A case study of separation of concernsin compiler construction
using JastAdd |1

Torbjorn Ekman
Department of Computer Science, Lund University, Sweden
torbjorn. ekman@s. I th. se

Abstract

This paper presents a case study of separation of con-
cerns in compiler construction using the JastAdd Il
compiler compiler. A domain-specific specification
language, Rewritable Reference Attributed Grammars
(ReRAGS), is combined with Java to implement com-
pilers in a high-level declarative and modular fashion.
Three synergistic mechanisms for separations of con-
cerns are described: inheritance for model modulari-
sation, aspects for cross-cutting concerns, and rewrites
that allow computations to be expressed on the most
suitable model. Each technique is presented using a se-
ries of simplified examples from static semantic analy-
sis for the Java programming language.

1 Introduction

We present a case study of separation of concerns in
compiler construction using the JastAdd Il compiler
compiler. Simplified examples from static semantic
analysis for the Java programming language [GJSBO00]
are used to demonstrate the mechanisms for separation
of concerns provided in JastAdd Il. This work is part
of a larger project where the entire static semantics of
Java 1.4 have been implemented. We believe that Java
is a suitable language implementation for experiment-
ing on language modularisation because of its advanced
scope rules with nested types and inheritance as well
as need for reclassification of contextually ambiguous
names during name analysis.

JastAdd Il uses a declarative compiler specification
in the form of Rewritable Reference Attributed Gram-
mars (ReRAGS) [EHO04] combined with imperative Java
code. ReRAGs provide three synergistic mechanisms
for separations of concerns: inheritance for model
modularisation, aspects for cross-cutting concerns, and

rewrites that allow computations to be expressed on the
most suitable model. This allows compilers to be writ-
ten in a high-level declarative and modular fashion.

The rest of this paper is structured as follows. Sec-
tion 2 describes JastAdd Il and its specification lan-
guage. The three mechanisms for separation of con-
cerns are demonstrated in sections 3, 4, and 5. Section 6
discusses how the three mechanisms are used to deal
with interaction between aspects. Section 7 points out
some related work and Section 8 concludes this paper
and discusses some future work.

2 JastAdd Il Background

JastAdd Il is an aspect-oriented compiler compiler
tool using declarative Rewritable Reference Attributed
Grammars (ReRAGS) and Java as its specification lan-
guages. The grammars define attributes and equations
to specify computations and information propagation in
the abstract syntax tree (AST). The formalism is object-
oriented viewing the grammar as a class hierarchy and
the AST nodes as instances of these classes. Behav-
ior common to a group of language constructs can be
specified in a common superclass and specialized or
overridden for specific constructs in the corresponding
subclasses. Often the most appropriate AST structure
can only be decided after parial attribution of the AST.
Rewrites allow restructuring of the tree to simplify the
specification of the remaining attribution. The follow-
ing sections give an introduction to JastAdd Il compiler
specifications.

2.1 TheAST classhierarchy

The nodes in an Abstract Syntax Tree (AST) are viewed
as instances of Java classes arranged in a subtype hier-
archy similar to the Interpreter pattern, [GHJV95]. An



AST class correponds to a nonterminal or a production
(or a combination thereof) and may define a number of
descendents and their declared types, corresponding to
a production right-hand side. In an actual AST, each
node must be type consistent with its ancestor accord-
ing to the normal type-checking rules of Java. l.e., the
node must be an instance of a class that is the same or
a subtype of the corresponding type declared in the an-
cestor. Shorthands for lists, optionals, and lexical items
are also provided. All node types implicitly inherit the
common ancestor type ASTNode that support generic
access to node children. This is particular useful for
generic tree traversals. An example definition of some
AST classes is shown below.

/1 Expr corresponds to a nonterm nal
ast Expr;

/1 Add corresponds to an Expr production
ast Add : Expr ::= Expr leftOp, Expr rightOp;

/1 1d corresponds to an Expr production
/1 idis a token

ast Id : Expr ::= <String id>;

2.2 Reference Attributed Grammars

ReRAGs are based on Reference Attributed Grammars
(RAGSs) which is an object-oriented extension to At-
tribute Grammars (AGs) [Knu68]. In plain AGs each
node in the AST has a number of attributes, each de-
fined by an equation. The right-hand side of the equa-
tion is an expression over other attribute values and de-
fines the value of the left-hand side attribute.

Attributes can be synthesized or inherited. The equa-
tion for a synthesized attribute resides in the node it-
self, whereas for an inherited attribute, the equation re-
sides in an ancestor node. Note that the term inherited
attribute refers to an attribute defined in the ancestor
node, and is thus a concept unrelated to the inheritance
of OO languages. In this article we will use the term
inherited attribute in its AG meaning, unless explicitly
stated otherwise.

Inherited attributes are used for propagating infor-
mation downwards in the tree, e.g. propagating infor-
mation about declarations down to use sites, whereas
synthesized attributes can be accessed from the ances-
tor and used for propagating information upwards in
the tree, e.g. propagating type information up from an
operand to its enclosing expression.

RAGs extend AGs by allowing attributes to have ref-
erence values, i.e., they may be object references to

AST nodes. AGs, in contrast, only allow attributes to
have primitive or structured algebraic values. This ex-
tension allows very simple and natural specifications,
e.g., connecting a use of a variable directly to its dec-
laration, or a class directly to its superclass. Plain AGs
connect only through the AST hierarchy, which is very
limiting.

In the JastAdd Il implementation of RAGs attributes
can be seen as methods where the method declaration
and method body may be separated. Inherited attributes
have their method body that defines the behavior in
an ancestral node. An inherited attribute equation de-
fines the behavior for a corresponding declaration of the
same attribute in the subtree where the targeted equa-
tion node is the root. That way the only dependency on
tree structure for that attribute is that the node holding
the equation must be an ancestor to the node holding a
declaration.

Aspects can be specified that define attributes, equa-
tions, and ordinary Java methods of the AST classes.
An example is the following aspect for very simple
type-checking.

/1 Declaration of an inherited attribute env

/1 of Expr nodes
inh Env Expr.env();

/1 Declaration of a synthesized attribute
/1 type of Expr nodes and its default equation
syn Type Expr.type() = TypeSystem. UNKNOWN;

/1 Cverriding default equation for Add nodes
eq Add.type() = TypeSystem. |NT;

/1 Overriding default equation for |d nodes
eq Id.type() = env().lookup(id()).type();

The notation for method invocation is used when ac-
cessing descendent nodes like | ef t Op andri ght Op, to-
kens like i d and user-defined attributes like env and
type. This API can be used freely in the right-hand
sides of equations, as well as by ordinary Java code.

2.3 Rewriterules

ReRAGs extends RAGs with rewrite rules that automat-
ically and transparently rewrites nodes. The rewriting
of a node is triggered by the first access to it. Such an
access could occur either in an equation in the ancestor
node, or in some imperative code traversing the AST.
In either case, the access will be captured and a refer-
ence to the final rewritten tree will be the result of the
access. This way, the rewriting process is transparent to
any code accessing the AST.



A rewrite step is specified by a rewrite rule that de-
fines the conditions when the rewrite is applicable, as
well as the resulting tree. After the application of one
rewrite rule, more rewrite rules may become applicable.
This allows complex rewrites to be broken down into a
series of simple small rewrite steps.

A rewrite rule for nodes of class N has the following
general form:
rewite N {

when {cond}
to R result;

}

This specifies that a node of type N may be replaced
by another node of type R as specified in the result ex-
pression result. The rule is applicable if the (optional)
boolean condition cond holds. Both the rewrite rule ap-
plication order and the tree traversal order are implicitly
defined by attribute dependences. A thorough descrip-
tion of ReRAGs implementation and application will
appear in [EHO04].

3 Inheritance for model modulari-
sation

The subtype hierarchy generated from the grammar pro-
duction rules provide excellent support for model mod-
ularisation. Generic behavior is defined in the possibly
abstract node types and then specialized in the concrete
node types. A small example adding a reference at-
tribute to each expression referencing its corresponding
type declaration node is shown below. The production
rule hierarchy is in itself specialized in multiple steps,
e.g binary operands, arithmetic expressions, and addive
expressions are all succesive specializations from the
generic language element expression. The type refer-
ence is defined to be boolean for all relational types
while the type of arithmetic expressions is the widest
type of both operands. The approach is generic in the
sense that adding another arithmetic expression, e.g.
subtraction, does not affect type propagation but merely
requires implementation of the unique behavior, e.g.
code generation.

ast Expr ;

ast BinOp : Expr ::= Expr left, Expr right
ast ArithmeticExpr : Binop ;

ast AddExpr ArithmeticExpr ;

ast Rel ational Expr : Binop ;

ast LessThanExpr : Relational Expr ;

syn Decl Expr.type()

eq ArithmeticExpr.type()
wi dest Type(left().typ

eq Rel ational Expr.type()

In o n

(), right().type());

)
TypeSyst em. BOOLEAN;

4 Aspects for cross-cutting con-
cerns

The examples shown so far are actually feature aspects
where attributes that cross-cut the AST subtype hierar-
chy are grouped into separate modules. This technique
is very similar to static introduction techniques used in
Aspect] [KHH*01], Hyper/J [OTO01], and Multi Java
[CLCMO0].

The example below is a simple name binding mod-
ule that binds a use-site to its declaration site through
the inherited attribute bi nd taking a name as its pa-
rameter. A block of statements is modeled as a list
of statements and a list of declarations for simplicity.
Each block introduces a new scope to search for decla-
rations and there are nested scopes since each statement
in a block can be a block itself. The inherited attribute
bi nd must thus have an equation in each scope, i.e. the
Bl ock node, and if a matching declaration is not found
the search must be delegated to the surrounding scope.

ast Block : Stmt ::= Stmt stm*, Decl decl?*;
ast Name : Expr ::= <String name>;
ast Decl ::= <String name>;

protected i nh Decl
protected i nh Decl

Name. bi nd( String name);
Bl ock. bind(String name);

eq Block.stnmt (). bind(String name)

for(int i = 0; i < numDecl (); i+

if(decl(i).name().equals(name)
return decl (i);
return bind(name);

}

public syn Decl

{
*)
)

Name. decl = bind(name());

To limit coupling between aspects such as name
binding and type checking it is useful to limit visibil-
ity of certain attributes outside the defining aspect. The
only attribute that needs to be exported outside a name
binding aspect is for instance the binding from a use-
place to its declaration, e.g. decl in Nane. Attributes
that define scope rules, e.g. bi nd, only affect the name
binding and should thus be private to name binding
modules.



Aspects have proven a very powerful technique to
implement design pattern roles, [HK02], [NKO1]. The
same technique can be used in JastAdd Il to implement
reusable modules, illustrated below where the name
binding approach described above is generalized in a
generic module for nested scopes. The involved actors
are nodes that need to lookup declarations and nodes
that define new scopes. These actors are specified as in-
terfaces and later used to tag each tree node that takes
the role of an actor defined in the module. These inter-
faces also specify the equations that the implementors
must supply to define non-generic behavior, e.g. find-
ing declarations in its scope that matches the provided
name. In the example, Scope represents nodes that de-
fines a new scope and the non generic behavior is to
match a name to a declaration while Bi nd represents
the node that receives a reference to a declaration.
aspect NestedScopes {

interface Scope {
protected syn Decl

}

interface Bind {
protected i nh Decl

}

eq Scope.child().bind(String name) =
| ookup(name) != null ?
| ookup(name) : bind(name);

| ookup(String name);

bind(String name);

The module is generic in the sense that the only re-
quirement on the AST structure is that an enclosing
scope is defined by an ancestral node. It can be further
generalized by adding more scope types, e.g. inheri-
tance from super classes, and declare before use. Below
is a name binding module that uses the module with
the previously defined concrete node types Bl ock and
Name. The only behavior that needs to be implemented
is the matching attribute | ookup in Bl ock and the use
of the provided attribute bi nd in Narre. In a Java several
nodes implement a scope, e.g. block, class, interface,
and for statement, and thus share common properties.

aspect NameBinding extends NestedScopes {
decl are parents: Block inplenments Scope;

decl are parents: Name inplenments Bind;
eq Bl ock. | ookup(String name) {
for(int i = 0; i < numDecl ();
i f(decl(i).equals(name))
return decl (i);
return null;

}

i ++)

public syn Decl Name.decl =

}

bi nd(name());

5 Rewritesto create the most suit-
able modd

Rewrites can improve separation of concerns by al-
lowing computations to be expressed on the most suit-
able model. The information acquired during the early
stages of static semantic analysis can be used to rewrite
the model to make that information explicitly visible in
the model structure for later stages.

We use an example from Java name analy-
sis to demonstrate the technique. When pars-
ing an expression containing qualified names, e.g.
java.lang. System out, it is syntactically undecid-
able if a part of a name is a reference to a package,
type, field, or variable unless their context is taken into
account. In the above example, j ava is most often a
package, but only as long as there is no variable-, field-
, or type-declaration named j ava that would shadow
the package according to the Java scope rules. Thus,
a context-free grammar can only build generic name
nodes that capture all cases. The attribution will need to
handle all these cases and therefore becomes complex.
To avoid this complexity we would like to do semantic
specialization, i.e. we would like to replace the general
name nodes with more specialized ones. Other com-
putations, like type checking, optimization, and code
generation, can benefit from this rewrite by specifying
different behavior in the specialized classes rather than
having to deal with all the cases in the general name
node.

An aspect that models Java names and resolves syn-
tactically ambiguous names as described is shown be-
low. There are two different types of names in Java
from a syntactic point of view, simple names and qual-
ified names. A simple name is a single identifier and
a qualified name consists of a name, a". " token, and
an identifier. During parsing a context-free grammar is
used and thus general unbound names has to be build
during AST creation. Semantic specialization is used
to rewrite these general nodes into more specific ones,
e.g. variable- or type-names. The ast-declarations in the
aspect below model the described name structure.

Semantic specialization is implemented using a
rewrite that rewrites an ambiguous UnboundName node
into a Vari abl eNamre-node or TypeNanme-node depend-



ing on the type of the binding received from the name
binding module. Finally the Qual i fi edName nodes
changes the scope rules for its right child to search the
type of its left child to provide, e.g. when trying to bind
out in the System out expression the class System
should be searched for a field named out .

ast Name : Expr;
ast SinpleName : Name ::= ID id;
ast QualifiedName : Name ::=

Name left, SimpleName right;

ast UnboundName :
ast Variabl eName :
ast TypeName :

Si mpl eName ;
Si mpl eName ;
Si mpl eName ;

/'l Resol ve names depending on bound entity
rewite UnboundName ({
when (bind().isVariableDecl())
to SinmpleName new Variabl eName(id());
when (bind().isTypeDecl ())
to SinmpleName new TypeName(id());
}

/1 The left name in a QualifiedNane changes
/1 the scope for the nane to the right
eq QualifiedName.right().bind(String name) {
if(left() instanceof TypeName)
return left().decl().|ookup(name);
if(left() instanceof Variabl eName)
return left().type().|ookup(name);

6 Aspect interaction

While the aspects demonstrated to far define static fea-
tures we also use more pluggable aspects, e.g. a de-
clare before use aspect to complement the name bind-
ing module in Section 4 and optional code optimization
aspects. Pluggable aspects define rewrites that change a
run-time node instance to a subtype node with extended
behavior. That way an aspect can be added to the sys-
tem in a way transparent to other aspects.

The examples demonstrated so far deal with equa-
tions that cross-cut the type hierarchy only and not
cross-cutting concerns within equations. To override
and extend attribute equations we use inheritance of
the model structure in combination with rewrites that
change the type of a node instance at run-time. l.e. we
may have different/extended equations for Unbound-
Name and VariableName defined in the example in Sec-
tion 5. This technique, using run-time rewriting and
inheritance, is more powerful than static compile-time
point-cuts within equations in that it may take run-time

information into account but less powerful in that each
node may only be changed by a single aspect. There-
fore it would be interesting to combine the current ap-
proach with more fine-grained static point-cuts within
equations.

7 Reated work

The introduction of attribute definitions and equations
to an exisiting class hierarchy in a modular fashion
used in JastAdd Il is very similar to static introduction
in Aspect) [KHH*01], hyperslices in Hyper/J [OTO01],
and open classes in MultiJava [CLCMO00]. A func-
tional approach to attribute grammar aspects using the
same technique is presented in [dPJV0OQ] where aspects
are first-class objects that can be freely combined us-
ing a combinator library in Haskell. ReRAGs further
improved modularisation support in that the current
model instance may be rewritten during run-time to a
more suitable model allowing each computation to be
expressed on the most suitable model and more fine-
grained separation of concerns within equations.

The Visitor pattern, [GHJV95], is often used in com-
piler construction for separation of concerns when us-
ing object-oriented languages. Visitors can only sep-
arate cross-cutting methods while static introductions
can be used for fields as well. AOP implementations of
the Visitor pattern need not rely on a delegation mech-
anism resulting in a cleaner more intuative implemen-
tation, [HK02]. ReRAGs aspects differs from AOP im-
plementations of the Visitor pattern in that an explicit
traversal strategy in the form of a Visitor is not spec-
ified but merely implicitly defined by attribute depen-
dences. Rewrites further improves modularisation in
that the underlying structure may change during run-
time to better fit the current computation.

Higher order attribute grammars (HAGSs) [VSK89]
adds tree nodes computed reading the partially at-
tributed AST at run-time and can thus provide a more
suitable model. The process is, however, not transpar-
ent to other computations and is thus less flexible from a
separation of concerns view. The use of attribute gram-
mars and forwarding for modular language implemen-
tation is discussed in [VWMBKO02]. Forwarding over-
rides attribute equation dynamically at run-time and for-
wards equation to a different part of the tree. Since it
is based on HAGsS the target tree can be computed at
run-time and the approach is thus similar to semantic
specialization.



8 Conclusions and future work

We have demonstrated three synergistic mechanisms
for separations of concerns supported by ReRAGs in
the JastAdd Il compiler compiler: inheritance for model
modularisation, aspects for cross-cutting concerns, and
rewrites that allow computations to be expressed on
the most suitable model. Examples inspired by static
semantic analysis of the Java programming languages
have been used to illustrate and motivate each tech-
nique. We believe that this allows compilers to be writ-
ten in a high-level declarative and modular fashion.

Our experiences indicate that the implementation
leads to flexible solutions to several traditional com-
piler construction problems, and we hope to generalize
some of these techniques and document them as design
patterns or frameworks for compiler construction using
ReRAGs.

We would also like to investigate the interaction be-
tween pluggable aspects and also how to better support
fine-grained cross-cutting within equations combining
Aspectl-like point-cuts with run-time rewriting imple-
mented using ReRAGs in JastAdd II.

References
[CLCMO00]  Curtis Clifton, Gary T. Leavens, Craig
Chambers, and Todd Millstein. Multi-
Java: Modular open classes and sym-
metric multiple dispatch for Java. In
Proceedings of OOPSLA 2000, volume
35(10), pages 130-145, 2000.

[dPJVO00] Oege de Moor, Simon Peyton-Jones,
and Eric Van Wyk.  Aspect-oriented
compilers. Lecture Notes in Computer

Science, 1799, 2000.

[EHO04] Torbjorn Ekman and Gorel Hedin.
Rewritable Reference Attributed Gram-
mars. In Proceedings of ECOOP 2004,

2004. Accepted for publication.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software.

Addison-Wesley, 1995.

[GJSBOO] James Gosling, Bill Joy, Guy Steele,

and Gilad Bracha. The Java Language

[HKO02]

[KHH*01]

[Knu68]

[NKO1]

[0TO01]

[VSK89]

[VWMBKO02]

Specification Second Edition. Addison-
Wesley, Boston, Mass., 2000.

Jan Hannemann and Gregor Kiczales.
Design pattern implementation in Java
and Aspect). In Cindy Norris and Jr.
James B. Fenwick, editors, Proceedings
of OOPSLA-02, volume 37, 11 of ACM
SIGPLAN Notices, pages 161-173, New
York, November 4-8 2002. ACM Press.

Gregor Kiczales, Erik Hilsdale, Jim
Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview
of AspectJ. Lecture Notes in Computer
Science, 2072:327-355, 2001.

Donald E. Knuth. Semantics of context-
free languages. Mathematical Systems
Theory, 2(2):127-145, June 1968. Cor-
rection: Mathematical Systems Theory
5, 1, pp. 95-96 (March 1971).

N. Noda and T. Kishi. Implementing de-
sign patterns using advanced separation
of concerns. In OOPSLA2001 workshop
on Advanced Separation of Concerns in
Object-Oriented Systems, 2001.

Harold Ossher and Petri Tarr. Hy-
per/j: multi-dimensional separation of
concerns for java. In Proceedings of the
23rd international conference on Soft-
ware engineering, pages 821-822. IEEE
Computer Society, 2001.

H. H. Vogt, S. D. Swierstra, and M. F.
Kuiper. Higher order attribute gram-
mars.  In Proceedings of the SIG-
PLAN ’89 Conference on Programming
language design and implementation,
pages 131-145. ACM Press, 1989.

E. Van Wyk, O. de Moor, K. Back-
house, and P. Kwiatkowski. Forwarding
in attribute grammars for modular lan-
guage design. In R. N. Horspool, edi-
tor, Compiler Construction, 11th Inter-
national Conference, CC 2002, Greno-
ble, France, April 8-12, 2002, volume
2304 of Lecture Notes in Computer Sci-
ence, pages 128-142. Springer-Verlag,
2002.



