client requests. Thus it eliminates the
crosscutting within the client due to the Transfer Object pattern.

public aspect ClientAspect {
 public static final String CURRENCY =
 "CurrencyTO";
 private HashMap transferObjectMap =
 new HashMap();

 [...]
 pointcut currencytransfer():
 call(* edu.rh.cs.j2ee.business.ICurrency+
 .get*Currency())
 && !within(ClientAspect);

 Object around()

 throws java.rmi.RemoteException:
 currencytransfer() {

 Signature sig =
 thisJoinPointStaticPart.getSignature();
 String name = sig.getName();
 CurrencyTO to =
 (CurrencyTO)transferObjectMap
 .get(CURRENCY);

 // if the cached TO is null, fetch it
 if(to == null) {
 to = new CurrencyTO();
 ICurrency currency = null;
 try {
 currency = (ICurrency)
 getServiceFacade(Currency.class);
 } catch(SystemException se) {}
 CurrencyTO fetched =
 currency.getCurrencyByCountry()
 to.setUsCurrency(
 fetched.getUsCurrency());
 to.setUkCurrency(
 fetched.getUkCurrency());
 to.setFranceCurrency(
 fetched.getFranceCurrency());
 to.setPolandCurrency(
 fetched.getPolandCurrency());
 transferObjectMap.put(CURRENCY,to);
 }

 // get the data from the cache
 if(name.equals("getUsCurrency"))
 return to.getUsCurrency();
 else if(name.equals("getUkCurrency"))
 return to.getUkCurrency();
 else if(name.equals("getFranceCurrency"))
 return to.getFranceCurrency();
 else if(name.equals("getPolandCurrency"))
 return to.getPolandCurrency();
 return null;
 }
 [...]

The ClientAspect also provides a cache invalidation pointcut. For
our simple case, it invalidates the cache (removes the transfer object
from the hash map) when the program returns from the main method.
The cache invalidation pointcut is application dependent and can be
quite complex in real applications.

4.3 Session Facade
The Aspect version of the pattern uses the SessionBeanProtocol
and the FacadeAspect, to introduce the javax.ejb.SessionBean
interface within the session facade. The CurrencyBean session
façade is a POJO that is business -functionality centric and is
oblivious to the javax.ejb package. The facade is reusable and
adaptable within a non EJB environment.

public interface SessionBeanProtocol
 extends javax.ejb.SessionBean {}

public aspect FacadeAspect {
 // ICurrency is due to the BusinessInterface
 //pattern and not the
 //Remote interface
 declare parents: CurrencyBean implements
 SessionBeanProtocol,ICurrency;
 public void SessionBeanProtocol.ejbCreate()
 throws CreateException {}
 public void SessionBeanProtocol.ejbRemove() {}
 public void SessionBeanProtocol.ejbActivate() {}
 public void SessionBeanProtocol.ejbPassivate() {}
 public void SessionBeanProtocol
 .setSessionContext(SessionContext sc) {}
}

4.4 Code Improvement Evaluation

4.4.1 Business Delegate, Service Locator, and
Transfer Object patterns
The Aspect-Oriented implementation of the Business Delegate, the
Service Locator and the Transfer Object patterns has the following
closely related modularity properties:

Locality – All the code that implements the Business Delegate
functionality and the associate service lookup is in the
ClientAspect and the LocatorAspect and none of it is in the
participating client classes. For each kind of service lookup, the code
is within the advice of the LocatorAspect. The packaging of all
related data for a transfer object is localized within the
ClientAspect. The participant clients are entirely free of the
Business Delegate and Transfer Object pattern contexts and as a
consequence there is no coupling between the participants. Potential
changes to the pattern instance are confined to one place. All the
Singleton related code is within the SingletonProtocol and the
ServiceLocator is a POJO.

Reusability – The core pattern code is abstracted and reusable. The
implementation of the getServiceFacade method within the
Client via the LocatorAspect generalizes the overall pattern
behavior. The interface can be reused and shared across multiple
pattern instances. The implementation of the Transfer Object is
limited to the clients that need the same Transfer Object. The
SingletonProtocol aspect can be reused to create several types of
Singeltons.

Composition transparency – Since the Client implementation is not
coupled to either of the patterns, it can participate in other kinds of
pattern relationships and the resulting code does not become more
complicated. Since the ServiceLocator is oblivious to the Singleton
pattern’s context, it could participate in another pattern context
seamlessly.

(Un)pluggability – Since the Client need not be aware of its role in
any of these pattern instances, it is possible to switch effortlessly
between using the Business Delegate pattern and Transfer Object
pattern, and not using them in the system. It is possible to add and
remove the Singleton property to the ServiceLocator easily.

4.4.2 Session Facade pattern
The Aspect-Oriented implementation of the Session Facade pattern
has the following closely related modularity properties:

Locality – All the code that implements the Session Facade
functionality is within a POJO and the Session Bean contract is
introduced via a protocol and an aspect. For each kind of Session
Facade, we only need to extend the SessionBeanProtocol and
supply an implementation for the Session Bean's methods via the
aspect. The participating facade is entirely free of the pattern context,
and as a consequence is EJB agnostic. Potential changes with the EJB
container's contract are confined to the aspect.

Reusability – The core pattern code present within the Session Bean
interface methods (ejbCreate(), ejbActivate()…) is abstracted
and reusable.

Composition transparency – Since the facade implementation is not
coupled to the pattern, it can participate in other kinds of pattern
relationships and the resulting code does not become complicated.

(Un)pluggability – Since the facade need not be aware of its role in
this pattern instance, it is possible to switch effortlessly between using
the EJB Component Model and not using it in the J2EE application.

4.4.3 Transfer Object Assembler, Value List
Handler, and Composite Entity
The modularity advantages discussed for a Session Facade are also
applicable to the Transfer Object Assembler and the Value List
Handler.

The CompositeEntityBean is implemented as a POJO and the
javax.ejb.EntityBean interface is weaved into the Composite
Entity via the EntityAspect and the EntityBeanProtocol. The
Composite Entity implementation purely manages the inter-entity
relationships and is unaware of the javax.ejb package. The POJO
entity is reusable and adaptable within a non EJB environment.

4.4.4 Application Services and Business Objects
The Application Services and the Business Objects are usually
implemented using any of the GoF patterns, and as discussed in [2],
there may or may not be significant modularity benefits after applying
aspects, depending on their implementation.

5. ANALYSIS AND CONCLUSIONS
In this paper we have presented and compared a J2EE application
built using EJB Component Software Engineering techniques and
using Aspect-Orientation. We have demonstrated and explained how
a more flexible, adaptable and reusable component based J2EE
system can be built using Aspect-Oriented techniques.

The improvements from using AspectJ in J2EE business tier pattern
implementations are closely tied to the presence of crosscutting in the
structure of the patterns. Crosscutting in pattern structure is caused by
roles [2] and their collaboration with participant classes. We notice
great improvements in those patterns where a single module of
abstraction handles the original behavior and the pattern specific
behavior. In such patterns, the roles cut across participant classes and
conceptual operations crosscut methods and constructors. Patterns
having shared participants can also crosscut each other. The
improvements in the J2EE world are apparent as a set of properties
associated leading with modularity. The J2EE pattern
implementations are more localized and reusable and hence the
system is more adaptable. Localization enhances the documentation.
AspectJ implementations of J2EE business tier patterns are
composable because there is a better alignment between the
dependencies in the code with dependencies in the participant
structure.

Our results suggest that Aspect-Orientation should strongly be
considered in the design and implementation of J2EE applications.

REFERENCES
[1] Deepak Alur (Author), John Crupi (Author), Dan Malks. Core

J2EE Patterns: Best Practices and Design Strategies, Prentice
Hall PTR; 2nd edition (June 2003)

[2] Hannemann and Kiczales. Design Pattern Implementation in Java
and AspectJ, Proceedings of the 17th Annual ACM conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 161-173, November 2002.

[3] Florijn, G., Meijers, M., Winsen, P. van. Tool support for object-
oriented patterns. Proceedings of ECOOP 1997

[4] Soukup, J. Implementing Patterns. In: Coplien J. O., Schmidt, D.
C. (eds.) Pattern Languages of Program Design. Addison Wesley
1995, pp. 395-412

Aspect-Oriented Design and Implementation of a Java
Bytecode Analyzer Framework

Susumu YAMAZAKI
∗

Fukuoka Laboratory for
Emerging & Enabling
Technology of SoC

Fukuoka Industry, Science &
Technology Foundation

816-8580, JAPAN

yamazaki@fleets.jp

Michihiro MATSUMOTO
†

Fukuoka Laboratory for
Emerging & Enabling
Technology of SoC

Fukuoka Industry, Science &
Technology Foundation

816-8580, JAPAN

michim@fleets.jp

Tsuneo NAKANISHI
‡

Graduate School of
Information Science and
Electrical Engineering

Kyushu University
816-8580, JAPAN

tun@f.csce.kyushu-
u.ac.jp

ABSTRACT
We propose a new type of Java bytecode analyzer framework
based on aspect-oriented design and programming. We also
observe that aspect-oriented design and programming im-
prove separation of concerns of many of the characteristics
of the design, including extensibility, type safety, and ex-
ecution efficiency of its design and implementation, when
compared to existing analyzer frameworks based on object-
oriented design and programming. This paper reports how
the following concerns are separated in our framework: the
extension of elementary objects, the separation of parser and
instruction set, the Visitor Pattern, binary operations and
non-functional concerns such as verification.

1. INTRODUCTION
A Java bytecode analyzer framework has a wide range of
applications, including bytecode-level optimizing compilers,
ahead-of-time compilers, verifiers, aspect weavers. One of
the most widely used frameworks is Soot [10], which has
been created using extensible object-oriented design and im-
plementation. As a result, it experiences some problems in
separation of concerns, type safety, execution efficiency, etc.

Therefore, we propose a new type of Java bytecode an-
alyzer framework based on aspect-oriented design and pro-
gramming using AspectJ [5] (this framework uses Javassist
[1] as a bytecode reader and writer). We observe that aspect-
oriented design and programming improved separation of

∗Graduate School of Information Science and Electrical En-
gineering, Kyushu University
†Graduate School of Information Science and Electrical En-
gineering, Kyushu University
‡System LSI Research Center, Kyushu University

To appear in the Third AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software (ACP4IS), March, 2004, Lancaster,
UK.

concerns of many characteristics of design, including exten-
sibility, type safety, and execution efficiency of design and
implementation of the framework, when compared to the ex-
isting analyzer frameworks based on object-oriented design
and programming.

1.1 Framework Overview
Java bytecode [7] is a variable length code based on the stack
machine model. In our framework, a parser first translates
the bytecode into a sequence of objects corresponding to
each instruction. The instruction object is also based on
the stack machine model. Although we do not currently
support translation into 3-address code or the static single
assignment (SSA) form, it may be supported later if neces-
sary.

Our framework contains several analyzers. The most cen-
tral of these is the dataflow analyzer, which can be easily
customized. Our framework also contains interprocedural
analyzers such as class hierarchy analyzers. Moreover, we
can create a composite analyzer, consisting of other analyz-
ers that are called when the composite analyzer is called.

1.2 Contributions and Organization
Through the design and implementation of the analyzer
framework, we observed many advantages, both general and
application specific. We also observed limitations in the cur-
rent AspectJ. The rest of this paper outlines these advan-
tages and limitations in the following order:

• We discuss the structured extension of elementary ob-
jects maintaining type safety and execution efficiency
in Section 2.

• We propose the separation of an extendable bytecode
parser from instruction sets in Section 3.

• We propose a simple process description of each in-
struction using the Smart Instruction Visitor in Sec-
tion 4.

• We propose simple and extendable binary operations
in Section 5.

• We discuss problems of description of a verifier as an
aspect in Section 6.

• We discuss some related works in Section 7.

2. EXTENSIONS TO ELEMENTARY OBJECTS
It is often remarked that aspect-oriented programming im-
proves separation of concerns. We point out that the most
effective example of this is that of elementary objects of a
framework, such as instruction objects.

For example, consider adding a new feature to an ana-
lyzer derived from a framework. A simple approach is to
add fields or methods to the elementary objects in order to
store the necessary information.

However, traditional object-oriented programming lan-
guages cannot add fields or methods to elementary objects
structurally, and so they tend to ’bloat’ chaotically. If a
structure is enforced, the class hierarchy can become deep.
In either case, maintainability and readability are degraded.

Within a framework, the extension of elementary objects
is realized by using an indirect approach such as table or the
Visitor Pattern [3], rather than by direct addition of fields
or methods. For example, in Soot elementary objects are
extended by adding tags. Tags are named, and may be re-
quested by searching a table using this name.

The above techniques may sacrifice type safety or execu-
tion efficiency. Soot sacrifices both of them: the retrieved
tag sacrifices type safety and must be cast downward before
it may be used, and execution is inefficient because of the
need for searching the table.

AspectJ can define fields and methods directly with clas-
sifications, as an aspect using an inter-type member decla-
ration. For example, if we add a field or a method necessary
for an analysis, we can define it structurally in an aspect
concerned with the analysis.

Indirect extension mechanisms such as tags in Soot, are
no longer needed. The type system of AspectJ ensures the
type safety of added fields and methods, and because they
are woven into classes directly, execution efficiency is im-
proved when compared to indirect extension.

3. SEPARATION OF THE BYTECODE PARSER
AND INSTRUCTION SETS

A bytecode parser scans binary class files, generates instruc-
tion objects corresponding to the byte sequences, and inserts
labels. It also sets the relationships between instructions, for
example using a succeed set, which is a set of instructions
that may be executed after other instructions except those
throwing exceptions in a manner similar to that of a Fac-
tored Control Flow Graph [2].

We now focus on setting succeed sets, which depend on
the class of an instruction. Instructions are divided into
non-terminator and terminator categories: a succeed set of
a non-terminator includes the next instruction, while a suc-
ceed set of a terminator does not.

Instuctions may also be divided into non-branch, branch
and switch categories: a succeed set of a non-branch instruc-
tion does not include any special jump target; a succeed set
of a branch instruction includes one jump target; and a suc-
ceed set of a switch instruction includes two or more jump
targets.

A succeed set can be determined by the classification,
rather than by the instruction set, but the instruction set

public class Parser {
public static class Instruction {

void setSucc
(Instruction[] table, int pc) {}

...
}
public static interface Terminator {}
public static interface Branch {...}
public static interface Switch {...}
static aspect addNextToSucc {

pointcut addNextToSucc(Instruction inst,
Instruction[] table, int pc)

: call(void Instruction.setSucc
(Instruction[], int))

&& target(inst) && args(table, pc)
&& !target(Terminator);

before(Instruction inst,
Instruction[] table, int pc)
: addNextToSucc(inst, table, pc) {
...

}
}
static aspect addBranchTargetToSucc {

pointcut addBranchTargetToSucc
(Instruction inst,
Instruction[] table, int pc)
: call(void Instruction.setSucc

(Instruction[], int))
&& target(inst) && args(table, pc)
&& target(Branch);

before(Instruction inst,
Instruction[] table, int pc)

: addBranchTargetToSucc(inst,
table, pc) {

...
}
...

}
}

Figure 1: Bytecode Parser using AspectJ

determines how a concrete instruction class is classified. In
addition, another process, such as one detecting PEIs (po-
tential exception-throwing instruction) [2], may require an-
other classification. Therefore, because Java is a language
that supports single inheritance and multiple supertypes, we
must realize such a classification using interface.

However, Java does not allow interface to have concrete
methods, so the process of setting succeed sets is distributed
among code sections containing concrete instructions.

AspectJ solves this problem. Firstly, we provide two
aspects to the parser. The first aspect is addNextToSucc,
which adds the next instruction to the succeed set if the
current instruction is a non-terminator. The second aspect
is addBranchTargetToSucc, which adds the target instruc-
tion(s) to the succeed set if the current instruction is a
branch or a switch. Secondly, we make a concrete instruction
class implement the interface corresponding to the classi-
fication. Lastly, if the order of the succeed set is important,
we can set the priority order using the precedence declara-
tion between addNextToSucc and addBranchTargetToSucc.
Figure 1 and Figure 2 show example code of a parser and a
instruction set.

import Parser.*;

public class Aload extends Instruction {...}
public class Return extends Instruction

implements Terminator {...}
public class Ifeq extends Instruction

implements Branch {...}
public class Goto extends Instruction

implements Terminator, Branch {...}
public class Tableswitch extends Instruction

implements Terminator, Switch {...}
...

Figure 2: Java Bytecode Instruction Set Example

In general, if there are classifications into some given classes,
and if the classifications determine the corresponding pro-
cesses, we can write simple code so that the classifications
and the processes are represented using interface and as-
pects, respectively.

Although multiple-inheritance has similar effects, this ap-
proach using aspects has two advantages: we can add a
classification without modifying existing code, and we can
also avoid the method confliction problem. For example, an
instruction that is both a non-terminator and a branch is
realized easily in AspectJ but cannot be realized naturally
using multiple-inheritance.

4. THE SMART INSTRUCTION VISITOR
BASED ON THE STACK-MACHINE MODEL

An operation corresponding to a given instruction often in-
cludes common processes. For example, because Java byte-
code is based on the stack machine model, operations such
as push or pop are commonly included in the operations
corresponding to each instruction.

Therefore, we provide a Smart Instruction Visitor as part
of our framework, based on the Java bytecode model, which
is a domain-specific variant of the Visitor Pattern [3]. The
programmer has access to four basic operations (push, pop,
load, store) and the processes corresponding to each in-
struction. The programmer does not need to write all of
these and can override only those necessary.

Because Java bytecode is a typed language, we provide
variations of basic operations corresponding to different types.
For example, pushInt corresponds to the type int. We
also provide push and pop operations that handle values
using the appropriate types for getfield, putstatic, etc.
Moreover, we provide variations for basic operations corre-
sponding to 32- and 64-bit types to satisfy the Java bytecode
specification. Finally, we provide variations of push and pop

corresponding to either two 32-bit types or one 64-bit type,
for dup2, etc.

In our framework, we describe the process corresponding
to each instruction as a method that is supplied an instruc-
tion object and zero or more arguments, and that returns
zero or one result. For example, a process corresponding
to the instruction idiv is defined as a method that is given
an instruction object and two division values, and returns a
result value object.

It is effective to define pointcuts for methods correspond-
ing to instructions that have common features. This enables
the methods to be defined structurally from various view-
points.

public abstract class InstructionVisitor {
... // S1
protected void push(Object value) {}
protected void push2(Object value) {

push(value);
}
...
protected void pushInt(Object value) {

push(value);
}
...
protected void pushDouble(Object value) {

push2(value);
}
...
protected Object pop() {

return null;
}
...
protected void store

(int index, Object value) {}
...
protected Object load(int index) {

return null;
}
... // S2
public static abstract aspect Pointcuts {

pointcut intBinaryOperator
(InstructionVisitor v,
Instruction inst,
Object value1, Object value2)
: execution

(Object InstructionVisitor+
.at(Instruction+, Object, Object))
&& target(v)
&& args(inst, value1, value2)
&& args(Idiv, Object, Object)
&& ...;

...
} // S3
protected Object at

(Iload inst, Object loadedValue) {
return loadedValue;

}
protected Object at

(Idiv inst,
Object value1, Object value2) {
return null;

}
... // S4
static aspect InsertCode {

private abstract void Instruction.at
(InstructionVisitor v);

...
private void Iload.at

(InstructionVisitor v) {
Object value

= v.loadInt(this.index);
value = v.at(this, value);
v.pushInt(value);

}
private void Idiv.at

(InstructionVisitor v) {
Object value2 = v.popInt();
Object value1 = v.popInt();
Object result

= v.at(this, value1, value2);
v.pushInt(result);

}
...

}
}

Figure 3: The Smart Instruction Visitor

untyped

int
 double

Object

StringInputStream

File-

InputStream

Buffered-

InputStream

int[]
double[] Object[]

null

bottom

Primitive type

Object type

Array type

Figure 4: The Type Property Space for Java

Figure 3 shows the implementation of the Smart Instruc-
tion Visitor. The basic operations, various pointcuts, pro-
cesses corresponding to instructions and inner processes, are
defined from S1, S2, S3 and S4, respectively.

The basic behavior is as follows: Methods receiving a
Visitor are first defined using inter-type method declarations
(S4). The corresponding basic operations and processes are
called in these methods. For example, the inner method of
idiv calls popInt, twice. The process corresponding to idiv

is called with the instruction object and the returned values,
and pushInt is called with the returned value.

We provide default implementations of basic operations
and processes corresponding to each instruction. Relation-
ships between the variations of basic operations are rep-
resented as an invocation from more constrained variation
methods to the less constrained (S1). Therefore, all a pro-
grammer must do is to override the necessary methods.

5. SIMPLE AND EXTENSIBLE BINARY OP-
ERATION

To realize a data flow equation as a framework, we need to
implement the binary operation of properties. In type check-
ing, for example, we must calculate the least upper bound
(∪) of the type property at the merge points [8].

Figure 4 shows a lattice representing the property space
for type checking [6]. Bottom ⊥ represents an initial value,
so the least upper bound of property P and ⊥ is P (⊥∪P =
P ∪ ⊥ = P). Top > in type checking means untyped, and
the least upper bound of property P and > is > (> ∪ P =
P ∪ > = >).

Next, the least upper bound of the same primitive type,
such as int, is the type and the least upper bound of a dif-
ferent primitive type is untyped. For example, Pint ∪Pint =
Pint, Pint∪Pfloat = >. Note that the rule of top and bottom
precedes this rule, i.e. Pint ∪ ⊥ = ⊥.

Next, the least upper bound of the object type is a com-
mon ancestor. For example, PFileInputStream∪PBufferedInputStream =
PInputStream. Note that the rules for bottom, top, and prim-
itive types precede this rule. Moreover, the least upper

bound of an object type is a class with zero or more in-
terfaces, because Java provides single inheritance of class
but multiple subtyping of interfaces.

Last, the least upper bound of null and the primitive
type is untyped, and the least upper bound of null and the
object type is the object type. Note that the rule of bottom
precedes this rule.

Consider the implementation of binary operations with a
least upper bound based on these rules. A naive implemen-
tation may use instanceof. For example, Figure 5 shows
the implementation of a primitive type property, but this
implementation is less extensible and maintainable. If we
add a new type property, we must modify all meet methods,
which calculate the least upper bounds. Moreover, if we
change the order of precedence of the rules, we must swap
the order of if in some methods.

Next, consider the implementation using double-dispatch,
as shown in Appendix A. The advantage of this technique
is that maintainability is improved because each method is
simplified. However, the problems remain, as we must mod-
ify all property classes to add a new type property. We also
must modify many classes to swap the precedence order of
the rules. Moreover, we need to write the same process as
many methods, such as the implementation of Bottom and
Untyped.

AspectJ solves these problems simply (see Figure 6). The ac-
tual processes are implemented using around without proceed
in the coordinator aspect. For example, BottomCoordinator
describes the process of involving bottom and something
else. Moreover, the process of combining different types is
described in a combination coordinator. For example, a pro-
cess of involving a combination of object types and primitive
types is described in ObjectAndPrimitiveCoordinator.

Next, sort coordinators in precedence in topological or-
der of lattice from the bottom. A combination coordinator
precedes the coordinator of each property. The content of
the method meet in the class Property is meaningless ex-
cept when throwing an exception, when it is called with an

public class PrimitiveType extends Property {
public Property meet(Property p) {

if(p instanceof Bottom) {
return this;

}
if(p instanceof Untyped) {

return p;
}
if(p instanceof ...) ...
...

}
}

Figure 5: The Implementation of the Primitive Type
Property using instanceof

unexpected combination of properties.
This implementation solves the above problems. If we

add a new type property, we must only write a coordinator
and give the appropriate precedence order. If we must write
a special behavior for combination with other properties, we
must only write an appropriate combination coordinator. If
we change the order of precedence, we must only modify the
precedence. Moreover, we do not need to write the same
process in many methods.

6. THE VERIFIER AS AN ASPECT
Our framework provides a bytecode verifier using a parser
and a type checker. One of the advantages of aspect-oriented
programming is the ability to unify the cross-cutting concern
of a non-functional features such as verification. We have ac-
tually implemented the verifier in this way. An overview of
our current implementation of the verifier is shown in Ap-
pendix B. During implementation, we found that there are
two limitations in current AspectJ.

Firstly, AspectJ is not expressive enough to structure as-
pects. In our implementation, the verifier depends strongly
on the inner structure of the parser and the type checker.
So, not only must we modify the verifier whenever we modify
the parser or type checker, but we cannot reuse the verifier
with, for example, another instruction set. This problem is
partially solved by using aspect structuring, i.e. dividing
the verifier into parts that are dependent and independent
of instruction sets. However, AspectJ cannot currently sep-
arate the verifier in this manner. Abstract pointcuts are
useful, but insufficient to perform this separation.

It may not be possible to provide advice with informa-
tion only from a pointcut. For example, we cannot provide
advice to detect the overflow of the operand stack naturally,
because its pointcut gives only an operand stack object as
a parameter, and the object does not provide a method to
retrieve the maximum stack size defined in each method.

This may be solved by defining advice and an inter-type
field declaration by adding information about the corre-
sponding method to the stack object. However, this is a
specific and ad hoc approach.

7. RELATED WORK
Joeq [11] is an extensible virtual machine and compiler in-
frastructure. Of course, it can be used as a bytecode ana-
lyzer framework, and it has many sophisticated features.

Joeq provides the Visitor framework, enabling a simple
analyzer implementation. Joeq can realize an analyzer by

public aspect Coordinator {
declare precedence: BottomCoordinator,

...
ObjectAndPrimitiveCoordinator,
ObjectTypeCoordinator,
PrimitiveTypeCoordinator,
...
UntypedCoordinator;

}
public abstract class Property {

public Property meet(Property p) {
throw new RuntimeException

("unsupported property:"
+ this + ", " + p);

}
}
public abstract aspect PropertyCoordinator {

pointcut meet(Property p1, Property p2)
: execution(

Property Property+.meet(Property+))
&& target(p1) && args(p2);

}
public class Bottom extends Property {}
public aspect BottomCoordinator

extends PropertyCoordinator {
Property around(Property p)

: meet(Property, p)
&& target(Bottom) {
return p;

}
Property around(Property p)

: meet(p, Property)
&& args(Bottom) {
return p;

}
}
...
public class ObjectType extends Property {}
public aspect ObjectTypeCoordinator

extends PropertyCoordinator {
Property around

(ObjectType p1, ObjectType p2)
: meet(Property, Property)
&& target(p1) && args(p2) {
// calculate least upper bounds on types

}
}
...
public aspect ObjectAndPrimitiveCoordinator

extends PropertyCoordinator {
Property around

(ObjectType p1, PrimitiveType p2)
: meet(Property, Property)
&& target(p1) && args(p2) {
return new Untyped();

}
Property around

(PrimitiveType p1, ObjectType p2)
: meet(Property, Property)
&& target(p1) && args(p2) {
return new Untyped();

}
}

Figure 6: The Implementation of the Type Property
using AspectJ

overriding the defined methods in advance for some situa-
tions, such as field accesses in an instance so, a programmer
cannot unify arbitrary methods with the same behavior. On
the contrary, our Smart Instruction Visitor can realize the
analyzer using pointcuts, which can be defined freely by a
programmer without performance penalty.

Joeq also provides a dataflow framework, where the bi-
nary operations of properties are defined in the centralized
dataflow problem class. Though Whaley does not show an
implementation detail for binary operations, it would be
complicated for some analyzers, such as a type analyzer.

Though OVM [9] focuses on the virtual machine, its de-
sign policy can apply a bytecode analyzer. The main ad-
vantage of OVM is its memory efficiency; the OVM inter-
mediate representation (OvmIR) uses the Flyweight Pattern
[3]. Our current implementation, on the other hand requires
more memory than OVM.

OVM also adopts the Runabout Pattern [4], making it
more extensible, but with worse execution performance than
the Visitor Pattern approach. This tradeoff is unavoidable
when using Java and Java-based languages such as AspectJ.
OVM focuses on the customization of the intermediate rep-
resentation, so OVM has opted for extensibility and the
Runabout approach but, because the main target of our
framework is Java bytecode, we choose to optimize perfor-
mance by using the Visitor approach.

Ideally, our approach should be mixed: in the early stage
of development, we should take the Runabout approach, and
when the specifications of the intermediate representations
are almost fixed, we should switch to the Visitor approach.
To make the switch easier, we will need an automatic code
translator to convert from the Runabout to the Visitor.

8. CONCLUSIONS AND FUTURE WORK
We have built a Java bytecode analyzer framework that
uses aspects, and have observed five advantages. Firstly, we
realized extensions of elementary objects structurally and
maintained type safety and execution efficiency. Secondly,
we implemented a bytecode parser that is independent of
any single concrete instruction set. Thirdly, we simplified
the description of processes for each instruction using the
Smart Instruction Visitor based on the stack machine model.
Fourthly, we realized binary operations that are simple, ex-
tensive, and easy to maintain. Finally, we unified the de-
scription of a cross-cutting concern of a wide ranging non-
functional features such as verification.

However, we also observed that AspectJ currently has
two limitations: it is not expressive enough to structuralize
aspects deeply on the basis of their inner structure; and it
does not provide a general approach to write advice that
cannot be described with its pointcut only.

In the future, we will build a bytecode translator frame-
work based on aspect-oriented software development, en-
abling us to build many applications such as a bytecode-level
optimizing compiler.

9. ACKNOWLEDGMENTS
This research was partly supported by a grant from the Co-
operative Link of Unique Science and Technology for Econ-
omy Revitalization (CLUSTER) by Ministry of Education,
Culture, Sports, Science and Technology (MEXT).

10. ADDITIONAL AUTHORS

Additional authors: Teruaki KITASUKA (Kyushu Univer-
sity, email: kitasuka@f.csce.kyushu-u.ac.jp) and Akira
FUKUDA (Kyushu University,
email: fukuda@f.csce.kyushu-u.ac.jp).

11. REFERENCES
[1] S. Chiba. Load-time structural reflection in Java. In

Proceedings of European Conference on
Object-Oriented Programming (ECOOP 2000), Sophia
Antipolis and Cannes, France., pages 313–336.
Springer-Verlag, June 2000.

[2] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar.
Efficient and precise modeling of exceptions for the
analysis of Java programs. In Workshop on Program
Analysis For Software Tools and Engineering, pages
21–31, Sept. 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns — Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[4] C. Grothoff. Walkabout revisited: the Runabout. In
Proceedings of European Conference on
Object-Oriented Programming (ECOOP 2003),
Darmstadt, Germany., pages 103–124.
Springer-Verlag, July 2003.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of European Conference on
Object-Oriented Programming (ECOOP 2001),
Budapest, Hungary., pages 327–353. Springer-Verlag,
June 2001.

[6] X. Leroy. Java bytecode verification: Algorithms and
formalizations. Journal of Automated Reasoning,
30(3–4):235–269, 2003.

[7] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1999. Second Edition.

[8] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer, Berlin, 1999.

[9] K. Palacz, J. Baker, C. Flack, C. Grothoff,
H. Yamauchi, and J. Vitek. Engineering a
customizable intermediate representation. In ACM
SIGPLAN 2003 Workshop on Interpreters, Virtual
Machines and Emulators (IVME’03), pages 67–76.
ACM Press, June 2003.

[10] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot – a Java optimization
framework. In CASCON’99, Sept. 1999.

[11] J. Whaley. Joeq: A virtual machine and compiler
infrastructure. In ACM SIGPLAN 2003 Workshop on
Interpreters, Virtual Machines and Emulators
(IVME’03), pages 58–66. ACM Press, June 2003.

APPENDIX
A. DOUBLE-DISPATCH FOR BINARY OP-

ERATION
Figure 7 shows a binary operation using double-dispatch.
The behavior of this operation is somewhat complicated.

When the method meet is called, it calls the method with*

corresponding to the class of the receiver this. For exam-
ple, if the receiver is Bottom, it calls the method withBottom.
Note that the receiver and the argument of the call is swapped.
This realizes binary operations by defining processes corre-
sponding to each class of receiver and the argument of meet.

B. OUR CURRENT IMPLEMENTATION OF
THE VERIFIER

Figure 8 shows a section of the verifier code.
We can divide this into parsing-time verification and

type-checking-time verification subsections. The former sub-
section includes the pointcut insertLabel and the after ad-
vice of insertLabel. The parser calls the method insertLabel

when it finds a branch instruction. If the branch refers to a
location outside the bounds of the code, insertLabel throws
an IndexOutOfBoundsException. The advice of the verifier
catches the exception, and rethrows a VerifyException.

The latter subsection includes the stackUnderFlow and
stackOverFlow parts. The TypeChecker class extends our
dataflow analyzer framework, and uses LinkedList in the
Java class library as the operand stack.

We designed our framework to separate an analyzer from
the target bytecode, i.e. the analyzer should not hold any
analysing state information about the target bytecode, and
the target bytecode should hold all of this analyzing state
information. The operand stack then belongs to the target.

The LinkedList throws a NoSuchElementException when
the list is empty and the method removeFirst is called, so
the pointcut and the advice of stackUnderFlow catches the
exception and rethrows a VerifyException.

In contrast, the implementation of stackOverFlow ex-
periences a problem when attempting to retrieve the max-
imum stack size. The advice of stackOverFlow can access
the operand stack and this join point. We may extract infor-
mation about the type checker classes from this join point.
According to our design policy, however, the type checker
classes do not hold any code information, such as the max-
imum stack size.

On the other hand, the operand stack originally does
not hold the maximum stack size because it is an instance
of LinkedList in the Java class library. If we wish to add
the maximum stack size to the stack, we must establish the
maximum stack size of the list in advance. It is difficult to
ensure this setting for general cases.

public abstract class Property {
public abstract

Property meet(Property p);
protected abstract

Property withBottom(Bottom p);
protected abstract

Property withUntyped(Untyped p);
protected abstract

Property withPrimitiveType
(PrimitiveType p);

...
}
public class Bottom extends Property {

public Property meet(Property p) {
p.withBottom(this);

}
public Property withBottom(Bottom p) {

return p;
}
public Property withUntyped(Untyped p) {

return p;
}
public Property withPrimitiveType

(PrimitiveType p) {
return p;

}
...

}
public class Untyped extends Property {

public Property meet(Property p) {
p.withUntyped(this);

}
public Property withBottom(Bottom p) {

return this;
}
public Property withUntyped(Untyped p) {

return this;
}
public Property withPrimitiveType

(PrimitiveType p) {
return this;

}
...

}
public class PrimitiveType

extends Property {
public Property meet(Property p) {

p.withPrimitiveType(this);
}
public Property withBottom(Bottom p) {

return this;
}
public Property withUntyped(Untyped p) {

return p;
}
public Property withPrimitiveType

(PrimitiveType p) {
...

}
...

}

Figure 7: The Implementation of the Type Property
using Double-Dispatch

public aspect Verifier {

pointcut insertLabel(Instruction inst, int pc)

: call(void Instruction

.insertLabel(Instruction[], int))

&& target(inst) && args(Instruction[], pc);

after(Instruction inst, int pc)

throwing (IndexOutOfBoundsException e)

: insertLabel(inst, pc) {

throw new VerifyException(

"The target branch is out of bounds: "

+ pc + ":" + inst);

}

pointcut stackUnderFlow()

: call(Object LinkedList.removeFirst())

&& within(TypeChecker);

after() throwing (NoSuchElementException e)

: stackUnderFlow() {

throw new VerifyException

("stack under flow");

}

pointcut stackOverFlow(LinkedList stack)

: call(void LinkedList.addFirst(Object))

&& target(stack)

&& within(TypeChecker);

before(LinkedList stack)

: stackOverFlow(stack) {

int maxStack = ...; // how can we get?

if(stack.size() >= maxStack) {

throw new VerifyException

("stack over flow:" + maxStack);

}

}

}

Figure 8: The Implementation of the Verifier

Software Connectors in the COSA Approach

Adel Smeda, Tahar Khammaci, and Mourad Oussalah
LINA, Université de Nantes

2, Rue de la Houssinière, BP 92208
44322 Nantes Cedex 03, France

Tel: +332 51125963, Fax: +332 51125812
Email: {smeda, oussalah, khammaci }@lina.univ-nantes.fr

Abstract. Connectors are very important modeling
entities which unfortunately are not sufficiently dealt
with by the models of conventional components.
Indeed, the majority of describing or programming
languages for component-based systems do not offer
any means of expressing the connectors explicitly at
the level of implementation. In general, they
introduce types of predefined connectors (if they
propose them any way) or they obligate connectors to
be programmed within the components or even
sometimes within the application programs. In any
case, these languages do not provide mechanisms
that permit a user to define new types of connectors
with different semantics. In our work we present an
approach to model and to describe the architecture of
component-based systems, in which connectors are
defined as first-class entities.

Keywords: architectural description, components,
connectors, configuration, definition.

1. Introduction

Architecture Description Languages (ADL) [1]
describe systems as a collection of components that
interact with each other using connectors. They
define components explicitly, however most of them
leave the definition of interactions implicit.
Interactions are defined through include files and
import and export statements (the connectors are
buried inside the components). This implicitly of
describing interactions (connectors) makes it difficult
to build heterogeneous systems that provide complex
functionalities and enroll in complex relations.
In our research we are developing an approach to
describe the architecture of component-based
systems based on software architecture and object-
oriented modeling, it separates components from
connectors. This approach is called Component-
Object based Software Architecture (COSA [2]). Its
basic elements are: components, connectors,
interfaces, configurations, constraints, and properties.
COSA describes systems in terms of types and
instances. Components, connectors, and
configurations are types that can be instantiated to
build different architectures. In this paper we present
the definition of connectors in COSA.

2. Motivations of defining connectors as
first-class entities

Obliging components to communicate via
connectors has number of significant benefits
including: increasing reusability (the same
component can be used in a variety of environments,
each of them providing specific communication
primitives), direct support for distribution, location
transparency and mobility of components in a
system, support for dynamic changes in the system’s
connectivity, improving system’s maintenance, etc.
In additional, various applications can be modeled
more easily by using an approach in which
components and connectors explicitly separated.
Among those which seem to us most important, we
quote:

Configuration management: Components can be
organized in several ways:

1. they can be composed of other components
(hierarchy of composition)

2. they can exist in several versions (hierarchy
of derivation)

3. they can have several representations or
point of views.

The combination of these various hierarchies often
requires complex propagation mechanisms. For
example, If a composite component becomes invalid
the subcomponents also should become invalid.
Moreover, the creation or destruction of a version of
a component can involve the creation (or the
destruction) of a new version of the composite
component.

Distributed systems: If components are localized at
different nodes of a distributed system, the
cooperation of the distant components is determined
by the semantics of the connectors, which connect
them.

Subsystems Coupling: If subsystems need to be
coupled, connectors must be defined among the
components of the subsystems. The updating or
changing operated in one of the subsystems must
then be propagated via these connectors to the other
subsystems. Hence as a result: The consequences of
the activities (functionalities) of a component are
not specific properties to this component, but

properties of the connectors that connect these
components. The interactions among components
(i.e. connectors) often need to adapt to the
requirements of a specific environment.

In addition, we think that not taken into account the
explicit definition of connectors in components
oriented languages, and leaving them tangled as the
case of object oriented systems relations could lead
to various problems among which we can quote:
Lack of abstraction: the lack of abstraction of the
mechanisms used to model connectors does not
permit connectors to have a true place in the
paradigm of components. Moreover this absence of
abstraction prevents connectors from updating and
evolving their concepts and their code. Therefore it
is often required to understand the whole
functionalities of a component to distinguish the
implicit connectors, which are buried in the
component (connectors and their semantics are
mainly based on components).
Increase in the complexity of a component: the
existence of many interactions among components
in a system contributes to a significant increase in
the complexity of the components. And each new
interaction adds more complexity to the
components.
Lack of reusability: as components and connectors
are amalgamated, it becomes difficult to identify the
behavior intrinsic of a component, and this harms
the reuse and the evolution of components and
connectors.
Difficulty in implementation: the implementation of
connectors (in the form of properties of
components) is proved to be difficult. First of all,
the developer must have thought of the interactions
in which its instances could take part. Second, the
dynamic creation of the connectors is difficult, and
it is to be stressed that certain interactions have
complex dynamic behaviors. Hence it is the
responsibility of the developer to implement these
mechanisms.

3. Connectors in COSA

A COSA connector is mainly represented by an
interface and a glue specification [3]. In principle,
the interface shows the necessary information of the
connector, including the number of roles, service
type that a connector provides (communication,
conversion, coordination, facilitations), connection
mode (synchronous, asynchronous) , transfer mode
(parallel, serial) etc. The interaction points of an
interface called roles A role is the interface of a
connector intended to be tied to a component
interface (a component’s port). In the context of the
frame, a role is either a provide role or a require role.
A provide role serves as an entry point to a
component interaction represented by a connector
type instance and it is intended to be connected to the

require interface of a component (or to the require
role of another connector). Similarly, a require role
serves as the outlet point of a component interaction
represented by a connector type instance and it is
intended to be connected to the provide interface of a
component (or to the provide role of another
connector). The number of roles within a connector
denotes the degree of a connector type. For example
in a client-server a connector type representing
procedure call interaction between client and server
entities is a connector with degree of two. More
complex interactions among three or more
components are typically represented by connector
types of higher degrees. The interface is the visible
part of a connector, hence it must contain enough
information regarding the service and the type of this
connector. By doing this, one can decide whether or
not a given connector suits its qualifications by
examining its interface only.
The glue specification describes the functionality that
is expected from a connector. It represents the hidden
part of a connector. The glue could be just a simple
protocol links the roles or it could be a complex
protocol that does various operations including
linking, conversion of data format, transferring,
adapting, etc. In general the glue of a connector
represents the connection type of that connector.
Connectors can also have an internal architecture that
includes computation and information storage. For
example a connector would execute an algorithm for
converting data from format A to format B or an
algorithm for compressing data before it transmits
them. Hence the service provided by a connectors is
defined by its glue, the services of a connector could
be either communication service, conversion service,
coordination service, or facilitations service.
In case of composite connectors the subconnectors
and subcomponents of the composite connector must
be defined in the glue, as well as the binding among
the subconnectors and subcomponents. Figure 1
presents a meta-model illustrates the structure of the
COSA connector. Meanwhile Figure 2 illustrates a
client-server architecture described using COSA, the
figure shows only one architecture (arch-1), more
architectures could be instantiated.

Class Configuration client-server {
 Interface {External {External-protocol;} }
 Class Component server {
 Interface{
 Port provide {provide-protocol;}
 external-port{ External-port-protocol ;}}
 Properties { connection-mode=sync;
 data-type =format-1;
 max-clients=2;} }
 Class Component client {
 Interface{
 Port request {sent-request;}}
 Properties { data-type =format-2;}
 Constraints {max-roles =2;} }

 Class Connector RPC{
 Interface {
 Roles {participator-1, participator-2 }
 Service-type = conversion;
 Connection-mode = asynchronous;
 Properties {throughput=10kb;}
 Constraints {no-of-roles <= 2;}
 Glue {
 Define-Service{
 Conversion{
 read participator-1;
 convert from format-1 to format-2;
 write participator-2;}
 Properties{bidirectional;} }
 }
 Binding { server.external-port to External;}
 }
Instance client-server arch-1 {
 Instances {
 S1: server;
 C1: client;
 C1-S1: RPC; }
 Attachments {
 C1.request to C1-S1. participator-1;
 S1.provide to C1-S1. participator-2;
 } }

Figure 2. Describing a client-server using COSA.

4. Conclusion

Building heterogeneous systems based on off-the-
shelf reused components requires not only well-
defined components (with well-defined interfaces)
but also well-defined connectors. Hence defining

connectors as first-class entities, therefore raising
them to the level of components, helps us in reusing
them effectively. In this article we define connectors
the same way components are defined by separating
their interfaces from their behaviors. A connector
now is represented by roles and glue specification.
By defining connectors as first-class elements we can
specify mechanisms for their reuse and evolution
(instantiation, inheritance, template, composition,
and refinement [4]).

5. References

[1] N. Medvidovic, R. N. Taylor, “A
Classification and Comparison Framework for
Software Architecture Description Languages”,
IEEE Transactions on Software Engineering,
Vol. 26, 2000, pp. 70-39.
[2] A. Smeda, M. Oussalah, T. Khammaci “A
Multi-Paradigm Approach to Describe Software
Systems”, In Proceedings of 3rd WSEAS Int. Conf.
On Software Engineering, Parallel and Distributed
Systems, Salzburg, Austria, 2004.
[3] M. Oussalah, A. Smeda,, and T. Khammaci, “An
Explicit Definition of Connectors for Component-
Based Software Architecture”, In Proceedings of the
11th IEEE Conference on Engineering of Computer
Based Systems (ECBS 2004), Brno, Czech Republic,
May 24-27, 2004.
[4] M. Oussalah, A. Smeda, T. Khammaci, “Software
Connectors Reuse in Component-Based Systems”,
Proceedings of the 2003 IEEE International
Conference on Information Reuse and Integration,
Las Vegas, Nevada, October, 2003.

Figure 1. structure of COSA connectors

Non-Functional PropertiesFu nctiona l Prop ert ie s

composition

Liaison

Requ estRole Prov ideRole

c omp osition

2.. *

Interf ace's constraints

Glue's properties

I net rf a ce' s properties

Role
Name : char

I nte rf a ce

ConnectionMode = {sy nchronous, asy nchronous}
ConnectionServ ice = {communication, conv ersion, coordination, f acilitation}
Ev entTy pe = {component, connector, no}

11

Ins tanc e

Compone nt

ConnectionServ ice
communicat ion
conv er sio n
coord ina ti on
f aci lit ati on

<<enumeration>>

Proper ties

0..*0..*

Constraints

0..*0..*

Connector
Name

11

1

1..*

1

1..*

Glue

0..*0..*

0..*0..*

0..*0..*

0..*0..*

11

Glue' s co nstraints

Addressing Ubiquitous Software Complexity with Mobile Containers

Vasian Cepa
cepa@informatik.tu-darmstadt.de

Darmstadt University of Technology

1 Using Containers to Structure Mobile Applications

We present here an overview of the idea of applying the software containers model to mobile applications using
generative programing techniques. We also present an evaluation prototype called MobCon.

A software container is a wrapper component that offers services nearly transparently to other components
that ’live’ inside it. The wrapped components contain the functional logic of the application. The services
offered by the container are secondary to the logic of the application, but are nevertheless necessary to get
an application running. The container services, known as technical concerns [14], include data persistence,
logging etc. Components that live inside a container are usually written in a more restricted way that normal
components. This restrictions are compensated by automatic usage of container services. The container itself is
an abstraction of the surrounding middleware that an application uses. The container concept is made known
by its original usage in enterprise application frameworks like EJB [13] and COM+ [6].

A container offers services that are usually cross cutting concerns with the rest of application code. Enter-
prise containers are specialized for e-commerce business applications. We can reuse the container concept and
specialize it to other classes of applications. We are interested to apply this concept to mobile applications.
Using a container bring well-known benefits like the natural separation of programmer roles that write func-
tional and technical code. Once the technical concerns are identified, they are coded and debugged and made
of the container logic. This reduces the bugs and increases productivity. Apart of this the container idea is
especially benefiting for mobile applications. The container hides the middleware related API-s from the rest
of the application in a centralized way. Ideally porting a family of mobile applications to a new middleware
platform would require only porting the container. This is very important considering the speed the mobile
middleware [4] changes today. Even different versions of the same middleware may expose different API-s. The
container abstraction can be used to address such mobile software problems in a structured way.

There are several reasons, however, why the enterprise container idea cannot be directly adopted for mobile
applications. First, since we are addressing a new domain of application we need to find and parameterize the
technical concerns of the mobile applications to be addressed. Second, and more importantly, the design issues
involved in building a container have different constrains in the enterprise as compared to mobile applications.
For enterprise applications scalability is the main issue. For mobile applications the main issue is performance
of the container itself: Every time we introduce a new abstraction, we introduce new layers. Having many layers
of abstractions is however unacceptable for mobile applications that run on resource limited devices. Last but
not least, current enterprise container technology has several drawbacks [16], which are also unacceptable for the
domain of mobile applications, including the inability of such technology to be tailored to application specific
needs, its complexity due to lack of tight language integration, as well the implied dependency from a particular
component middleware platform, a serious limitation in the mobile domain, where middleware changes rapidly.

Generative techniques in the idea of OMG MDA [5] combined with taking into consideration the cross-cutting
nature of technical concerns that a container addresses can be used to implement a mobile container framework.
The current research in MDA tries to find ways how to specify such transformations so that they are done
automatically. While nowadays we are still far from modeling an entire application instead of writing its code,
the MDA ideas are still valid, if we try to organize the source code of an application in a platform independent
way that enables automatic transformations. This way we can focus on the main functionality and introduce
the technical concerns automatically later. To achieve this we need language support for MDA concepts such
as marking with tags and AOP like [1] cross cutting code decoration techniques. Languages used for mobile
applications are usually restricted dialects of mainstream languages. Tools that transform mobile source code
may not be directly available. This means that we should use techniques that can be easily introduced to any
language 1.

1For example we cannot use AspectJ [7] with J2ME MIPD, a Java dialect for mobile applications that we use in MobCon
prototype.

mailto://cepa@informatik.tu-darmstadt.de

2 MobCon: A Mobile Container Framework

To demonstrate the feasibility of the proposal, a mobile container prototype called MobCon is being imple-
mented. In the following, we only outline the structure and features of this prototype; more details can be
found in [12].

Based on the ides of marking in MDA and presence attributes in several languages like .NET we presented
the idea of Generalized and Annotated AST - GAAST languages, that can be used to facilitate marked transfor-
mations at the source code level. GAAST idea requires two features to be supported by a language technology
(a) support for annotations (marking in MDA) of arbitrary program elements with user-defined tags which
are first-class program units with well-defined semantics, and (b) support for explicit meta-representation of
programs that is accessible in a programmatic way. A GAAST proposal evaluation in the form of the CT-AST
API prototype is developed as part of the MobCon transformer framework.

We selected Java 2 Micro Edition Mobile Information Device Profile (MIDP) 2.0 [3] for our prototype because
is relatively simple (we can focus on the container concept not in the technology) and hardware independent
and it is well supported. The process of identifying technical concerns for a set of mobile applications is similar
to defining software product lines [8]. Various technical concerns have been addressed until now in the MobCon
prototype such as data persistence, screen management, logging, image adaptation, encryption, session and
context. We use a source code template based approach. Our templates are implemented as Velocity [9] scripts.

Input
(JavaDoc decorated

MIDP Source)
CT-AST

T1
(Velocity

based)

T2

T3

CT-AST
Mixer

Output
(MIDP Source)

qDoc
(modified)

vDoclet
(modified)

Representation Manager

Figure 1: MobCon Transformers

Fig. 1 schematically shows the MobCon transformer framework. As part of this framework, we have
implemented a MIDP-based prototype language technology with explicit support for tag-based model-driven
development (represented by the Representation Manager (implemented with customized versions of QDox [15]
and vDoclet [17]) and the Class Template AST (CT-AST) in Fig. 1). Tags allow us to associate new semantics
with language entities. JavaDoc tags are used in our prototype to simulate source code entity annotations, since
MIDP lacks such support. The representation manager processes annotated source code, producing a CT-AST
representation of it, which serves as the input for the transformers. Only three different such (Velocity-based)
transformers (Ti) and their interactions as they process the input introducing the technical concerns directed
by the annotations of the input CT-AST-s are shown. Some concerns like image adaptation require code to
be placed on the server side. The MobCon framework generates Java code for such concerns, for both mobile
side and the server side. The network communication is handled by the framework. Messages are handled to
the appropriate application using bookkeeping data, part of session and context concerns. Three types of uses
are identified: (a) those that use predefined concerns (tags); (b) those that can append and modify concerns
dealing with MobCon transformer framework; (c) users that port the framework to a new set of middleware.
The MobCon framework itself is independent of J2ME MIDP and is written in Java. Only transformer scripts
written in Velocity are platform dependent.

Generation can be used successfully to implement container-like approaches for small systems. The work of
Voelter [11] targets generative component infrastructures for embed systems. Unlike MobCon the idea is that
the entire operating system can be customized for the application. PicoContainer [10] is a generic container
project based on constructor parameters that tries to define a minimalistic container to be used also in client
applications. This project focuses on containers in general, while MobCon is specialized for mobile applications,
trying to reduce abstraction layers via generation. The work of Popovici et al [2] investigates the application
of so-called spontaneous containers in mobile clients. The idea is that the container ideally changes itself to
be adapted to environment changes at run-time without stopping the application. MobCon on the other hand
addresses ways to structure mobile applications so that they can be maintained easier. Also run-time dynamic
AOP requirements of spontaneous containers require more powerful computing devices that those addressed by
MobCon framework.

References

[1] A. Rashid A. Colyer, G. Blair. Managing Com-
plexity In Middleware. AOSD Workshop on As-
pects, Components, and Patterns for Infrastruc-
ture Software (ACP4IS), 2003.

[2] A. Popovici, et al. Spontaneous Container Ser-
vices. ECOOP, 2003.

[3] C. Bloch and A. Wagner. MIDP 2.0 Style Guide
for the Java 2 Platform, Micro Edition. Addison-
Wesley, 2003.

[4] W. Emmerich C. Mascolo, L. Capra. Middleware
for Mobile Computing. In Advanced Lectures on
Networking - Networking 2002 Tutorials, Springer
Verlag, LNCS 2497, pages 20–58, May 2002.

[5] D. S. Frankel. Model Driven Architecture - Apply-
ing MDA to Enterprise Computing. Wiley, 2003.

[6] T. Ewald. Transactional COM+: Building Scal-
able Applications. Addison-Wesley, 2001.

[7] J. Hugunin M. Kersten J. Palm W. G. Griswold
G. Kiczales, E. Hilsdale. An Overview of AspectJ.
In Proc. of ECOOP ’01, Springer-Verlag, LNCS
2072, pages 327–353, 2001.

[8] J. Bosch. Design and Use of Software Architec-
tures, Adopting and Evolving a Product-Line Ap-
proach. Addison-Wesley, 2002.

[9] J. Cole J. D. Gradecki. Mastering Apache Veloc-
ity. John Wiley & Sons Inc, 2003.

[10] PicoContainer. http: // www. picocontainer.

org/ , 2003.

[11] M. Voelter. A Generative Component Infrastruc-
ture for Embedded Systems. Position Paper at
Reuse in Constrained Environments Workshop at
OOPSLA 03, 2003.

[12] MobCon: A mobile container framework
prototype for J2ME MIDP. http: // www.

st. informatik. tu-darmstadt. de/ static/

pages/ projects/ mobcon/ index. html , 2003.

[13] R. Monson-Haefel. Enterprise JavaBeans.
Addison-Wesley, 2000.

[14] D. Parnas. On the criteria to be used in decom-
posing systems into modules. Communications of
the ACM, 1972.

[15] QDox Java Tag Parser. http: // qdox.

codehaus. org/ , 2003.

[16] R. Pichler, K. Ostermann, M. Mezini. On Aspec-
tualizing Component Models. Software Practice
and Experience, Volume 33, Issue 10, pp. 957-974,
2003.

[17] vDoclet Java Code-Generation Framework. http:
// vdoclet. sourceforge. net/ , 2003.

http://www.picocontainer.org/
http://www.picocontainer.org/
http://www.st.informatik.tu-darmstadt.de/static/pages/projects/mobcon/index.html
http://www.st.informatik.tu-darmstadt.de/static/pages/projects/mobcon/index.html
http://www.st.informatik.tu-darmstadt.de/static/pages/projects/mobcon/index.html
http://qdox.codehaus.org/
http://qdox.codehaus.org/
http://vdoclet.sourceforge.net/
http://vdoclet.sourceforge.net/

ACP4IS Workshop at AOSD’04

Towards Integrating Aspects and Components

Houssam Fakih1,2

fakih@ensm-douai.fr

Noury Bouraqadi1

bouraqadi@ensm-douai.fr

Laurence Duchien2

duchien@lifl.fr

March 22, 2004

Integrating aspects and components can be im-
portant for both AOSD and CBSD. On the one hand
CBSD suffers from crosscutting and tangling code
[7]. On the other hand, actual AOSD technologies
are not mature enough to enable aspect reuse [6, 4].
So, each paradigm can resolve other’s paradigm lim-
itations.

Problem Statement

The integration of AOSD and CBSD is a complex
task that can be subdivided into three facets.

1. Facet 1 consists in componentizing aspects.
That means representing each aspect as a single
reusable component. Basic characteristics of a com-
ponent include attributes, provided and required
services. The challenge is to map these characteris-
tics on aspects. We have also to explore the appli-
cability of related concept such as connector, com-
posite and sub-component on aspects.

2. Facet 2 consists in aspectizing a component-
based software. Nowadays, AOSD is used in con-
junction with object oriented or procedural lan-
guages. Base code is expressed using either an ob-
ject oriented language or a procedural one. The
second facet allows extending this list with compo-
nent based languages. Set differently, the second
facet consists in defining aspects that act on base
code expressed in terms of components and related
concepts. In this context, we have to define weaving
and join points on execution flow and structure of
components and related concepts.

It is worth noting that there is a variety of compo-
nent models. Thus, redefinition of AOSD concepts
will certainly vary according to the model used to
implement base code. A solution proposed for a
flat component model (i.e. a model without com-
posite concept) will probably not be applicable to
a hierarchical model (i.e. a model with composite
concept). However, we believe that some solutions

1 Ecole des mines in Douai. France.

http://csl.ensm-douai.fr/research/
2 Lille University Of Sciences and Technology.

France. http://www.lifl.fr/GOAL/

could be transposed between some models. In the
case of component model with explicit connectors
there would be an extra relationship : the one be-
tween connectors and aspects. But, this relationship
can be transposed to a component-aspect relation-
ship. Indeed, we agree with Sacha Krakowiak that
components and connectors are two entities of the
same nature (i.e. structure/behavior) but with dif-
ferent roles [5] . So, connectors can be considered
as components dedicated to connection.

3. Facet 3 is a merge of the two previous facets.
It consists in unifying aspects and component-based
software by defining a general enough component
model to encompass not only "traditional" CBSD
concepts, but also AOSD concepts. This unification
should lead to a single definition that should apply
for both aspects and components. In this context,
weaving aspects with a base code consists of assem-
bling components from a base code with components
representing aspects. We identify two differences
between assembly and weaving mechanisms.

• First in CBSD, all participating components in
an assembly are aware of their assembly points
and the provided or required services. On the
contrary in AOSD only aspects are aware of
assembly points (join points) and services they
provide to change or adapt the base code nor-
mal execution.

• Second, the assembly mechanism is not intru-
sive like weaving. The former keeps compo-
nents intact while the latter often changes base-
code structure and behavior.

Note that as for facet 2, solutions will probably vary
according to concepts provided by the chosen com-
ponent model.

First steps towards the integration

1. Provided and required services are among com-
ponents characteristics. In a componitizied aspect,
provided services include advices. Indeed, advices
should be triggered in order to execute. Introduc-
tions are also part of provided services of a componi-
tizied aspect. This is because their execution can be

triggered. Introductions are performed when code
elements to extend/change are given. One possible
solution for facet 1 consists in using the concept of
contract [1]. Contracts seem to be applicable for
provided services corresponding to both advice and
introductions. Syntactic contracts (types) for ad-
vice enforce the type of acceptable join points (e.g.
message to be sent or to be received, field access,
. . .). While behavioral contracts for advices check
their invariants and pre-post conditions (e.g. change
of a log file for a logging aspect). For an introduc-
tion, a syntactic contract corresponds to the kind of
constructs (class, method, . . .) to which the intro-
duction is applicable.

2. One possible solution for facet 2 consist in
defining entry points on components [3] that allow
to change its internal behavior. Thus, aspects are
plugged on these entry points. The definition of
join points depends on component model. We can
identify some basic join point families common to
all component models such as actions related to the
component state (creation, initialization, . . .) or
provided or required component services (call of ser-
vices, connecting or disconnecting components,. . .)

3. One viable solution for Facet 3 could be to
define a reflective component model (figure 1). We
distinguish two kinds of components : a base com-
ponent defines application business features while a
meta-component defines how to perform these fea-
tures (aspects) [2].

Each component should have an extra-functional
interface (an extra-functional interface corresponds
to an entry point) allowing it to be connected to
a meta component. A meta-component controls
one or several base components. A componentizied
aspect can be made up of one or several meta-
components. So it can be considered as a single
(Aspect 2 and Aspect 3) or a composite component
(Aspect 1) as we show in figure 1. Composite com-

Business Required
Interface

Business Provided
Interface

Meta Component level

Component level

Aspect 2

Aspect 3

Aspect 1 = Composite

Extra−Functional Interface

Figure 1: a reflective component model

ponents assemble more than one meta-component

in order to represent a single aspect. It manages
also the visibility of provided and required meta-
component interfaces. Representing aspect as a
set of meta-components has the advantage to make
no difference between assembly components and
weaving componentizing aspects mechanisms. In
cases of one component controlled by several meta-
components. We have to manage potential conflicts
among meta-components. One solution consists of
either using a chain of responsibility. The ideal so-
lution is to give users the possibility to change or
manage conflicts. We could do it by using a meta-
component dedicated to conflict resolution. The
same strategy can be used in case of conflicts among
componentizied aspects. Conflicts can be addressed
defining an adapter component that link componen-
tizied aspects to base components.

References

[1] Antoine Beugnard, Jean-Marc Jézéquel, Noël
Plouzeau, and Damien Watkins. Making com-
ponents contract aware. Computer, 32(7):38–45,
jul 1999.

[2] N. Bouraqadi and T. Ledoux. Aspect-Oriented

Software Development, chapter 11 – Supporting
AOP using Reflection. Addison-Wesley, 2003.

[3] Patrice Gahide, Noury Bouraqadi, and Laurence
Duchien. Promoting component reuse by inte-
grating aspects and contracts in an architecture
model. In Yvonne Coady, editor, Proceedings of

the First AOSD Workshop on Aspects, Compo-

nents, and Patterns for Infrastructure Software,
pages 51–55, Enschede, The Netherlands, April
2002. University of British Columbia.

[4] Stefan Hanenberg and Rainer Unland. Using
and reusing in aspectj. Proceedings of OOPSLA

2001 Workshop on Advanced Separation of Con-

cerns in Object-Oriented Systems, October 2001.

[5] Sacha Krakowiak. Patrons et canevas pour les
intergiciels. Talk given at 4th Summer school
on distributed systems in Autrans, France, Au-
gust25 2003.

[6] Karl Lieberherr, David H. Lorenz, and Mira
Mezini. Programming with aspectual compo-
nents. Technical Report NU-CCS-99-01, College
of Computer Science, Northeastern University,
Boston, MA 02115, March 1999.

[7] Roman Pichler, Klaus Ostermann, and Mira
Mezini. On aspectualizing component models.
Software Practice and Experience, 33:957–974,
2003.

JAsCoAP: Adaptive Programming for Component-Based
Software Engineering.

1. INTRODUCTION
Adaptive Programming [3] aims at providing support for a very
different kind of crosscutting concern than the ones tackled by
classical aspect-oriented approaches. When an operation involves
a set of cooperating classes, one can either localize the operation
in one class or split up its logic among the set of involved classes.
Localizing the operation in one class causes hard-coded
information about structural relationships, this way violating the
Law of Demeter [1]. Spreading the operation among the set of
involved classes conforms to the Law of Demeter, but gives raise
to crosscutting concerns which obstruct evolution. In order to
cleanly encapsulate an operation that involves several cooperating
classes, Adaptive Programming introduces adaptive visitors that
allow visiting the objects contained within an application, without
explicitly specifying the structural relationships among these
objects.
JAsCo [6] on the other hand, is an aspect-oriented extension for
Java which is especially tailored to be employed in the context of
Component-Based Software Engineering (CBSE). CBSE
advocates low coupling between components and high cohesion
of single components [7]. The JAsCo language introduces two
new entities, namely aspect beans and connectors. An aspect
bean allows describing crosscutting concerns independently of
concrete component types and APIs. JAsCo connectors on the
other hand are used for deploying one or more aspect beans
within the concrete application at hand. JAsCo connectors also
allow managing the combined aspectual behavior of the
instantiated aspect beans in a fine grained manner.
Although Adaptive Programming is originally designed for
Object-Oriented Software Engineering, its ideas can also be
reused within a Component-Based context. Currently available
Adaptive Programming realizations, such as DJ [4], DemeterJ [2]
or DAJ [5] however are not very suitable to be employed within
CBSE. Even though adaptive visitors are independent of the
architecture of the application at hand, they still refer to specific
component types and APIs, rendering a visitor not as reusable as
required by CBSE. To this end, we propose to recuperate the
context-independency idea promoted by JAsCo within adaptive
programming, this way making adaptive visitors suitable to be
employed within CBSE. Furthermore, currently available
Adaptive Programming realizations provide little support for
specifying complex combinations among several collaborating
adaptive visitors in order to execute their behavior
simultaneously. Also here, the JAsCo ideas are able to contribute,
as JAsCo allows expressing complex combinations among
independently specified aspect beans.

In the next section, we show how the ideas of Adaptive
Programming and JAsCo can be combined in order to make
Adaptive Programming fit into the Component-Based world. We
illustrate how adaptive visitors can be implemented by means of
JAsCo aspect beans in order to improve their reusability.
Afterwards, we demonstrate how the behavior of several adaptive
visitors can be combined making using of JAsCo precedence and
combination strategies. Finally, we present our conclusions.

2. JASCOAP
2.1 Aspect beans as adaptive visitors
An adaptive visitor is very similar to a set of related advices as it
is able to group several before, after and around methods that
need to be executed whenever a corresponding component type is
visited. Therefore, it seems natural to employ a regular JAsCo
aspect bean as a kind of abstract and loosely coupled adaptive
visitor. Figure 1 illustrates the implementation of the
DataStorePersistence aspect bean, which allows capturing an
incremental backup of data objects.
1 class DataStorePersistence {
2
3 hook Backup {
4
5 Backup(triggeringmethod(..args)) {
6 execute(triggeringmethod);
7 }
8
9 isApplicable() {
10 //returns true if changed since last visit
11 }
12
13 before() {
14 ObjectOutputStream writer = …
15 writer.writeObject(getDataMethod(calledobject));
16 }
17
18 public abstract Object getDataMethod(Object c);
19 }
20
21 }

Figure 1: DataStorePersistence AspectBean that specifies a
reusable backup aspect
The aspect bean contains one hook, the Backup hook (line 3 till
19). The constructor of this hook (line 5 till 7) specifies that the
behavior of the hook should be performed whenever the concrete
method, bound to the triggeringmethod abstract method
parameter, is executed (line 6). An isApplicable method is
employed (line 9 till 11) which returns true if the state of the
object, on which triggingmethod is executed, has changed since it
was last visited. The before method (line 13 till 16) serializes the
visited object to file using the abstract method getDataMethod.
This abstract method (line 18) is responsible for fetching the data

Wim Vanderperren
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 62

wvdperre@vub.ac.be

Davy Suvée
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 65

dsuvee@vub.ac.be

from the current object related to the method call and needs to be
implemented in the connector. Notice that the
DataStorePersistence aspect bean does not refer to specific
component types and APIs. As a result, the aspect bean remains
completely independent and reusable.
1 traversalconnector BackupTraversal(
2 "from system.Root to *") {
3
4 DataStorePersistence.Backup hook = new
5 DataStorePersistence.Backup(visiting DataStore) {
6
7 public void getDataMethod(Object obj) {
8 return (DataStore)obj,getData();
9 }
10 };
11
12 hook.before();
13
14 }

Figure 2: BackupTraversal traversal connector.
In order to deploy the DataStorePersistence aspect bean as an
adaptive visitor, a new kind of connector is introduced: a
traversal connector. A traversal connector instantiates one or
more aspect beans as adaptive visitors onto a traversal strategy.
Figure 2 illustrates a traversal connector that instantiates the
DataStorePersistence aspect bean (line 4 till 10) upon the “from
system.Root to *” traversal strategy (line 1 till 2). The visiting
keyword allows declaring on which specific type of objects,
encountered during the traversal, the behavior of the hook needs
to be performed, in this case, DataStore objects. As a result, the
object structure of an application is traversed as specified by the
traversal strategy “from system.Root to *” and the before advice
of the Backup hook is triggered each time a DataStore object is
encountered. Likewise to a regular JAsCo connector, the
getDataMethod abstract method is implemented in order to fetch
the data from the visited DataStore objects (line 7 till 9).
1 public void backup(system.Root mySystemRoot) {
2
3 Connector myBackup = BackupTraversal.getConnector();
4 myBackup.traverse(mySystemRoot);
5
6 }

Figure 3: Invoking the BackupTraversal connector.
Traversal strategies need to be invoked explicitly in order to start
the traversal. Figure 3 illustrates how the traversal specified in
the BackupTraversal connector is explicitly invoked (line 4).

2.2 Combinations among Adaptive Visitors
Currently available Adaptive Programming realizations provide
little support for specifying complex combinations between
several collaborating adaptive visitors. The precedence and
combination strategies offered by the JAsCo connector language
can however be employed when adaptive visitors are
implemented as aspect beans.
1 traversalconnector BackupFileLoggerTraversal (
2 "from system.Root to *") {
3
4 DataStorePersistence.Backup hook1 = …
5 Logger.FileLogger hook2 = …
6
7 logger.before();
8 backup.before();
9 addCombinationStrategy(new TwinComb(hook1,hook2));
10
11 }

Figure 4: Connector with explicit combinations.
Figure 4 illustrates the implementation of a traversal connector
that instantiates the Backup hook and the FileLogger hook, which

logs backup actions, upon the same traversal strategy. The
BackupFileLoggerTraversal traversal connector allows to
explicitly control the precedence of both hooks when they visit
the same object. In this case, the before behavior method of the
logger hook is triggered prior to the before behavior method of
the backup hook (line 7 till 8). In addition, a log should only be
kept of those objects that have been saved to file. For these
specific kinds of interactions between hooks, combination
strategies can be employed. A combination strategy is a kind of
filter which acts on the list of applicable hooks. In this case, the
TwinComb strategy specifies that the behavior of the FileLogger
hook should only be performed, if the behavior of the BackUp
hook was also executed.

3. CONCLUSIONS
This paper illustrates how the ideas behind Adaptive
Programming and JAsCo can be combined in order to make
Adaptive Programming fit into the Component-Based world.
Adaptive visitors are described by means of traditional, context-
independent JAsCo aspect beans which are deployed making use
of JAsCo traversal connectors. As a result, adaptive visitors,
implemented as aspect beans, are now truly reusable as no
specific component types and APIs are hard coded into the visitor
itself. In addition, the behavior of several adaptive visitors,
implemented as aspect beans, can easily be combined into one
traversal connector in order to visit the same traversal strategy
simultaneously. JAsCo precedence and combination strategies
can be employed here in order to describe complex interactions
between several adaptive visitors applied upon the same traversal
strategy.

4. REFERENCES
[1] Lieberherr, K. and Holland, I. Assuring Good Style for

Object-Oriented Programs. IEEE Software, pages 38-48.,
September 1989.

[2] Lieberherr, K and Orleans, D. Preventive Program
Maintenance in Demeter/Java. In Proceedings of
International Conference of Software Engineering (ICSE),
pp. 604-605, 1997.

[3] Lieberherr, K., Orleans, D. and Ovlinger, J. Aspect-Oriented
Programming with Adaptive Methods. Communications of
the ACM, Vol. 44, No. 10, October 2001.

[4] Orleans, D. and Lieberherr, K. DJ: Dynamic Adaptive
Programming in Java. In Proceedings of Reflection 2001:
Meta-level Architectures and Separation of Crosscutting
Concerns, Kyoto, Japan, September 2001.

[5] Sung J. and Lieberherr, K. DAJ: A Case Study of Extending
AspectJ. Northeastern University Technical Report NU-
CCS-02-16, 2002. Available at:
http://www.ccs.neu.edu/research/demeter/biblio/DAJ1.html

[6] Suvee, D., Vanderperren, W. and Jonckers, V. JAsCo: an
Aspect-Oriented approach tailored for Component Based
Software Development. In Proceedings of the second
International Conference on Aspect-Oriented Software
Development. Boston, USA, March 2003.

[7] Szyperski, C. Component Software - Beyond Object-
Oriented Programming. Addison-Wesley / ACM Press,
ISBN 0-201-17888-5, 1998.

Infrastructural support for data dependencies
in data-centered software systems

Lieven Desmet, Frank Piessens, Wouter Joosen
DistriNet, Dept. of Computer Science, Katholieke Universiteit Leuven

Lieven.Desmet@cs.kuleuven.ac.be

1 Introduction
The identification of key concerns is crucial for a good
application of the separation-of-concerns principle [5, 3].
However, an exhaustive list of all important non-functional
concerns and the correct decomposition of software into
those concerns is still an open question. Moreover, we be-
lieve that some of the important key concerns are applica-
tion domain or software architecture specific.

Therefore, we argue that in order to provide better infras-
tructural support, the infrastructure must take into account
this architectural correlation. The infrastructure must pro-
vide explicit support for describing and enforcing implicit
application information, that is specific to the software ar-
chitecture.

In this paper, we illustrate this idea for the concern of
data dependencies in data-centered software systems.

2 Data flow dependencies
In the data-centered architectural style [6], a system con-
sists of a central data structure (representing the state of the
system) and a set of separate components interacting with
the central data store. The components of a data-centered
software system describe a required and provided dataset,
specifying the set of data that a component fetches from or
puts onto the shared repository. A correct composed data-
centered application is a collection of separate components
and a shared repository, with respect to functional data de-
pendencies: every required data item of a component is pro-
vided by another component by means of the shared repos-
itory.

Figure 1 illustrates a simple, servlet-based [4, 2] e-
commerce web application. Three different services are
identified within the application: adding a product item to
the personal shopping basket, the payment of the shopping
order and searching through the website. Each box repre-
sents a functional task implemented as a servlet, and the ser-
vices are pipe-and-filter compositions of several indepen-
dent tasks. The functional data dependencies are depicted
by dotted lines. For each website user, for example, a per-
sonal shopping basket is saved at server-side, in the session

Figure 1: A small e-commerce web application

scope of the shared repository. The personal basket is cre-
ated at a user’s first visit and it is used by three different
servlets, entitled in the figure as ’process add to basket’,
’display new basket’ and ’prepare basket order’.

Besides functional data dependencies, also non-
functional requirements on the dataflows may exist. In other
words extra constraints on the dataflows through the shared
repository may be expressed. These constraints can address
for instance the authenticity of the dataflow, confidentiality
or synchronization. For instance, in order to prevent race
conditions, the composed application needs also extra syn-
chronization support for the shopping basket (figure 2(a)).

Also more general constraints, such as splitting up the
shared repository in several disjunct logical repositories, or
protecting the repository against name clashes between sev-
eral dataflows are possible extra composition requirements
in data-centered applications. For example, within the pay-
ment service, two dataflow dependencies are present. Since
the servlets of this service are developed separately (e.g. the
payment component is typically a third-party component),
a conflict exists in the naming of the shared data. There-
fore, extra support is needed to prevent the name clash (fig-
ure 2(b)).

From our point of view, data dependencies should be ex-
plicitly modelled by the software composer in data-centered
application to enforce correctness. Furthermore, data de-
pendencies should be clearly separated from the core func-
tionality in order to improve reusability, adaptability and

(a) synchronization (b) name clash

Figure 2: Data dependency constraints

manageability. In the following section, appropriate infras-
tructural support for data dependencies is outlined.

3 Infrastructural support
We believe that an infrastructure must provide explicit sup-
port for describing and enforcing implicit constraints and
dependencies. Therefore, in order to introduce specific sup-
port for implicit data dependencies, we have identified the
following approach in which three requirements can be de-
fined. Firstly, functional components within the application
need an explicit specification extension of the required and
provided data items for each component. Secondly, com-
posing an application requires a declarative policy of the
functional and non-functional data dependencies between
the components. Finally, the enforcement of this declarative
policy is needed, either at deployment time or at run-time.

Extended specification Traditionally, an operation is
syntactically and semantically specified based on the op-
eration’s name and its input and output. In order to express
data dependencies, this specification must be extended with
extra information about the data items that are provided or
required from the shared repository by the component’s op-
eration. Extending the specification with repository interac-
tions can be either done manually by the component’s de-
signer or implementor, or can be generated by tools based
on the component’s implementation.

Declarative policy The composition of an application
with a shared repository requires more than defining the
functional components within the application and the cor-
responding control flow. The application composer also
needs to define the dataflow by means of functional data
dependencies and non-functional constraints on the depen-
dencies. Moreover, to enhance adaptivity and manageabil-
ity, the dataflow should be described in a separate, declara-
tive policy.

Policy enforcement To enforce the dataflow policy at the
infrastructure, additional support is needed for controlling
the access to the shared repository. As such, the shared
repository can be extended with an enforcement engine. Al-
ternatively, a wrapper with a built-in enforcement engine

can encapsulate all access to the shared repository. The en-
forcement engine decides whether a component is allowed
or denied access to a data item on the shared repository
(functional data dependency). In addition, the enforcement
engine ensures the non-functional constraints on the consid-
ered dataflow.

In the presented approach, both functional and non-
functional data dependencies are clearly separated from
core functionality and existing specification of the different
components. Furthermore, the data dependency concern is
easily adaptable through the use of the declarative policy,
and together with the enforcement engine a high cohesion
and low coupling is achieved.

4 Current status
Currently, the approach for describing and enforcing data
dependencies has been validated in simple servlet-based ap-
plications such as the one in Figure 1. Hereby, the data
dependencies are identified as an important non-functional,
cross-cutting concern and are cleanly separated from the
core functionality. The specification and policy language
used however, is still in development.

Next to the presented case study, the approach of mak-
ing dataflow dependencies explicit has also been validated
in the component-based protocol stack framework DiPS. In
DiPS [1] functional components are chained into a pipe-
and-filter structure and components can share data anony-
mously along the pipe by means of a shared repository.
Similar results were achieved within this case study.

Future work will expand the current approach to other
implicit constraints and dependencies. Target tracks are the
study of dataflow dependencies in Message Driven Beans,
and implicit invocations in event-based systems.

References
[1] K.U.Leuven DistriNet Research Group. DiPS home

page. http://www.cs.kuleuven.ac.be/cwis/research/-
distrinet/projects/DIPS/.

[2] J. Hunter and W. Crawford. Java Servlet Programming.
O’Reilly, second edition, April 2001.

[3] Walter L. Hürsch and Cristina Videira Lopes. Separation of
concerns. Technical Report NU-CCS-95-03, College of Com-
puter Science, Northeastern University, Boston, MA, Febru-
ary 1995.

[4] Java servlet technology. http://java.sun.com/products/servlet/.

[5] D. L. Parnas. On the criteria to be used in decompos-
ing systems into modules. Communications of the ACM,
15(12):1053–1058, 1972.

[6] M. Shaw and D. Garlan. Software Architecture - Perspectives
on an emerging discipline. Prentice-Hall, 1996.

	E00-1917723609.pdf
	E00-1917723609.pdf
	ABSTRACT
	Keywords

	INTRODUCTION
	SYSTEM SOFTWARE
	CAPTURING CROSSCUTING CONCERNS IN SYSTEM SOFTWARE
	Depending on the layer, shown in Figure 1, and the domain it is used in, system software has to handle one or several of the following crosscutting concerns:

	PATTERNS FOR BUILDING EXTENSIBLE ARCHITECTURES
	RELATED WORK
	CONCLUSION
	REFERENCES

	E00-390907325.pdf
	Introduction
	Container-Based Tx Management in EJBs
	Declarative Transaction Management
	Separation of Concerns?

	Toward a Comprehensive Aspect for Tx Management of EJBs
	Declaring transactional methods
	Adding Exception Handlers for Rollbacks

	Conclusion and Future Work
	Acknowledgments

	E00-1302474815.pdf
	Motivation
	The Declare Proxy Construct
	Overview of the Proposal
	Proxies -- Design Space and Decisions
	Implementation Restrictions

	Related Work
	Summary and Future Work
	REFERENCES

	E00-1957403910.pdf
	Using Containers to Structure Mobile Applications
	MobCon: A Mobile Container Framework

