
Addressing Ubiquitous Software Complexity with Mobile Containers

Vasian Cepa
cepa@informatik.tu-darmstadt.de

Darmstadt University of Technology

1 Using Containers to Structure Mobile Applications

We present here an overview of the idea of applying the software containers model to mobile applications using
generative programing techniques. We also present an evaluation prototype called MobCon.

A software container is a wrapper component that offers services nearly transparently to other components
that ’live’ inside it. The wrapped components contain the functional logic of the application. The services
offered by the container are secondary to the logic of the application, but are nevertheless necessary to get
an application running. The container services, known as technical concerns [14], include data persistence,
logging etc. Components that live inside a container are usually written in a more restricted way that normal
components. This restrictions are compensated by automatic usage of container services. The container itself is
an abstraction of the surrounding middleware that an application uses. The container concept is made known
by its original usage in enterprise application frameworks like EJB [13] and COM+ [6].

A container offers services that are usually cross cutting concerns with the rest of application code. Enter-
prise containers are specialized for e-commerce business applications. We can reuse the container concept and
specialize it to other classes of applications. We are interested to apply this concept to mobile applications.
Using a container bring well-known benefits like the natural separation of programmer roles that write func-
tional and technical code. Once the technical concerns are identified, they are coded and debugged and made
of the container logic. This reduces the bugs and increases productivity. Apart of this the container idea is
especially benefiting for mobile applications. The container hides the middleware related API-s from the rest
of the application in a centralized way. Ideally porting a family of mobile applications to a new middleware
platform would require only porting the container. This is very important considering the speed the mobile
middleware [4] changes today. Even different versions of the same middleware may expose different API-s. The
container abstraction can be used to address such mobile software problems in a structured way.

There are several reasons, however, why the enterprise container idea cannot be directly adopted for mobile
applications. First, since we are addressing a new domain of application we need to find and parameterize the
technical concerns of the mobile applications to be addressed. Second, and more importantly, the design issues
involved in building a container have different constrains in the enterprise as compared to mobile applications.
For enterprise applications scalability is the main issue. For mobile applications the main issue is performance
of the container itself: Every time we introduce a new abstraction, we introduce new layers. Having many layers
of abstractions is however unacceptable for mobile applications that run on resource limited devices. Last but
not least, current enterprise container technology has several drawbacks [16], which are also unacceptable for the
domain of mobile applications, including the inability of such technology to be tailored to application specific
needs, its complexity due to lack of tight language integration, as well the implied dependency from a particular
component middleware platform, a serious limitation in the mobile domain, where middleware changes rapidly.

Generative techniques in the idea of OMG MDA [5] combined with taking into consideration the cross-cutting
nature of technical concerns that a container addresses can be used to implement a mobile container framework.
The current research in MDA tries to find ways how to specify such transformations so that they are done
automatically. While nowadays we are still far from modeling an entire application instead of writing its code,
the MDA ideas are still valid, if we try to organize the source code of an application in a platform independent
way that enables automatic transformations. This way we can focus on the main functionality and introduce
the technical concerns automatically later. To achieve this we need language support for MDA concepts such
as marking with tags and AOP like [1] cross cutting code decoration techniques. Languages used for mobile
applications are usually restricted dialects of mainstream languages. Tools that transform mobile source code
may not be directly available. This means that we should use techniques that can be easily introduced to any
language 1.

1For example we cannot use AspectJ [7] with J2ME MIPD, a Java dialect for mobile applications that we use in MobCon
prototype.

1

mailto://cepa@informatik.tu-darmstadt.de


2 MobCon: A Mobile Container Framework

To demonstrate the feasibility of the proposal, a mobile container prototype called MobCon is being imple-
mented. In the following, we only outline the structure and features of this prototype; more details can be
found in [12].

Based on the ides of marking in MDA and presence attributes in several languages like .NET we presented
the idea of Generalized and Annotated AST - GAAST languages, that can be used to facilitate marked transfor-
mations at the source code level. GAAST idea requires two features to be supported by a language technology
(a) support for annotations (marking in MDA) of arbitrary program elements with user-defined tags which
are first-class program units with well-defined semantics, and (b) support for explicit meta-representation of
programs that is accessible in a programmatic way. A GAAST proposal evaluation in the form of the CT-AST
API prototype is developed as part of the MobCon transformer framework.

We selected Java 2 Micro Edition Mobile Information Device Profile (MIDP) 2.0 [3] for our prototype because
is relatively simple (we can focus on the container concept not in the technology) and hardware independent
and it is well supported. The process of identifying technical concerns for a set of mobile applications is similar
to defining software product lines [8]. Various technical concerns have been addressed until now in the MobCon
prototype such as data persistence, screen management, logging, image adaptation, encryption, session and
context. We use a source code template based approach. Our templates are implemented as Velocity [9] scripts.

Input
(JavaDoc decorated

MIDP Source)
CT-AST

T1
(Velocity

based)

T2

T3

CT-AST
Mixer

Output
(MIDP Source)

qDoc
(modified)

vDoclet
(modified)

Representation Manager

Figure 1: MobCon Transformers

Fig. 1 schematically shows the MobCon transformer framework. As part of this framework, we have
implemented a MIDP-based prototype language technology with explicit support for tag-based model-driven
development (represented by the Representation Manager (implemented with customized versions of QDox [15]
and vDoclet [17]) and the Class Template AST (CT-AST) in Fig. 1). Tags allow us to associate new semantics
with language entities. JavaDoc tags are used in our prototype to simulate source code entity annotations, since
MIDP lacks such support. The representation manager processes annotated source code, producing a CT-AST
representation of it, which serves as the input for the transformers. Only three different such (Velocity-based)
transformers (Ti) and their interactions as they process the input introducing the technical concerns directed
by the annotations of the input CT-AST-s are shown. Some concerns like image adaptation require code to
be placed on the server side. The MobCon framework generates Java code for such concerns, for both mobile
side and the server side. The network communication is handled by the framework. Messages are handled to
the appropriate application using bookkeeping data, part of session and context concerns. Three types of uses
are identified: (a) those that use predefined concerns (tags); (b) those that can append and modify concerns
dealing with MobCon transformer framework; (c) users that port the framework to a new set of middleware.
The MobCon framework itself is independent of J2ME MIDP and is written in Java. Only transformer scripts
written in Velocity are platform dependent.

Generation can be used successfully to implement container-like approaches for small systems. The work of
Voelter [11] targets generative component infrastructures for embed systems. Unlike MobCon the idea is that
the entire operating system can be customized for the application. PicoContainer [10] is a generic container
project based on constructor parameters that tries to define a minimalistic container to be used also in client
applications. This project focuses on containers in general, while MobCon is specialized for mobile applications,
trying to reduce abstraction layers via generation. The work of Popovici et al [2] investigates the application
of so-called spontaneous containers in mobile clients. The idea is that the container ideally changes itself to
be adapted to environment changes at run-time without stopping the application. MobCon on the other hand
addresses ways to structure mobile applications so that they can be maintained easier. Also run-time dynamic
AOP requirements of spontaneous containers require more powerful computing devices that those addressed by
MobCon framework.

2



References

[1] A. Rashid A. Colyer, G. Blair. Managing Com-
plexity In Middleware. AOSD Workshop on As-
pects, Components, and Patterns for Infrastruc-
ture Software (ACP4IS), 2003.

[2] A. Popovici, et al. Spontaneous Container Ser-
vices. ECOOP, 2003.

[3] C. Bloch and A. Wagner. MIDP 2.0 Style Guide
for the Java 2 Platform, Micro Edition. Addison-
Wesley, 2003.

[4] W. Emmerich C. Mascolo, L. Capra. Middleware
for Mobile Computing. In Advanced Lectures on
Networking - Networking 2002 Tutorials, Springer
Verlag, LNCS 2497, pages 20–58, May 2002.

[5] D. S. Frankel. Model Driven Architecture - Apply-
ing MDA to Enterprise Computing. Wiley, 2003.

[6] T. Ewald. Transactional COM+: Building Scal-
able Applications. Addison-Wesley, 2001.

[7] J. Hugunin M. Kersten J. Palm W. G. Griswold
G. Kiczales, E. Hilsdale. An Overview of AspectJ.
In Proc. of ECOOP ’01, Springer-Verlag, LNCS
2072, pages 327–353, 2001.

[8] J. Bosch. Design and Use of Software Architec-
tures, Adopting and Evolving a Product-Line Ap-
proach. Addison-Wesley, 2002.

[9] J. Cole J. D. Gradecki. Mastering Apache Veloc-
ity. John Wiley & Sons Inc, 2003.

[10] PicoContainer. http: // www. picocontainer.

org/ , 2003.

[11] M. Voelter. A Generative Component Infrastruc-
ture for Embedded Systems. Position Paper at
Reuse in Constrained Environments Workshop at
OOPSLA 03, 2003.

[12] MobCon: A mobile container framework
prototype for J2ME MIDP. http: // www.

st. informatik. tu-darmstadt. de/ static/

pages/ projects/ mobcon/ index. html , 2003.

[13] R. Monson-Haefel. Enterprise JavaBeans.
Addison-Wesley, 2000.

[14] D. Parnas. On the criteria to be used in decom-
posing systems into modules. Communications of
the ACM, 1972.

[15] QDox Java Tag Parser. http: // qdox.

codehaus. org/ , 2003.

[16] R. Pichler, K. Ostermann, M. Mezini. On Aspec-
tualizing Component Models. Software Practice
and Experience, Volume 33, Issue 10, pp. 957-974,
2003.

[17] vDoclet Java Code-Generation Framework. http:
// vdoclet. sourceforge. net/ , 2003.

3

http://www.picocontainer.org/
http://www.picocontainer.org/
http://www.st.informatik.tu-darmstadt.de/static/pages/projects/mobcon/index.html
http://www.st.informatik.tu-darmstadt.de/static/pages/projects/mobcon/index.html
http://www.st.informatik.tu-darmstadt.de/static/pages/projects/mobcon/index.html
http://qdox.codehaus.org/
http://qdox.codehaus.org/
http://vdoclet.sourceforge.net/
http://vdoclet.sourceforge.net/

	Using Containers to Structure Mobile Applications
	MobCon: A Mobile Container Framework

