
JAsCoAP: Adaptive Programming for Component-Based
Software Engineering.

1. INTRODUCTION
Adaptive Programming [3] aims at providing support for a very
different kind of crosscutting concern than the ones tackled by
classical aspect-oriented approaches. When an operation involves
a set of cooperating classes, one can either localize the operation
in one class or split up its logic among the set of involved classes.
Localizing the operation in one class causes hard-coded
information about structural relationships, this way violating the
Law of Demeter [1]. Spreading the operation among the set of
involved classes conforms to the Law of Demeter, but gives raise
to crosscutting concerns which obstruct evolution. In order to
cleanly encapsulate an operation that involves several cooperating
classes, Adaptive Programming introduces adaptive visitors that
allow visiting the objects contained within an application, without
explicitly specifying the structural relationships among these
objects.
JAsCo [6] on the other hand, is an aspect-oriented extension for
Java which is especially tailored to be employed in the context of
Component-Based Software Engineering (CBSE). CBSE
advocates low coupling between components and high cohesion
of single components [7]. The JAsCo language introduces two
new entities, namely aspect beans and connectors. An aspect
bean allows describing crosscutting concerns independently of
concrete component types and APIs. JAsCo connectors on the
other hand are used for deploying one or more aspect beans
within the concrete application at hand. JAsCo connectors also
allow managing the combined aspectual behavior of the
instantiated aspect beans in a fine grained manner.
Although Adaptive Programming is originally designed for
Object-Oriented Software Engineering, its ideas can also be
reused within a Component-Based context. Currently available
Adaptive Programming realizations, such as DJ [4], DemeterJ [2]
or DAJ [5] however are not very suitable to be employed within
CBSE. Even though adaptive visitors are independent of the
architecture of the application at hand, they still refer to specific
component types and APIs, rendering a visitor not as reusable as
required by CBSE. To this end, we propose to recuperate the
context-independency idea promoted by JAsCo within adaptive
programming, this way making adaptive visitors suitable to be
employed within CBSE. Furthermore, currently available
Adaptive Programming realizations provide little support for
specifying complex combinations among several collaborating
adaptive visitors in order to execute their behavior
simultaneously. Also here, the JAsCo ideas are able to contribute,
as JAsCo allows expressing complex combinations among
independently specified aspect beans.

In the next section, we show how the ideas of Adaptive
Programming and JAsCo can be combined in order to make
Adaptive Programming fit into the Component-Based world. We
illustrate how adaptive visitors can be implemented by means of
JAsCo aspect beans in order to improve their reusability.
Afterwards, we demonstrate how the behavior of several adaptive
visitors can be combined making using of JAsCo precedence and
combination strategies. Finally, we present our conclusions.

2. JASCOAP
2.1 Aspect beans as adaptive visitors
An adaptive visitor is very similar to a set of related advices as it
is able to group several before, after and around methods that
need to be executed whenever a corresponding component type is
visited. Therefore, it seems natural to employ a regular JAsCo
aspect bean as a kind of abstract and loosely coupled adaptive
visitor. Figure 1 illustrates the implementation of the
DataStorePersistence aspect bean, which allows capturing an
incremental backup of data objects.
1 class DataStorePersistence {
2
3 hook Backup {
4
5 Backup(triggeringmethod(..args)) {
6 execute(triggeringmethod);
7 }
8
9 isApplicable() {
10 //returns true if changed since last visit
11 }
12
13 before() {
14 ObjectOutputStream writer = …
15 writer.writeObject(getDataMethod(calledobject));
16 }
17
18 public abstract Object getDataMethod(Object c);
19 }
20
21 }

Figure 1: DataStorePersistence AspectBean that specifies a
reusable backup aspect
The aspect bean contains one hook, the Backup hook (line 3 till
19). The constructor of this hook (line 5 till 7) specifies that the
behavior of the hook should be performed whenever the concrete
method, bound to the triggeringmethod abstract method
parameter, is executed (line 6). An isApplicable method is
employed (line 9 till 11) which returns true if the state of the
object, on which triggingmethod is executed, has changed since it
was last visited. The before method (line 13 till 16) serializes the
visited object to file using the abstract method getDataMethod.
This abstract method (line 18) is responsible for fetching the data

Wim Vanderperren
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 62

wvdperre@vub.ac.be

Davy Suvée
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 65

dsuvee@vub.ac.be

from the current object related to the method call and needs to be
implemented in the connector. Notice that the
DataStorePersistence aspect bean does not refer to specific
component types and APIs. As a result, the aspect bean remains
completely independent and reusable.
1 traversalconnector BackupTraversal(
2 "from system.Root to *") {
3
4 DataStorePersistence.Backup hook = new
5 DataStorePersistence.Backup(visiting DataStore) {
6
7 public void getDataMethod(Object obj) {
8 return (DataStore)obj,getData();
9 }
10 };
11
12 hook.before();
13
14 }

Figure 2: BackupTraversal traversal connector.
In order to deploy the DataStorePersistence aspect bean as an
adaptive visitor, a new kind of connector is introduced: a
traversal connector. A traversal connector instantiates one or
more aspect beans as adaptive visitors onto a traversal strategy.
Figure 2 illustrates a traversal connector that instantiates the
DataStorePersistence aspect bean (line 4 till 10) upon the “from
system.Root to *” traversal strategy (line 1 till 2). The visiting
keyword allows declaring on which specific type of objects,
encountered during the traversal, the behavior of the hook needs
to be performed, in this case, DataStore objects. As a result, the
object structure of an application is traversed as specified by the
traversal strategy “from system.Root to *” and the before advice
of the Backup hook is triggered each time a DataStore object is
encountered. Likewise to a regular JAsCo connector, the
getDataMethod abstract method is implemented in order to fetch
the data from the visited DataStore objects (line 7 till 9).
1 public void backup(system.Root mySystemRoot) {
2
3 Connector myBackup = BackupTraversal.getConnector();
4 myBackup.traverse(mySystemRoot);
5
6 }

Figure 3: Invoking the BackupTraversal connector.
Traversal strategies need to be invoked explicitly in order to start
the traversal. Figure 3 illustrates how the traversal specified in
the BackupTraversal connector is explicitly invoked (line 4).

2.2 Combinations among Adaptive Visitors
Currently available Adaptive Programming realizations provide
little support for specifying complex combinations between
several collaborating adaptive visitors. The precedence and
combination strategies offered by the JAsCo connector language
can however be employed when adaptive visitors are
implemented as aspect beans.
1 traversalconnector BackupFileLoggerTraversal (
2 "from system.Root to *") {
3
4 DataStorePersistence.Backup hook1 = …
5 Logger.FileLogger hook2 = …
6
7 logger.before();
8 backup.before();
9 addCombinationStrategy(new TwinComb(hook1,hook2));
10
11 }

Figure 4: Connector with explicit combinations.
Figure 4 illustrates the implementation of a traversal connector
that instantiates the Backup hook and the FileLogger hook, which

logs backup actions, upon the same traversal strategy. The
BackupFileLoggerTraversal traversal connector allows to
explicitly control the precedence of both hooks when they visit
the same object. In this case, the before behavior method of the
logger hook is triggered prior to the before behavior method of
the backup hook (line 7 till 8). In addition, a log should only be
kept of those objects that have been saved to file. For these
specific kinds of interactions between hooks, combination
strategies can be employed. A combination strategy is a kind of
filter which acts on the list of applicable hooks. In this case, the
TwinComb strategy specifies that the behavior of the FileLogger
hook should only be performed, if the behavior of the BackUp
hook was also executed.

3. CONCLUSIONS
This paper illustrates how the ideas behind Adaptive
Programming and JAsCo can be combined in order to make
Adaptive Programming fit into the Component-Based world.
Adaptive visitors are described by means of traditional, context-
independent JAsCo aspect beans which are deployed making use
of JAsCo traversal connectors. As a result, adaptive visitors,
implemented as aspect beans, are now truly reusable as no
specific component types and APIs are hard coded into the visitor
itself. In addition, the behavior of several adaptive visitors,
implemented as aspect beans, can easily be combined into one
traversal connector in order to visit the same traversal strategy
simultaneously. JAsCo precedence and combination strategies
can be employed here in order to describe complex interactions
between several adaptive visitors applied upon the same traversal
strategy.

4. REFERENCES
[1] Lieberherr, K. and Holland, I. Assuring Good Style for

Object-Oriented Programs. IEEE Software, pages 38-48.,
September 1989.

[2] Lieberherr, K and Orleans, D. Preventive Program
Maintenance in Demeter/Java. In Proceedings of
International Conference of Software Engineering (ICSE),
pp. 604-605, 1997.

[3] Lieberherr, K., Orleans, D. and Ovlinger, J. Aspect-Oriented
Programming with Adaptive Methods. Communications of
the ACM, Vol. 44, No. 10, October 2001.

[4] Orleans, D. and Lieberherr, K. DJ: Dynamic Adaptive
Programming in Java. In Proceedings of Reflection 2001:
Meta-level Architectures and Separation of Crosscutting
Concerns, Kyoto, Japan, September 2001.

[5] Sung J. and Lieberherr, K. DAJ: A Case Study of Extending
AspectJ. Northeastern University Technical Report NU-
CCS-02-16, 2002. Available at:
http://www.ccs.neu.edu/research/demeter/biblio/DAJ1.html

[6] Suvee, D., Vanderperren, W. and Jonckers, V. JAsCo: an
Aspect-Oriented approach tailored for Component Based
Software Development. In Proceedings of the second
International Conference on Aspect-Oriented Software
Development. Boston, USA, March 2003.

[7] Szyperski, C. Component Software - Beyond Object-
Oriented Programming. Addison-Wesley / ACM Press,
ISBN 0-201-17888-5, 1998.

