
Applying Aspect Orientation to
J2EE Business Tier Patterns

Therthala Murali
murali_therthala@yahoo.com

Renaud Pawlak
pawlakr@rh.edu

Houman Younessi
houman@rh.edu

Rensselaer Polytechnic Institute- Hartford Graduate Campus
275 Windsor St, Hartford, CT 06120 USA

ABSTRACT
J2EE Design Patterns [1] offer flexible solutions to common software
problems encountered in the design and construction of distributed
systems for the J2EE platform. A number of J2EE patterns involve
crosscutting structures in the relationship between the roles in the
pattern and classes in each instance of the pattern, thus making the
resulting components increasingly complex. This complexity is at
odds with one of patterns' key goals - to make it easier to build
simple, elegant and high-quality systems that work. This paper
analyzes the problem of crosscutting within the implementation of
J2EE patterns in the Business Tier and demonstrates how Aspect-
Oriented techniques can be used to generate improvements within the
business layer components from the perspective of better code
locality, reusability, composability and (un)pluggability.

1. INTRODUCTION
Software Patterns are designed to communicate expert knowledge
about system construction. Useful Patterns address structural
problems and are carefully written to be readable.

Prior research [2] shows that aspect-based implementations of the
GoF design patterns showed modularity improvements in 17 of 23
cases. These improvements were in terms of better code locality,
reusability, composability and (un)pluggability. These results suggest
that it would be worthwhile to undertake the experiment of applying
aspect-oriented techniques to J2EE pattern implementations.

Constructing an application under the J2EE platform involves the
assembly/composition of prefabricated, reusable and independent
components. The J2EE design patterns [1] offer flexible solutions to
construct high-quality, reusable, evolvable components for the J2EE
platform. While a lot of the J2EE pattern literature is focused on
highlighting the benefits of the J2EE applications constructed using
the patterns, there is hardly any discussion of how the patterns have
introduced code tangling and code scattering within the core
functionality of the J2EE components.

In our study, we highlight the problems caused by code scattering and
code tangling within the J2EE business tier due to the implementation
of the patterns. We develop and compare Object-Oriented and Aspect
-Oriented implementations of the J2EE patterns for this tier. We
retain the purpose, intent and applicability of the J2EE patterns but
only allow the solution structure and solution implementation to
change.

The rest of the paper is organized as follows. Section 2 highlights
some of the problems created within the business tier due to the
implementation of J2EE design patterns and present them. Section 3
introduces the format of study that we have undertaken. In section 4,
we present our AspectJ implementations for some patterns and
highlight the improvements we observed. Section 5 summarizes our
work.

2. CHALLENGES

2.1 Established Challenges
The three major problems [2] in systems realized using patterns are
related to pattern implementation, pattern documentation and pattern
composition.

Implementations of patterns are often governed by the instance of use
and context owing to the fact that pattern implementations heavily
influence system structures and vice versa [3]. This makes it hard to
distinguish between the pattern, its concrete instance and the pertinent
object model [4]. Changes to a pattern within a system are often
invasive and tedious. Consequently, while the design pattern is
reusable, its implementations usually are not [2].

As stated in [2], the impacts of design patterns on programs are of
two different natures. In the first case, they can superimpose roles. An
initial functional class could be enhanced to define a role in the
design pattern. In the second case, they could add new classes to the
program that are independent from the initial functional program and
define new roles. In both the cases, the design patterns are not
completely modular. In the first case, the design pattern
implementation is invasive since it modifies a class of the initial
program. In the second case, the newly created role has to be used
eventually by a class of the functional program and this reflects the
existence of an associated superimposed role.

Thus, non-modularization in the business layer of the J2EE
applications due to patterns introduces code scattering and code
tangling within the program. Code Scattering is caused because
several instances of the patterns or of a given role will be used within
several classes of the program. Code tangling occurs when several
pattern or role instances overlap in a single class. This last effect is
particularly troublesome because, when a particular class is involved
in more than one pattern, it becomes difficult to compose the patterns
together because the structure of the application becomes less
straightforward. Moreover, documenting the patterns and their
participants within the application also becomes cumbersome.

2.2. Crosscutting in J2EE Patterns
This section presents the standard J2EE design patterns and discusses
the problems caused by their implementation in terms of crosscutting.

2.2.1 Business Delegate
The Business Delegate hides the underlying implementation details of
the business service, such as lookup and access details of the EJB
Container and JNDI Directory Services and thereby reduces the
coupling between presentation-tier clients and business services.
However, interface methods in the Business Delegate may still require
modification if the underlying business service API changes. The
reference to the Business Delegate layer, within every client that
accesses the business services layer, is a crosscutting concern. While
location transparency is one of the benefits of this pattern, a different
problem may arise due to the developer treating a remote service as if

it was a local one. This may happen if the client developer does not
understand that the Business Delegate is a client side proxy to a
remote service. Typically, a method invocation on the Business
Delegate results in a remote method invocation under the wraps.
Ignoring this, the developer may tend to make numerous method
invocations to perform a single task, thus increasing the network
traffic.

It would be worth exploring if there exists a way to leverage the
advantages offered by the business delegate layer, without
implementing the business delegates and eliminating the coupling
with the client.

2.2.2 Service Locator
The Service Locator pattern reduces the client complexity that results
from the client’s need to perform lookup of distributed services and
their creation, which are resource-intensive. However clients that use
the Service Locator are faced with a plethora of crosscutting
problems.

A client of the Service Locator such as a Business Delegate has to
explicitly reference the interfaces (javax.ejb.EJBHome and
javax.ejb.EJBLocalHome) within the javax.ejb package and the
exceptions within the javax.ejb, java.rmi and the
javax.naming packages. The clients ought to capture these
exceptions and handle them appropriately. The references to the
interfaces and classes are a crosscutting concern.

A reference to the Service Locator within the client that needs to
lookup services is in itself a crosscutting concern. The Service
Locator is an implementation of the GoF Singleton pattern and has a
private constructor. Hanneman et al [2] have demonstrated how a
plain old java object can be turned into a Singleton by weaving into it,
the Singleton Protocol via an aspect. It would be worth applying this
idea to the Service Locator to see if it offers any advantages within the
J2EE world.

2.2.3 Transfer Object
When clients require more than one value from the business services
layer, it is possible to reduce the number of remote calls to the Session
Façade and to avoid overhead by using Transfer Objects to transport
the data from the enterprise bean to its client.

In order to be transportable over the wire via Java’s Remote Method
Invocation (RMI), the Transfer Objects have to implement the
java.io.Serializable interface. If a client that is located within
the same virtual machine as the Session Facade, desires to invoke the
same business service,the client need not invoke the service via RMI
and hence the implementation of java.io.Serializable by the
Transfer Object becomes redundant.

The Client and the Session Facade that use Transfer Objects reference
these objects within their implementations. Thus it would be worth
investigating whether the benefits offered by Transfer Objects can be
obtained, without them implementing the java.io.Serializable
and also not cross-cutting the client and Session Facade
implementations.

2.2.4 Session Facade
The Session Facade in a J2EE application is usually a Session
Enterprise Bean that manages the business objects, and provides a
uniform coarse-grained service access layer to the clients. The
benefits of a facade have been highlighted in the GoF literature and
also in Core J2EE Patterns [1]. The Session Facade bean ought to
implement the javax.ejb.SessionBean interface.

It would be worth exploring whether the Session Facade can be made
to leverage the features of the EJB Container by realizing it as a plain

old java object (POJO) and without implementing the
javax.ejb.SessionBean.

2.2.5 Transfer Object Assembler
The Transfer Object Assembler can be a POJO or a Session Facade. If
the Transfer Object Assembler is implemented as a Session Facade,
then the problems discussed in section 2.2.4 for the Session Facade
would apply.

2.2.6 Value List Handler
The Value List Handler can be a POJO or a Stateful Enterprise
Session Bean. In either of the implementations, the Value List
Handler is coupled to the Value List Iterator interface. If a Session
Bean, the Value List Handler becomes tied to the
javax.ejb.SessionBean interface and the problems discussed in
section 2.2.4 for the Session Façade would apply.

2.2.7 Composite Entity
The Composite Entity’s implementation of the Entity Bean interface
is a crosscutting concern and is not beneficial from a system
adaptability standpoint. It would be worth pursuing the realization of
the Composite Entity as a POJO, without implementing the
javax.ejb.EntityBean but still leveraging the container managed
persistence features.

2.2.8 Application Service
The Application Service is usually a POJO and is implemented either
as a Command pattern or as a Strategy pattern. The problems of
Command and Strategy have been highlighted [2] and we shall
implement the Application Services using the AspectJ versions of
Command and Strategy as demonstrated in [2].

2.2.9 Business Objects
The Business Objects are usually implemented either as POJOs or as
Enterprise Entity Beans. When realized as POJOs, they are
implemented by composing any of the GoF patterns depending on the
problem domain. In such a scenario, their AspectJ implementations
could be realized as outlined in [2]. When realized as Enterprise
Entity Beans, the BusinessObject has to implement the
javax.ejb.EntityBean interface. Hence if the BusinessObject is
to be reused in another J2EE application that does not use Entity
Beans, the BusinessObject becomes useless and needs to be converted
to a POJO.The implementation of the javax.ejb.EntityBean interface
by the BusinessObject is a crosscutting concern and does not facilitate
seamless component adaptation. It would be worth pursuing the
realization of the BusinessObject as a POJO, without implementing
the javax.ejb.EntityBean interface and yet leveraging the EJB’s
container-managed persistence features.

3. STUDY FORMAT
The methodology for study involved the design and implementation
of a contrived distributed application in accordance with the J2EE
specification on a J2EE platform using J2EE patterns, first using the
classical Object-Oriented approach and later employing aspects using
AspectJ 1.1.4. The core business model of the application provides a
Currency component that performs conversion between currency
values as shown in the interface listing below.

public interface ICurrency {
 public double dollarToPound(
 double aDollarValue) throws
 TooLargeValueException,RemoteException;
 public double dollarToEuro(
 double aDollarValue) throws
 TooLargeValueException,RemoteException;
 public CurrencyTO getCurrencyTable()
 throws RemoteException;
 public CurrencyTO getCurrencyByCountry()

 throws RemoteException;
 public String getUsCurrency()
 throws RemoteException;
 public String getUkCurrency()
 throws RemoteException;
 public String getFranceCurrency()
 throws RemoteException;
 public String getPolandCurrency()
 throws RemoteException;
}

The application’s business tier is fronted by EJB Session facades
while the client tier consists of java application clients. The
application was packaged and deployed on Sun ONE Application
Server. The Java implementations correspond to the samples
presented in the Core J2EE Patterns book [1]. Each J2EE pattern has
a number of implementation variants and alternatives. If a pattern
offered more than one possible implementation, we picked the one
that seemed the most widely used. Our modularization goals in
implementation of J2EE patterns using AspectJ were consistent with
those in [2]. In this paper, we will mainly focus on the aspectized
implementation of the Business Delegate, the Service Locator, and the
Transfer Object patterns.

4. RESULTS
This section presents a comparison of the aspect-oriented and pure
object-oriented implementations of concrete instances of the J2EE
Business Tier patterns. We focus on the Business Delegate, the
Service Locator, and the Transfer Object patterns.

4.1 Business Delegate and Service Locator
In the classical implementation, the Business Delegate pattern
manages the complexity of distributed component lookup and
exception handling for the calling client, yet the reference to the
delegate within the client's implementation is a crosscutting concern.
The delegate's presence is truly valuable only when invoking a remote
service.

The following code shows the implementation of a typical client. It
explicitly uses the Business Delegate that uses the Service Locator
pattern.

public class TestClient {
 public static void main(String[] args) {
 try {
 // delegate is used here
 CurrencyDelegate delegate =
 new CurrencyDelegate();
 logger.debug(
 delegate.dollarToPound(10.0) + "GBP");
 // a transfer object is used here
 // it reduces network traffic
 CurrencyTO to =
 delegate.getCurrencyByCountry();
 logger.debug(" US Currency -> " +
 to.getUsCurrency());
 } catch(Throwable t) {

[...]

The following code sample shows the implementation of Currency
Delegate using regular Object-Orientation. It has to lookup distributed
services by using the Service Locator and deal with the exceptions
that can be thrown by the invocation of remote services. In a real
application, several delegates are created, usually one per facade. This
introduces crosscutting within the clients and a dependence on the
JNDI (Java Naming and Directory Interface) and EJB technologies
that reduces the adaptability of the application.

public class CurrencyDelegate {
 private static ServiceLocator locator;

 private void init() throws SystemException {
 try {
 locator = ServiceLocator.getInstance();
 } catch(NamingException ne) {
 throw new SystemException(

 ne.getMessage());
 }
 }

 private Currency getServiceFacade()
 throws SystemException {
 Currency currency = null;
 try {
 CurrencyHome home = (CurrencyHome)locator
 .lookupHome(Currency.class);
 currency = home.create();
 } catch(ClassNotFoundException cne){
 throw new SystemException(
 cne.getMessage());
 } catch(NamingException ne) {

throw new SystemException(
 ne.getMessage());
 } catch(CreateException ce) {
 throw new SystemException(
 ce.getMessage());
 } catch(RemoteException re) {
 throw new SystemException(
 re.getMessage());
 }
 return currency;
 }

 public CurrencyDelegate()
 throws SystemException {
 if(locator == null)
 init();
 }

 public double dollarToPound(double aValue)
 throws SystemException {
 Currency currency = getServiceFacade();
 try {
 return currency.dollarToPound(aValue);
 } catch(RemoteException re) {
 throw new SystemException(
 re.getMessage());
 } catch(TooLargeValueException te) {
 throw new SystemException(
 te.getMessage());
 }
 }
 // same principle with other delegating
 // methods
 [...]

The code snippet below shows how the ClientAspect and the
LocatorAspect combine to make the Business Delegate obsolete.
The pointcuts and their corresponding advices provide the necessary
J2EE plumbing that enables a plain java client to invoke the business
services offered by components within the EJB container.

public class TestClient {
 public static void main(String[] args) {
 try {
 TestClient client = new TestClient();
 ICurrency currencyService =
 (ICurrency)client.getServiceFacade(
 Currency.class);
 logger.debug("GB POUNDS -> " +
 currencyService.dollarToPound(10.0));
 logger.debug("GB CURRENCY -> " +
 currencyService.getUkCurrency());
 logger.debug("US CURRENCY -> " +
 currencyService.getUsCurrency());
 } catch(Throwable t) {
 t.printStackTrace();
 }
 }

 public Object getServiceFacade(Class aClass)
 throws SystemException {
 // empty method that is automatically
 // implemented by the client aspect
 return null;
 } [...]

As is evident from the discussion, the Client does not need to (i) use a
Business Delegate, (ii) provide an implementation of the
getServiceFacade method. The LocatorAspect introduces into

the client the implementation for the getServiceFacade method
which is used to lookup the Service Facade. This facade directly
implements the business component’s interface and appears to be co-
located with the client. This technique offers two main advantages.
Firstly, it simplifies the overall design by removing the delegate in
most cases (usually, delegates have the same interfaces as the facade
they delegate to – note that the use of a specific delegate is still
possible). It makes the code more local because as seen in the
implementation of the LocatorAspect, all the delegating code is
confined to a unique aspect. Secondly, the code has no distributed
semantics.

The final code is:
 less technology dependent – it can use the EJB component

model or any other distributed computing technology or none at
all.

 independent of deployment semantics– in case the client is
finally deployed in the same virtual machine as the server, then
the getServiceFacade implementation can be easily changed
to return a direct reference to a local object and not the
delegate.

The following sample code shows the main parts of the Locator
aspect.

public aspect LocatorAspect {
 public static final String CURRENCY_SERVICE =
 "edu.rh.cs.j2ee.business.Currency";
 private EJBServiceLocator ejbLocator;
 private JDBCServiceLocator
 jdbcConnectionLocator;
 private JMSServiceLocator jmsObjectLocator;

 // pointcut to capture calls made to
 // getServiceFacade.
 pointcut ejbservice(Class aClass):
 call(* *.getServiceFacade (Class))
 && args(aClass);

 // same principle for databases
 pointcut connectionservice(
 String aDataSource):
 call(* *.getDatabaseConnection(String))
 && args(aDataSource);

 // same principle for JMS
 pointcut jmsservice(String aJMSObject):
 call(* *.getJMSObject(String))
 && args(aJMSObject);

 // EJB service locator -> EJBHome
 Object around(Class aClass)
 throws SystemException:
 ejbservice(aClass) {
 Object service =null;
 try {
 if(ejbLocator == null)
 ejbLocator = new EJBServiceLocator();
 Object home =
 ejbLocator.lookup(aClass);
 // all the lookups can be centralized
 // right here...
 if(aClass.getName()
 .equals(CURRENCY_SERVICE)) {
 CurrencyHome currencyhome =
 CurrencyHome)home;

 service = currencyhome.create();
 }
 } catch (NamingException ne) {

 throw new SystemException(
 ne.getMessage());
 } catch (ClassNotFoundException cne) {

 throw new SystemException(
 cne.getMessage());
 } catch(CreateException ce) {

 throw new SystemException(
 ce.getMessage());
 } catch (RemoteException re) {

 throw new SystemException(
 re.getMessage());
 } catch (Exception e) {

 throw new SystemException(
 e.getMessage());
 }
 return service;
 }

 // -> java.sql.Connection
 Object around(String aDataSource)
 throws SystemException:
 connectionservice(aDataSource) {
 [...]
 }

 // -> JMS Object
 Object around(String aName)
 throws SystemException:jmsservice(aName) {
 [...]
 }

 public pointcut exception():
 call(* edu.rh.cs.j2ee.business..*+.*(..)
 throws *Exception)
 && !within(LocatorAspect);

 // soften thrown exceptions
 declare soft:RemoteException: exception();
 declare soft:TooManyItemsException:
 exception();
 declare soft:TooLargeValueException:
 exception();

 Object around():exception() {
 Object value = null;
 try {
 value = proceed();
 } catch(Exception e) {
 throw new RuntimeException(
 e.getMessage());
 }
 return value;
 }
}

The LocatorAspect removes the Client’s need to reference the
Service Locators explicitly to lookup objects and locate services. This
task is seamlessly done within the advices for the pointcuts
ejbservice, connectionservice, and jmsservice. The Locator
Aspect also introduces into the client, the reference to the Service
Locator and the references to the classes and interfaces within the
java.rmi and javax.naming packages. The remote exceptions are
captured and logged by the LocatorAspect (see the exception()
pointcut). If the application requirement is such that a certain
exception is to be handled consistently for all incoming client
transactions, then the exception handling can be implemented within
the LocatorAspect itself and a user friendly error message can be
encapsulated within a generic runtime exception
(CompositeRuntimeException) and passed onto the client. If the
application requirement is such that a certain exception is to be
handled differently depending on the type of incoming client
transaction, then the LocatorAspect can pass the exception onto the
client, by wrapping it within the CompositeRuntimeException.
The client layer can then choose to handle the exception
appropriately. Finally, the LocatorAspect also introduces into the
client, the reference to the classes and interfaces within the
javax.ejb package.

The actual remote invocation performed previously by the delegate is
performed within the ClientAspect. The code below shows the parts
of the ClientAspect responsible for the invocation of the
dollarToPound method of the remote service. Note that it uses
getServiceFacade, which is implemented by the LocatorAspect.

public aspect ClientAspect {
 [...]
 // should write a more general pointcut
 pointcut currencyConversion(double aValue):
 call(* edu.rh.cs.j2ee.business.ICurrency+
 .*(*))
 && args(aValue)
 && !within(ClientDataTransferAspect);

 [...]
 double around(double aValue)
 throws java.rmi.RemoteException:
 currencyConversion(aValue) {

 Signature sig =
 thisJoinPointStaticPart.getSignature();
 String name = sig.getName();
 ICurrency currency = null;
 if(name.equals("dollarToPound")) {
 try {
 currency = (ICurrency)
 getServiceFacade(Currency.class);
 } catch(SystemException se) {}
 return currency.dollarToPound(aValue);
 } else if [...] // other methods
 }
 [...]

The Client implementation is conscious only of the Business
interfaces and knows nothing about any of the classes or interfaces
within the javax.ejb package. The client layer is EJB technology
agnostic. So if an existing EJB based J2EE solution is implemented
using the LocatorAspect and ClientAspect and, if later there
arises a need to convert the existing EJB based implementation to a
non EJB solution, then the conversion can be accomplished
effortlessly by simply not weaving the aspects into the client, during
the compilation phase.

The Service Locator's implementation as a Singleton is based on the
techniques outlined in [2]. The Service Locator can be instantiated
like a POJO using the new constructor instead of using a factory
method like getInstance. However this feature can lead to some
confusion among J2EE developers. A factory method makes it clear
that the Service Locator is a singleton but the new constructor does
not. So it is conceivable that the Singleton might extend another class
that can be cloned and developers might call the clone method of the
Singleton. In order to prevent the cloning of the Singleton, the
SingleProtocol aspect's Singleton interface has been modified as
shown below.

public Object SingletonProtocol.Singleton.clone()
throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
}

So if an attempt is made to clone the Singleton, a
CloneNotSupportedException is thrown.

4.2 Transfer Object
The implementation of the TestClient in the typical J2EE
application references the transfer object CurrencyTO. The Transfer
Object reduces the network traffic by carrying multiple data items.
The Aspect-Oriented version of the TestClient does not use the
Transfer Object. As shown in the implementation below, the Client
Aspect captures the join points of a logical set of remote calls made
by the client to the business service within a pointcut. The advice to
this pointcut allows the remote invocation during the first call and
fetches all the data for the remainder of the invocations within a
transfer object. The ClientAspect caches the transfer object locally
to service subsequent client requests. Thus it eliminates the
crosscutting within the client due to the Transfer Object pattern.

public aspect ClientAspect {
 public static final String CURRENCY =
 "CurrencyTO";
 private HashMap transferObjectMap =
 new HashMap();

 [...]
 pointcut currencytransfer():
 call(* edu.rh.cs.j2ee.business.ICurrency+
 .get*Currency())
 && !within(ClientAspect);

 Object around()

 throws java.rmi.RemoteException:
 currencytransfer() {

 Signature sig =
 thisJoinPointStaticPart.getSignature();
 String name = sig.getName();
 CurrencyTO to =
 (CurrencyTO)transferObjectMap
 .get(CURRENCY);

 // if the cached TO is null, fetch it
 if(to == null) {
 to = new CurrencyTO();
 ICurrency currency = null;
 try {
 currency = (ICurrency)
 getServiceFacade(Currency.class);
 } catch(SystemException se) {}
 CurrencyTO fetched =
 currency.getCurrencyByCountry()
 to.setUsCurrency(
 fetched.getUsCurrency());
 to.setUkCurrency(
 fetched.getUkCurrency());
 to.setFranceCurrency(
 fetched.getFranceCurrency());
 to.setPolandCurrency(
 fetched.getPolandCurrency());
 transferObjectMap.put(CURRENCY,to);
 }

 // get the data from the cache
 if(name.equals("getUsCurrency"))
 return to.getUsCurrency();
 else if(name.equals("getUkCurrency"))
 return to.getUkCurrency();
 else if(name.equals("getFranceCurrency"))
 return to.getFranceCurrency();
 else if(name.equals("getPolandCurrency"))
 return to.getPolandCurrency();
 return null;
 }
 [...]

The ClientAspect also provides a cache invalidation pointcut. For
our simple case, it invalidates the cache (removes the transfer object
from the hash map) when the program returns from the main method.
The cache invalidation pointcut is application dependent and can be
quite complex in real applications.

4.3 Session Facade
The Aspect version of the pattern uses the SessionBeanProtocol
and the FacadeAspect, to introduce the javax.ejb.SessionBean
interface within the session facade. The CurrencyBean session
façade is a POJO that is business -functionality centric and is
oblivious to the javax.ejb package. The facade is reusable and
adaptable within a non EJB environment.

public interface SessionBeanProtocol
 extends javax.ejb.SessionBean {}

public aspect FacadeAspect {
 // ICurrency is due to the BusinessInterface
 //pattern and not the
 //Remote interface
 declare parents: CurrencyBean implements
 SessionBeanProtocol,ICurrency;
 public void SessionBeanProtocol.ejbCreate()
 throws CreateException {}
 public void SessionBeanProtocol.ejbRemove() {}
 public void SessionBeanProtocol.ejbActivate() {}
 public void SessionBeanProtocol.ejbPassivate() {}
 public void SessionBeanProtocol
 .setSessionContext(SessionContext sc) {}
}

4.4 Code Improvement Evaluation

4.4.1 Business Delegate, Service Locator, and
Transfer Object patterns
The Aspect-Oriented implementation of the Business Delegate, the
Service Locator and the Transfer Object patterns has the following
closely related modularity properties:

Locality – All the code that implements the Business Delegate
functionality and the associate service lookup is in the
ClientAspect and the LocatorAspect and none of it is in the
participating client classes. For each kind of service lookup, the code
is within the advice of the LocatorAspect. The packaging of all
related data for a transfer object is localized within the
ClientAspect. The participant clients are entirely free of the
Business Delegate and Transfer Object pattern contexts and as a
consequence there is no coupling between the participants. Potential
changes to the pattern instance are confined to one place. All the
Singleton related code is within the SingletonProtocol and the
ServiceLocator is a POJO.

Reusability – The core pattern code is abstracted and reusable. The
implementation of the getServiceFacade method within the
Client via the LocatorAspect generalizes the overall pattern
behavior. The interface can be reused and shared across multiple
pattern instances. The implementation of the Transfer Object is
limited to the clients that need the same Transfer Object. The
SingletonProtocol aspect can be reused to create several types of
Singeltons.

Composition transparency – Since the Client implementation is not
coupled to either of the patterns, it can participate in other kinds of
pattern relationships and the resulting code does not become more
complicated. Since the ServiceLocator is oblivious to the Singleton
pattern’s context, it could participate in another pattern context
seamlessly.

(Un)pluggability – Since the Client need not be aware of its role in
any of these pattern instances, it is possible to switch effortlessly
between using the Business Delegate pattern and Transfer Object
pattern, and not using them in the system. It is possible to add and
remove the Singleton property to the ServiceLocator easily.

4.4.2 Session Facade pattern
The Aspect-Oriented implementation of the Session Facade pattern
has the following closely related modularity properties:

Locality – All the code that implements the Session Facade
functionality is within a POJO and the Session Bean contract is
introduced via a protocol and an aspect. For each kind of Session
Facade, we only need to extend the SessionBeanProtocol and
supply an implementation for the Session Bean's methods via the
aspect. The participating facade is entirely free of the pattern context,
and as a consequence is EJB agnostic. Potential changes with the EJB
container's contract are confined to the aspect.

Reusability – The core pattern code present within the Session Bean
interface methods (ejbCreate(), ejbActivate()…) is abstracted
and reusable.

Composition transparency – Since the facade implementation is not
coupled to the pattern, it can participate in other kinds of pattern
relationships and the resulting code does not become complicated.

(Un)pluggability – Since the facade need not be aware of its role in
this pattern instance, it is possible to switch effortlessly between using
the EJB Component Model and not using it in the J2EE application.

4.4.3 Transfer Object Assembler, Value List
Handler, and Composite Entity
The modularity advantages discussed for a Session Facade are also
applicable to the Transfer Object Assembler and the Value List
Handler.

The CompositeEntityBean is implemented as a POJO and the
javax.ejb.EntityBean interface is weaved into the Composite
Entity via the EntityAspect and the EntityBeanProtocol. The
Composite Entity implementation purely manages the inter-entity
relationships and is unaware of the javax.ejb package. The POJO
entity is reusable and adaptable within a non EJB environment.

4.4.4 Application Services and Business Objects
The Application Services and the Business Objects are usually
implemented using any of the GoF patterns, and as discussed in [2],
there may or may not be significant modularity benefits after applying
aspects, depending on their implementation.

5. ANALYSIS AND CONCLUSIONS
In this paper we have presented and compared a J2EE application
built using EJB Component Software Engineering techniques and
using Aspect-Orientation. We have demonstrated and explained how
a more flexible, adaptable and reusable component based J2EE
system can be built using Aspect-Oriented techniques.

The improvements from using AspectJ in J2EE business tier pattern
implementations are closely tied to the presence of crosscutting in the
structure of the patterns. Crosscutting in pattern structure is caused by
roles [2] and their collaboration with participant classes. We notice
great improvements in those patterns where a single module of
abstraction handles the original behavior and the pattern specific
behavior. In such patterns, the roles cut across participant classes and
conceptual operations crosscut methods and constructors. Patterns
having shared participants can also crosscut each other. The
improvements in the J2EE world are apparent as a set of properties
associated leading with modularity. The J2EE pattern
implementations are more localized and reusable and hence the
system is more adaptable. Localization enhances the documentation.
AspectJ implementations of J2EE business tier patterns are
composable because there is a better alignment between the
dependencies in the code with dependencies in the participant
structure.

Our results suggest that Aspect-Orientation should strongly be
considered in the design and implementation of J2EE applications.

REFERENCES
[1] Deepak Alur (Author), John Crupi (Author), Dan Malks. Core

J2EE Patterns: Best Practices and Design Strategies, Prentice
Hall PTR; 2nd edition (June 2003)

[2] Hannemann and Kiczales. Design Pattern Implementation in Java
and AspectJ, Proceedings of the 17th Annual ACM conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 161-173, November 2002.

[3] Florijn, G., Meijers, M., Winsen, P. van. Tool support for object-
oriented patterns. Proceedings of ECOOP 1997

[4] Soukup, J. Implementing Patterns. In: Coplien J. O., Schmidt, D.
C. (eds.) Pattern Languages of Program Design. Addison Wesley
1995, pp. 395-412

