The Proxy Inter-Type Declaration

Michael Eichberg
Software Technology Group,Dept. of Computer Science
Darmstadt University of Technology, Germany
eichberg@informatik.tu-darmstadt.de

ABSTRACT

Aspect-oriented programming [16] with its support for mod-
ularizing crosscutting concerns opens up the vision that com-
ponent middleware can be replaced by sets of collaborat-
ing aspects that implement the infrastructural services. In
this way, application servers could be customized on a per-
project basis, as they are no longer monolithic applications.

In order for this vision to become reality it should be pos-
sible to implement services offered by current containers as
aspects. In particular services targeting scalability and per-
formance issues, such as passivation and instance pooling
must be available. Such services build upon the concept of
virtual instances [25]. They are realized in the current appli-
cation servers by means of the (virtual) proxy pattern |11].

Implementing virtual instances represents a crosscutting con-
cern, as we will discuss in the paper. Unfortunately, no
current AOP language or framework has explicit support
for modularizing this concern. We propose to support the
generation of proxies as an inter-type declaration and ar-
gue that it is essential to allow the development of scalable
and efficient component containers. It would be a signifi-
cant improvement when compared with the current offered
possibilities.

1. MOTIVATION

Aspect-oriented programming [16] with its support for mod-
ularizing crosscutting concerns opens up the vision that com-
ponent middleware (e.g., application servers for Sun’s EJB
[9] or CORBA components [20] models) can be replaced by
sets of collaborating aspects that implement the infrastruc-
tural services. Before this can be done the question arises
how to achieve performance and scalability. Infrastructural
services such as instance pooling and passivation of compo-
nents are prominent solutions exploited by current applica-
tion servers. The implementation of these services requires
the use of virtual instances |25|: Instead of a component in-
stance a virtual instance is exposed to the client (clients are

all users of a component). To implement virtual instances
the proxy design pattern [6,/11] is used [25]. One proxy
object represents one virtual instance and the same proxy
might refer to distinct physical component instances (one at
a time) during its lifetime. All physical instances referred
to by one (virtual) proxy object represent the same logical
instance.

The concept of virtual instances is also used by the Enter-
prise JavaBeans component model [9]; the services which
must be implemented by every EJB compliant container re-
quire that a component (an Enterprise JavaBean (EJB)) is
not directly accessible; otherwise the services could be by-
passed and the container would be compromised. Proxy ob-

jects automatically generated by the container, called EJBObjects,

are the concrete realization of the virtual instances concept.
An instance of an EJBObject always represents the same
logical component regardless of its physical instance. It ex-
ecutes the explicitly requested services (in the deployment
descriptor), such as security, transactions, etc., as well as im-
plicitly provided services such as passivation, pooling, etc.

Although component passivation and pooling are services
that span all components of the system in the same way and
hence appear to be typical crosscutting concerns, we claim
in this paper that it is not well supported by common AOP
frameworks [3}}4] or AOP languages [15,/19]. Reports are
indeed available about applying AspectJ to resource pooling,
such as pooling JDBC connections [17}18]. However, pooling
of resources is different from pooling of components in two
significant ways:

1. A pooling aspect for resources is specialized to exactly
one type of resource (e.g. database connections using
JDBC) which is implemented by a fixed set of well-
known classes. Thus, it is easy to determine the correct
join points, i.e. to write the pointcut to be used by the
aspect in order to integrate pooling. A pooling aspect
for components, on the other hand, must be generic
to handle multiple different types of components, e.g.,
different types of entity beans as different as Order,
Book, Customer, etc., which are furthermore unknown
at aspect development time. That is, we should be
able to write the pooling functionality independently
of the concrete type of the components that will be
pooled. We will argue that this is not well supported
by current mainstream AOP languages.

2. Pooled resources can be directly reused, as they are not
client specific. On the contrary, when recycling physi-

cal components we need to keep their logical identity,
so that the pooling is transparent to the client. So, if
we want to reuse a pooled component, it is necessary
to (re-)assign it the logical identity that is hold by the
client. This forces us to integrate virtual instances in
a consistent way all over the system.

To implement these services the ability to fully control all
references to a component is required; a component can not
be pooled as long as at least one other component has a
direct reference to it that we cannot control. To implement
the concept of virtual instances we can use proxy objects
if and only if we simultaneously make sure that the proxy
object can not be bypassed. Only under this condition is the
proxy guaranteed to be the only one ever holding a reference
to a component. The proxy can then be used as a virtual
instance of a component.

To achieve the “non-bypassable” feature of a proxy the cor-
responding component needs to be transformed so that the
reference to itself (this) is never passed to another com-
ponent. Additionally, we have to check that this is not
otherwise available e.g. via a public field. So, the following
code:

class Order{
public void setCustomer(Customer c){ ...
c.addOrder(this);

I

needs to be transformed into something similar to:

sw N e

class Order{
public void setCustomer(Customer ¢){ ...
c.addOrder(getMyProxy());

b}

Also all component creations:

W N e

1] new Order();

needs to be transformed:

1] new OrderProxy(new Order());

This kind of transformation can be automatically performed

if we can distinguish between components and normal classes.

However, using standard pointcut and advice two solutions
can be considered to simulate the effect of the transforma-
tion. The first “solution” would be to manually scan all
component implementations and to write appropriate advice
which passes the proxy instead of this. The second solu-
tion is to write one general advice which checks if a passed
object is this and if so returns the proxy instead; given
that the advice is generic, which means it simply advices all
method calls to any component in the same way, it is neces-
sary to check every passed parameter to every method call
at runtime if the parameter is this. The effort to imple-
ment the first solution would be very high and also it would
be tedious and error prone since an ignored statement that
passes this to another component must not immediately
result in a compile-time or runtime error. The inefficiency
of the second solution would render any other optimization
useless. So, the implementation of virtual instances is not
well supported; the modularization of this cross-cutting con-
cern with the current techniques offered by AOP frameworks
or languages is hardly possible.

The reminder of this paper is organized as follows. In Sec. 2
we present our proposal by means of an example of a passi-
vation service and indicate that what we are proposing is not
well supported currently. In Sec. 3, we go into more tech-
nical details of the proposal. Then we discuss related work
and conclude this position paper with a short summary.

2. THE DECLARE PROXY CONSTRUCT

We first give an overview of the syntax and semantics of the
declare proxy construct by the example of the passivation
service. Next, we go into some more details about the se-
mantics of the proposed construct. Implementation details
are out of scope for this position paper. In the following list-
ings we use annotations and generics as they will be avail-
able in Java 1.5. However, we do not make any assumptions
about their support in future AspectJ versions.

2.1 Overview of the Proposal

To support virtual instances, we propose a new construct
for inter-type declarations in AspectJ: the declare proxy
statement. The proposed syntax of the statement is as fol-
lows:

1| declare proxy
2| extends AProxy :
3| implements Anlnterface;

The effect is that proxy classes are generated that extend
the specified proxy class (line 2) and implement the speci-
fied interface (line 3). The interface (line 3) determines the
components for which proxies are to be used: Proxies of
type AProxy are generated for all classes that directly or in-
directly implement AnInterface. This means the interface
specified in the implements clause in line 3 has a selection
functionality picking the set of components to be equipped
with virtual instances, roughly comparable to a pointcut,
and also determines the super-type of the proxies and com-
ponents. The specified class (line 2) must not be final and
must extend (directly or indirectly) the system type Proxy.

To illustrate the syntax and semantics of the declare proxy
construct we consider its use within the implementation
of a passivation service as shown in the snippet from the
Passivation aspect below (line 2-4). Line 4 builds the
bridge between the generated proxies and the components
for which these proxies are to be used. On the one hand the
interface determines the common super-type of the compo-
nent and the proxy and on the other hand it determines
for which components a PassivationProxy (line 2) is to be
generated and used.

1| public aspect Passivation {

2| declare proxy

3 extends PassivationProxy :

4 implements SessionComponent;

To provide an accessible set of join points, the generated
classes not only implement the specified interface, they also
inherit a user supplied proxy class. In line 3 we addition-
ally specify that the generated proxies have to inherit from
the class PassivationProxy. This enables the definition of
pointcut and advice in relation to a specific proxy and its
subclasses and not only in relation to all classes that imple-
ment the specified interface.

Proxy<T>
<<abstract>>

@Wrappable SessionComponent
<<interface>>

getinstance(): T A

i ComponentA

| PassivationProxy<T> | <<interface>>

ComponentB
<<interface>>

ComponentC
<<interface>>

JAN JAN

ComponentAImpl

| Compon.entBImpI |

bxtends PassivationProxy<ComponentA>

<<generated>>

ComponentA_$Proxy

ComponentB_C
<<generated>>

<<interface>>

extends PassivationProxy<ComponentB C>

ComponentB_$Proxy

Figure 1: The effect of declare proxy: “declare proxy extends PassivationProxy:

Figure[l|shows the class diagram after the generation of the
proxies, as the result of compiling the above declare proxy
statement. For the component ComponentAImpl a proxy
class (ComponentA_$Proxy) is generated that implements the
interface of the component (ComponentA) and extends the
specified PassivationProxy. Assuming that a component
is always accessed via its interface, it is type safe to use a
proxy instance instead of a component instance.

As seen in Figure[] the proxy classes do not only implement
the specified interface, they actually implement all interfaces
of a component. The proxy class for ComponentBImpl must
implement both interfaces (ComponentB and ComponentC)

even though ComponentC does not extend SessionComponent.

This is necessary to preserve the validity of the program.
Code that casts between the component’s interfaces is valid
and must remain valid; this can only be assured if a proxy
implements all interfaces. As a technical necessity, for every
component which implements multiple interfaces an artifi-
cial interface has to be generated that extends all of them;
this interface is then used to correctly bind the type param-
eter T. T determines the concrete interface type of a compo-
nent (the interface ComponentB_C in Figure[l]is an example).

The interface (line 4) in the implements clause must be an-
notated Wrappable (see figure [I| for an example). For every
class inheriting the Wrappable annotation proxy classes can
be generated. The annotation with Wrappable enables us to
distinguish between “normal” classes and components and
to validate the later (see section on Implementation Restric-
tions). All component classes are transformed to no longer
expose this unless no proxy is generated for the compo-
nent. Further, it is assured that the program does not give
rise to errors by the declaration and use of a simple forward-
ing proxy (calls to the proxy are directly forwarded to the
corresponding method of a wrapped instance). To make this

<<generated>>

implements SessionComponent;”

possible the interface type of a component is always to be
used to access components. In addition, all created compo-
nents instances are automatically wrapped by an associated
proxy. This means every:

new ComponentAImpl()

expression is transformed into:

new ComponentA $Proxy(new ComponentAImpl()).

This requires that all classes of a project needs to be recom-
piled whenever a declare proxy statement changes.

An important property of the generated proxy classes is
that they are anonymous, Implying that we cannot write
a pointcut that selects a joinpoint in a specific proxy (e.g.
in ComponentA_$Proxy; the concrete type of a proxy is un-
available during the implementation of an aspect). This is
due to the fact that the interface specified in the declare
proxy statement does not directly correspond to one com-
ponent; instead it determines a set of components that are
related by the implementation of the interface. However, we
can still refer to the proxies by their parent types as we will
illustrate in the following by the advice of the passivation
aspect.

Passivation (line 10) of components is executed asynchro-
nously (line 3,15) if a component has been idle for the spec-
ified time (line 5, 8 and 9).

1| Set<PassivationProxy> proxies

2 = new WeakHashSet<PassivationProxy>();
3| { Thread thread = new Thread(

4 new Runnable(){

5 final long x = ..

6 final long t = ..;

7 public void run(){

8 for (PassivationProxy proxy : proxies){
9 if (System.currentTimeMillis() —
10 proxy.lastAccess > t){

11 passivate (proxy);

12 b3

13 thread.sleep (x);
14

15 }

o)

17 thread. start ();

18

In the default implementation of the proxies each method
call is directly forwarded to the corresponding component
method. Before this is done we want to make sure (as shown
by the following code snippet) that the component is not
passivated (lines 1-4) and after processing of the call by the
component the time of the last access (lines 5-8) is updatedﬂ

before (PassivationProxy proxy) : execution (..)
&& within(PassivationProxy) && this(proxy) {
if (isPassivated (proxy)) activate (proxy);

after (PassivationProxy proxy) : execution (..)
&& 'within(PassivationProxy) && this(proxy) {
proxy.lastAccess = System.currentTimeMillis();

@ N e s W N e

The aspect additionally defines the methods to passivate and
activate a component. The implementation details are omit-
ted because they do not further contribute to the discussion
of the declare proxy statement. The signatures are:

1| boolean isPassivated (PassivationProxy proxy){...}
2| void activate (PassivationProxy proxy){...}
3| void passivate (PassivationProxy proxy){...}

The last piece in the implementation of the Passivation
aspect is the PassivationProxy class. In this implementa-
tion the proxy object is not only a virtual instance it also
implements part of the logic of the service. The proxy class
has a field to store the time of the last access (line 3) and
also registers the proxy at the passivation service (line 6).

abstract class PassivationProxy<T>
extends DefaultProxy<T>{
long lastAccess;
public PassivationProxy(T instance) {
super (instance);
Passivation . aspectOf(). proxies . add(proxy);

}

@ N o s W N e

}
2.2 Proxies — Design Space and Decisions

Multiple possibilities exist for the generation of proxy classes.
In the following we discuss them to determine the semantics
of our declare proxy statement.

A proxy class can be (1) a subclass of a component or (2)
an implementation of the interface of a component. The
first possibility does not impose any particular requirements
on the design of an application in order for it to be “deco-
rated” by proxies; it simply requires that a component is not
final, has no final methods and does not declare any non-
private fields, otherwise the proxy could be bypassed. The
problem with this alternative is that every instantiation of
a proxy also instantiates the superclass (the component).
So, a proxy object is in a sense also a component. This
is not feasible if a proxy is supposed to be a (temporary)
replacement of a component, e.g., to perform optimizations
such as passivation, pooling and lazy initialization. The sec-
ond solution assumes a particular design — every component

!Thread synchronization is not shown in the listings because
it is unrelated to the declare proxy statement.

must be implemented against an interface and the compo-
nent’s type is not allowed to be used directly (details are
given later). However, this is only a small restriction since
it is also considered good design to implement toward inter-
faces. Further, a proxy object is not a component, a proxy
instance is fully independent from a component instance.
So, we basically consider this solution the only feasible one.
However, an equivalent alternative to the second solution
is to require that every component fulfills implementation
restrictions so that we are able to generate the necessary
interfaces on demand and transform the program appropri-
ately. This approach is taken by Caesar |19]. While this
solution might me more convenient, it reliefs the developer
from the burden of implementing the interfaces on its own,
it is from a technical point-of-view no different.

A proxy can either be open or closed. A closed proxy, on the
other side, is the only class which ever holds a reference to a
component and no aliasing [14] of the component references
takes place. In the following we use the term wrapper and
proxy as a synonym for closed proxy.

Further proxies can either be replacing or forwarding. A re-
placing proxy processes a method call on its own and never
relies on a component instance. A forwarding proxy executes
functionality before or after forwarding the call to a compo-
nent instance. We support both replacing and forwarding
semantics. For this, the proxy class specified in the extends
clause of the declare proxy statement must implement either
a constructor with the following signature:

1| public MyProxy(Constructor ¢,Object [Jargs){...}

or with:
1| public MyProxy(T instance){...}

The constructor determines whether the proxy replaces (first
case) or wraps the component instance (second case). In the
first case the parameters of the component constructor are
put into an object array and are passed to the proxy along
with the original constructor. The constructor is necessary
(e.g. for lazy initialization) if the object array alone would
not allow the determination of the correct constructor (e.g.
if a value is null the type can no longer be determined).

Additionally, a proxy must not only be able to wrap a com-
ponent but also any other proxy generated for the same
component. Otherwise, it would not be possible to chain
proxies generated for a component by two or more declare
proxy statements.

To sum up the generative semantics of our declare proxy
construct (the properties are named R1 - R4): generated
proxies (R1) are closed, (R2) implement the interface of the
component, (R3) must support the wrapping of other prox-
ies as well as components and (R4) can be either replacing
or forwarding.

2.3 Implementation Restrictions

Implementation restrictions are imposed on components an-
notated as Wrappable in order to ensure the following prop-
erties:

P1 it is possible to control the aliases of a component; that

the proxy is the only owner of a reference to a compo-
nent.

P2 the use of proxies does not give rise to type errors at
run time.

These properties depend on each other. We can control
the references to a component if we are able to always use
a reference to a proxy instance instead of a reference to a
component instance. In this case, it is possible to transform
the component such that it always returns its associated
proxy instead of this. If now a newly created component
instance is immediately wrapped by a proxy we can ensure
that only the proxy holds a reference to the component.
Note that we do not require any kind of alias protection
mechanism [24,/8,/12,7]. We only need to make sure that
we are able to confine the reference to a component to a
single proxy if needed; in other words, that we can control
the aliases for components.

To guarantee the properties P1 and P2 the following re-
strictions need to be imposed:

e the type of the component must not to be used di-
rectly; neither in field-, local variable- or method dec-
larations nor in type checks or type casts. = except
for component creation, the only way to access a com-
ponent is via its interface type(s).

e The supertype of a component must also be a compo-
nent. Otherwise it would be possible to cast from a
component interface type to the type of the superclass
and invoke methods, which violates P1.

e Every subclass of a component is also considered a
component and the first two restrictions apply.

To enforce these restrictions the IRC tool [10] can be used.
It allows the definition of restrictions as checks on Java byte-
code. We consider it important that these implementation
restrictions are explicitly checked before the creation of prox-
ies. Since all restrictions can be checked in one pass and no
full program analysis is necessary the compile time overhead
should be acceptable. Provided that a component complies
with all implementation restrictions the generated proxies
fulfill the requirements R1-R4

3. RELATED WORK

To the best of our knowledge, there has been no attempt
to implement services such as passivation and pooling of
components. So we can discuss only related implementation
techniques.

The Dynamic Proxies 23] feature of Java can be used to
create proxies. But, its usage would have the following
drawbacks which makes it a “no-go”: (1) It leads to a
tighter coupling between aspects. The advantages of
using proxies especially if they are used for optimizations
vanish if each service that requires a proxy generates its
own one. So, an aspect that generates a proxy and makes
it available for other aspects would be required in order to
enable the integration of multiple services using one proxy
instance. In the proposed model this would happen im-
plicitly if the declare proxy statements are identical. Fur-
ther, the functionality to define precedence of aspects needs

to be duplicated since the “normal” declare precedence
functionality does not impose an order on the execution of
InvocationHandlers (implementing the advice) associated
with dynamic proxies. (2)The generated dynamic prox-
ies are open. So, their use to simulate virtual references is
very limited — as discussed especially in the motiviation. (3)
It forces to use reflection. Even though the support for
and performance of reflection is improving the source code
remains harder to read and maintain and is also more error
prone when compared with the proposed solution. This dis-
cussion applies equally well to AOP frameworkds based on
the interceptor pattern [22] (e.g.: [3l/4}/21]) or native AOP
languages (e.g.: [15,/19])

Hibernate |2] generates proxies at runtime using CGLib [1].
CGLib is more powerful than Java Dynamic Proxies — it pro-
vides default implementations for different types of proxies.
Nevertheless, the base mechanism is comparable and thus
suffers from the same problems as described above.

Generic Wrappers [5] is an language integrated approach to
generate wrappers / proxies at runtime. E.g. the statement
class PassivationProxy wraps SessionComponent gener-
ates wrappers for SessionComponents and all subtypes of
it. However, two main differences exist: (1) wrappers are
not automatically used; to create a wrapper for a com-
ponent it is necessary to explicitly instantiate a wrapper
(e.g. PassivationProxy p = new PassivationProxy<new
AComponent()>()) while in our case the proxies are auto-
matically used. (2) The generated wrappers are subtypes
of the wrapped objects - which means subclasses of compo-
nents in our terminology. This is in our case not generally
applicable — as discussed in the section on the design space
of proxies.

Parametric Introductions |13] enable the parameterized in-
troduction of e.g. methods and fields in existing classes.
The introductions can be parameterized with the static in-
formation which will be available when the introduction is
actually carried out, such as the type of the target class,
the name of methods and their parameters, etc.. With a so-
called unnamed introduction it would be possible to intro-
duce complete sets of methods in a specific class without ex-
plicitly enumerating them. This mechanism could be used to
introduce generic method implementations in proxy classes.
However, as the name suggests parametric introductions can
only be used to “introduce” code into an existing class or
interface. The generation of completely new classes (the
concrete proxy classes in our case) and the transformation
of the components is out of scope for this approach. Nev-
ertheless, it could supplement the generation of the proxy
classes.

4. SUMMARY AND FUTURE WORK

In this position paper we have proposed an inter-type dec-
laration to declare that specific classes are wrapped by au-
tomatically generated proxies. This gives us the ability to
implement infrastructural services in a more straightforward
manner than supported by current approaches. Further, the
implementation is very robust since it only relies on types
and not on names. The aspect’s functionality is directly wo-
ven in the generated proxies by using standard pointcuts and
advice. Further, it is shown which programming restrictions

needs to be imposed on the implementation of components
and how to check them.

In future work we are going to investigate how proxies can
help in the implementation of other infrastructural services.
Additionally we are going to investigate if other mechanisms
are needed to implement infrastructural services.

Acknowledgment

The author would like to thank the anonymous reviewers,
Christoph Bockisch, Mira Mezini, Klaus Ostermann and
Thorsten Schéfer for comments on earlier versions of this
paper.

5. REFERENCES
[1] Code Generation Library (cglib).
http://cglib.sourceforge.net /.
[2] Hibernate2 Reference Documentation.
http://hibernate.bluemars.net/. Version 2.1.1.

[3] JBoss AOP.
http://www.jboss.org/developers/projects /jboss/aop.

[4] Jonas Bonr and Alexandre Vasseur. Aspectwerkz.
http://aspectwerkz.codehaus.org, 2003.

[5] Martin Biichi and Wolfgang Weck. Generic wrappers.
In Elisa Bertino, editor, Proceedings of ECOOP 2000,
volume 1850 of Lecture Notes in Computer Science,
pages 201-225. Springer Verlag.

[6] Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, and Michael Stal. Pattern-Oriented
Software Architecture — a System of Patterns. John
Wiley & Sons, 1996.

[7] Dave Clarke, Michael Richmond, and James Noble.
Saving the world from bad beans: deployment-time
confinement checking. In Proceedings of OOPSLA
2003, pages 374-387. ACM Press.

[8] David G. Clarke, John M. Potter, and James Noble.
Ownership types for flexible alias protection. In
Proceedings of OOPSLA 98, volume 33:10 of ACM
SIGPLAN Notices, pages 48-64, New York. ACM
Press.

[9] Linda G. DeMichiel. Enterprise JavaBeans™™
Specification, Version 2.1. Sun Mircosystems, 4150
Network Circle, Santa Clara, California 95054, U.S.A,
November 2003.

Michael Eichberg, Mira Mezini, Thorsten Schéfer,
Claus Beringer, and Karl Matthias Hamel. Enforcing
system-wide properties. Melbourne, Australia. IEEE
Computer Scociety. Proceedings of ASWEC 2004 (to
appear).

10

[11] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns : elements of reusable
object-oriented software. Professional Computing
Series. Addison Wesley, 1995.

[12] Christian Grothoff, Jens Palsberg, and Jan Vitek.
Encapsulating objects with confined types. In
Proceedings of OOPSLA 2001, pages 241-255. ACM
Press.

[13] Stefan Hanenberg and Rainer Unland. Parametric
introductions. In Proc. of AOSD 2003, pages 80—89.
ACM Press.

[14] John Hogg, Doug Lea, Alan Wills, Dennis
deChampeaux, and Richard Holt. The Geneva
Convention on the treatment of object aliasing. OOPS
Messenger, 3(2):11-16, 1992.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In Proceedings of ECOOP 2001, volume 2072
of Lecture Notes in Computer Science, pages 327-355,
Budapest,Hungary. Springer.

[16] Gregor Kiczales, John Lamping, Anurag Menhdhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-Oriented Programming. In
Mehmet Aksit and Satoshi Matsuoka, editors,
Proceedings of ECOOP 1997, volume 1241 of Lecture
Notes in Computer Science, pages 220—242. Springer.

[17] Ivan Kiselev. Aspect-Oriented Programming with
AspectJ. Sams, July 2002.

[18] R. Laddad. AspectJ in Action. Manning, 2003.

[19] Mira Mezini and Klaus Ostermann. Conquering
aspects with caesar. In Proceedings of AOSD 2003,
pages 90-99. ACM Press.

[20) OMG. CORBA Components. Object Management
Group, June 2002. Version 3.0, formal/02-06-65.

[21] Renaud Pawlak, Lionel Seinturier, Laurence Duchien,
and Grard Florin. JAC: A Flexible Solution for
Aspect-Oriented Programming in Java. In
A. Yonezawa and S. Matsuoka, editors, Proceedings of
REFLECTION 2001, volume 2192 of Lecture Notes in
Computer Science, Kyoto, Japan. Springer.

[22

Douglas Schmidt, Michael Stal, Hans Rohnert, and
Frank Buschmann. Pattern-Oriented Software
Architecture — Patterns for Concurrent and Networked
Objects. Software Design Patterns. John Wiley &
Sons, 2000.

[23] Sun Microsystems. Dynamic Proxy Classes.
java.sun.com/j2se/1.3/docs/guide/reflection/
proxy.html.

[24] Jan Vitek and Boris Bokowski. Confined types in
Java. Software Practice and Experience,
31(6):507-532, 2001.

[25

Markus Volter, Alexander Schmid, and Eberhard
Wolff. Server Component Patterns. Software Design
Patterns. John Wiley & Sons, 2002.

	Motivation
	The Declare Proxy Construct
	Overview of the Proposal
	Proxies -- Design Space and Decisions
	Implementation Restrictions

	Related Work
	Summary and Future Work
	REFERENCES

