
ACP4IS Workshop at AOSD’04

Towards Integrating Aspects and Components

Houssam Fakih1,2

fakih@ensm-douai.fr

Noury Bouraqadi1

bouraqadi@ensm-douai.fr

Laurence Duchien2

duchien@lifl.fr

March 22, 2004

Integrating aspects and components can be im-
portant for both AOSD and CBSD. On the one hand
CBSD suffers from crosscutting and tangling code
[7]. On the other hand, actual AOSD technologies
are not mature enough to enable aspect reuse [6, 4].
So, each paradigm can resolve other’s paradigm lim-
itations.

Problem Statement

The integration of AOSD and CBSD is a complex
task that can be subdivided into three facets.

1. Facet 1 consists in componentizing aspects.
That means representing each aspect as a single
reusable component. Basic characteristics of a com-
ponent include attributes, provided and required
services. The challenge is to map these characteris-
tics on aspects. We have also to explore the appli-
cability of related concept such as connector, com-
posite and sub-component on aspects.

2. Facet 2 consists in aspectizing a component-
based software. Nowadays, AOSD is used in con-
junction with object oriented or procedural lan-
guages. Base code is expressed using either an ob-
ject oriented language or a procedural one. The
second facet allows extending this list with compo-
nent based languages. Set differently, the second
facet consists in defining aspects that act on base
code expressed in terms of components and related
concepts. In this context, we have to define weaving
and join points on execution flow and structure of
components and related concepts.

It is worth noting that there is a variety of compo-
nent models. Thus, redefinition of AOSD concepts
will certainly vary according to the model used to
implement base code. A solution proposed for a
flat component model (i.e. a model without com-
posite concept) will probably not be applicable to
a hierarchical model (i.e. a model with composite
concept). However, we believe that some solutions

1 Ecole des mines in Douai. France.

http://csl.ensm-douai.fr/research/
2 Lille University Of Sciences and Technology.

France. http://www.lifl.fr/GOAL/

could be transposed between some models. In the
case of component model with explicit connectors
there would be an extra relationship : the one be-
tween connectors and aspects. But, this relationship
can be transposed to a component-aspect relation-
ship. Indeed, we agree with Sacha Krakowiak that
components and connectors are two entities of the
same nature (i.e. structure/behavior) but with dif-
ferent roles [5] . So, connectors can be considered
as components dedicated to connection.

3. Facet 3 is a merge of the two previous facets.
It consists in unifying aspects and component-based
software by defining a general enough component
model to encompass not only "traditional" CBSD
concepts, but also AOSD concepts. This unification
should lead to a single definition that should apply
for both aspects and components. In this context,
weaving aspects with a base code consists of assem-
bling components from a base code with components
representing aspects. We identify two differences
between assembly and weaving mechanisms.

• First in CBSD, all participating components in
an assembly are aware of their assembly points
and the provided or required services. On the
contrary in AOSD only aspects are aware of
assembly points (join points) and services they
provide to change or adapt the base code nor-
mal execution.

• Second, the assembly mechanism is not intru-
sive like weaving. The former keeps compo-
nents intact while the latter often changes base-
code structure and behavior.

Note that as for facet 2, solutions will probably vary
according to concepts provided by the chosen com-
ponent model.

First steps towards the integration

1. Provided and required services are among com-
ponents characteristics. In a componitizied aspect,
provided services include advices. Indeed, advices
should be triggered in order to execute. Introduc-
tions are also part of provided services of a componi-
tizied aspect. This is because their execution can be

1



triggered. Introductions are performed when code
elements to extend/change are given. One possible
solution for facet 1 consists in using the concept of
contract [1]. Contracts seem to be applicable for
provided services corresponding to both advice and
introductions. Syntactic contracts (types) for ad-
vice enforce the type of acceptable join points (e.g.
message to be sent or to be received, field access,
. . . ). While behavioral contracts for advices check
their invariants and pre-post conditions (e.g. change
of a log file for a logging aspect). For an introduc-
tion, a syntactic contract corresponds to the kind of
constructs (class, method, . . . ) to which the intro-
duction is applicable.

2. One possible solution for facet 2 consist in
defining entry points on components [3] that allow
to change its internal behavior. Thus, aspects are
plugged on these entry points. The definition of
join points depends on component model. We can
identify some basic join point families common to
all component models such as actions related to the
component state (creation, initialization, . . . ) or
provided or required component services (call of ser-
vices, connecting or disconnecting components,. . . )

3. One viable solution for Facet 3 could be to
define a reflective component model (figure 1). We
distinguish two kinds of components : a base com-
ponent defines application business features while a
meta-component defines how to perform these fea-
tures (aspects) [2].

Each component should have an extra-functional
interface (an extra-functional interface corresponds
to an entry point) allowing it to be connected to
a meta component. A meta-component controls
one or several base components. A componentizied
aspect can be made up of one or several meta-
components. So it can be considered as a single
(Aspect 2 and Aspect 3) or a composite component
(Aspect 1) as we show in figure 1. Composite com-

Business Required 
Interface

Business Provided
Interface

Meta Component level

Component level

Aspect 2

Aspect 3

Aspect 1 = Composite

Extra−Functional Interface

Figure 1: a reflective component model

ponents assemble more than one meta-component

in order to represent a single aspect. It manages
also the visibility of provided and required meta-
component interfaces. Representing aspect as a
set of meta-components has the advantage to make
no difference between assembly components and
weaving componentizing aspects mechanisms. In
cases of one component controlled by several meta-
components. We have to manage potential conflicts
among meta-components. One solution consists of
either using a chain of responsibility. The ideal so-
lution is to give users the possibility to change or
manage conflicts. We could do it by using a meta-
component dedicated to conflict resolution. The
same strategy can be used in case of conflicts among
componentizied aspects. Conflicts can be addressed
defining an adapter component that link componen-
tizied aspects to base components.

References

[1] Antoine Beugnard, Jean-Marc Jézéquel, Noël
Plouzeau, and Damien Watkins. Making com-
ponents contract aware. Computer, 32(7):38–45,
jul 1999.

[2] N. Bouraqadi and T. Ledoux. Aspect-Oriented

Software Development, chapter 11 – Supporting
AOP using Reflection. Addison-Wesley, 2003.

[3] Patrice Gahide, Noury Bouraqadi, and Laurence
Duchien. Promoting component reuse by inte-
grating aspects and contracts in an architecture
model. In Yvonne Coady, editor, Proceedings of

the First AOSD Workshop on Aspects, Compo-

nents, and Patterns for Infrastructure Software,
pages 51–55, Enschede, The Netherlands, April
2002. University of British Columbia.

[4] Stefan Hanenberg and Rainer Unland. Using
and reusing in aspectj. Proceedings of OOPSLA

2001 Workshop on Advanced Separation of Con-

cerns in Object-Oriented Systems, October 2001.

[5] Sacha Krakowiak. Patrons et canevas pour les
intergiciels. Talk given at 4th Summer school
on distributed systems in Autrans, France, Au-
gust25 2003.

[6] Karl Lieberherr, David H. Lorenz, and Mira
Mezini. Programming with aspectual compo-
nents. Technical Report NU-CCS-99-01, College
of Computer Science, Northeastern University,
Boston, MA 02115, March 1999.

[7] Roman Pichler, Klaus Ostermann, and Mira
Mezini. On aspectualizing component models.
Software Practice and Experience, 33:957–974,
2003.

2


