
Supporting Product Line Evolution
with Framed Aspects

Neil Loughran1, Awais Rashid1, Weishan Zhang2 and Stan Jarzabek3

1Computing Department, Lancaster University, Lancaster LA1 4YR, UK
(loughran | awais) @comp.lancs.ac.uk

2School of Software Engineering, Tongji University, Shanghai, China 200311
zhangws@mail.tongji.edu.cn

3Department of Computer Science, National University of Singapore, Singapore 117543
stan@comp.nus.edu.sg

Abstract. This paper discusses how evolution in software product
lines can be supported using framed aspects: a combination of
aspect-oriented programming and frame technology. Product line
architectures and assets are subject to maintenance and evolution
throughout their lifetime due to the emergence of new user
requirements, new technologies, business rules and features.
However, the evolution process can be compromised by
inadequate mechanisms for expressing the required changes. It
maybe possible to anticipate future evolutions and, therefore,
prepare and design the architecture to accommodate this, but there
will eventually come a time when a certain feature or scenario
appears which could not have been foreseen in the early stages of
development. We argue that frames and aspects when used in
isolation cannot overcome these weaknesses effectively.
However, they can be addressed by using the respective strengths
of both technologies in combination. The amalgamation of
framing and aspect-oriented techniques can help in the integration
of new features and thus reduce the risk of architectural erosion.

1. Introduction
Software systems evolve over time as new requirements and
functionality emerge. It has been estimated that up to 80%[16] of
lifetime expenditure on a system will be spent on the activities of
maintenance and evolution. However, software product line
(SPL) evolution is a much more complex problem than traditional
single system evolution due to the differing configuration
requirements and possibilities for different systems within the
product family. Product lines, particularly those in volatile
business domains such as banking, will constantly be subject to
maintenance and evolution throughout their lifetime due to the
emergence of new requirements, new technologies, business rules
and features. Clearly, tools and paradigms which manage this
complexity, facilitate modification of the architecture or ease the
introduction of new features are needed if we are to reduce the
risk of architectural erosion [21]. In this paper we discuss how a
combination of two such techniques namely, frame technology [1]
and aspect-oriented programming (AOP) [2], can be used to
improve evolution of SPLs and their assets. We argue that both
techniques offer complementary support for software product line
evolution and, hence, improved support can be derived by using
them in combination.
The next section provides some background on evolution needs in
SPLs. Section 3 introduces frames and AOP and discusses their
respective strengths and weaknesses in supporting SPL evolution.
Section 4 describes our approach: framed aspects and
demonstrates its effectiveness in supporting evolution in

comparison with the frame-based and AOP implementations
discussed in section 3. Section 5 discusses some related work
while section 6 concludes the paper.
The discussion in sections 3 and 4 is based on the development of
an SPL for electronic city guide systems such as GUIDE [3].
Variation points in this SPL range from the customisation of GUI
components and stylings to the capability for the system to run on
devices with limited resources (such as PDAs and mobile
phones). The feature used as the basis for the discussion in this
paper is the implementation of a cache which stores previously
visited pages. Variants in this instance are maximum size of
cache, deletion strategy (i.e. delete least accessed records, oldest
records, etc.), percentage of records to delete and the ability for
systems to be configured to be cached or uncached.

2. Evolution Issues in Software Product Lines
Software evolution is difficult to predict and rarely uniform over
time. During software development requirements can change by
up to 30% [4]. Managing this volatility is difficult because the
changes can have major impacts on the design of the architecture.
Therefore, effective mechanisms are required which can handle
requirement changes through all stages of SPL development as
well as evolution of the architecture throughout its life.
Traditional generative approaches parameterise components and
leave hooks in the architecture for most likely evolutions. The
problem with this approach is that complex changes not thought
of cannot be effectively handled and often give rise to the need to
reorganise existing modules. Some of these issues have been
highlighted by [5] in the context of evolution of SPLs for
middleware.
Traditional approaches also mainly focus on the classic categories
of evolution [6] namely, corrective (fixing of bugs), adaptive
(adding a new feature), perfective (improving performance) and
preventive (preventing problems before they occur). While this
categorisation is useful in showing the type of evolution to be
performed, it does not demonstrate how the change affects the
software architecture itself. In order to support this, it is more
useful to think of crosscutting and non-crosscutting evolution.
When a proposed evolution requires changes to more than one
module it is said to be crosscutting, while non-crosscutting
evolutions can be localised. The need to address crosscutting
evolution is crucial in SPLs as a change can affect different
variants and branches. Note that an SPL can be subject to a
variety of changes over its lifetime ranging from addition,
retraction, restructuring and replacement of a feature to

introduction of a new product or an entirely new product line (in
instances when variability becomes too large). The example in
this paper focuses on evolutions pertaining to a particular feature.
Introduction of new products or product lines will form the
subject of a future paper.

3. Frames vs AOP
3.1 Frame Technology
Frame technology was conceived during the 1970s as a means to
providing a mechanism for creating generalised components that
can be easily adapted or modified to different reuse contexts.
Frame technology is essentially a language independent textual
pre-processor that creates software modules by using code
templates and a specification from the developer. Examples of
typical commands in frames are <set> (sets a variable), <select>
(selects an option), <adapt> (refines a module with new
functionality) and <while> (creates a loop around repeating
code).
To illustrate the use of frames, consider the object-oriented (OO)
implementation of the cache feature for the guide SPL. Using OO
alone we implemented the cache by creating a Hashtable instance
in the Editor class and then wrapped calls to a requestInfo with a
check to see if records existed in the cache before proceeding with
the requestInfo method call (cf. fig. 1).

Fig. 1. OO implementation of the Cache feature
The code shown in bold in fig. 1 is the code added by the
integration of a cache into a simple editor pane. Using a frame
processor such as XVCL [7] we can tag this code to ease its
retraction from the codebase (cf. fig. 2).
While the framing solution helps to clearly identify the caching
concern, it is not a particularly elegant solution to the problem as
the class now becomes cluttered with tags which can make the
code difficult to read, understand and therefore evolve.

Fig. 2. Using frame option tags to identify caching code
Another solution might involve making a copy of the
hyperlinkEvent method and having separate frames for the two
variants. While this would be a neater solution, it fragments the
module and future requirements pertaining to the hyperlinkEvent
method would require that the code is updated in both frames,
therefore inducing unneeded duplication.

3.2 AOP
AOP mechanisms such as AspectJ [8], Hyper/J [9] and emerging
frameworks such as AspectWerkz [10], JBoss AOP [17] and
Nanning [18], are now gaining considerable support as a means
for managing the separation of concerns and features which
would traditionally lead to unmanageable code tangled across
multiple classes in OO systems. Examples of concerns in OO
systems that exhibit this fragmentation of context are logging,
profiling and tracing. AOP languages such as AspectJ allow
multiple modules to be refined statically using introductions or
through injection of additional behaviour in the control flow at
runtime via advices.
AOP can alleviate the problem of tangled caching code (or tags in
case of frames). To illustrate this, consider the AspectJ
implementation of the cache in fig. 3, which can simply be
plugged into the Editor.
The key part of the aspect is the around advice which
encapsulates the following sequence of operations:

1 Whenever the requestInfo method within the Editor
class is called, grab the argument URL.

2 Search the cache for the URL.

class Editor extends JEditorPane implements HyperlinkListener

 {

 private Network network;

private Hashtable cache = new Hashtable();

 // .. methods for adding and retrieving data to/from cache

//.. constructor and editor initialisation

public void hyperlinkUpdate(HyperlinkEvent e)

 {

 if (e.getEventType() == HyperlinkEvent.EventType.ACTIVATED)

 {

 String url = e.getURL().toString();

 Document cachedPage = (Document)getFromCache(url);

 if(cachedPage == null)

 {

 network.requestInfo(this, url);

 addToCache(url, this.getDocument);

 }

 else

 {

 // get record from cache and display it

 this.setDocument((Document)cachedPage.getContent());

 }

 }

 }

 }

class Editor extends JEditorPane implements HyperlinkListener

 {

private Network network;

<option cache>

private Hashtable cache = new Hashtable();

 // .. methods for adding and retrieving data to/from cache

 </option>

 //.. constructor and editor initialisation

 public void hyperlinkUpdate(HyperlinkEvent e)

 {

 if (e.getEventType() == HyperlinkEvent.EventType.ACTIVATED)

 {

 String url = e.getURL().toString();

 <option cache>

 Document cachedPage = (Document)getFromCache(url);

 if(cachedPage == null)

 {

 </option>

 network.requestInfo(this, url);

 <option cache>

 addToCache(url, this.getDocument);

 }

 else

 {

 // get record from cache and display it

 this.setDocument((Document)cachedPage.getContent());

 }

 </option>

 }

 }

 }

3 If the URL doesn’t exist, proceed with the call and add
the content of the editor to the cache. If it does exist
then simply update the editor pane with the content
without proceeding with the call to requestInfo.

Note that PageContent is a data structure used to store the editor
content along with other data (i.e. number of accesses) in the
cache.

Fig. 3. AOP implementation of the cache using AspectJ

While the AOP implementation cleanly modularises the caching
code, no parameterisation support is available. Consequently, the
aspect needs to be modified to vary the caching behaviour.
Alternatively, an abstract aspect needs to be provided with
concrete aspects specifying the specific caching variants required
by a particular product. In deeper inheritance structures this can
lead to inheritance anomalies [11] and also require that the
developer or maintainer possesses an understanding of the
operations encapsulated by the abstract aspect as is the case for
hot spots exposed in such a white-box fashion [12].

3.3 Comparing Frames with AspectJ
The strengths and weaknesses of frames and aspects are
summarised in table 1.

Table 1. Comparing frames and AOP

Possible in JAC and JMangler.
Future versions of AspectJ will
have support.

Not supportedDynamic Runtime Evolution

Supports evolution of legacy
systems at source and byte
code level

Lim ited at presentUse on Legacy Systems

Constrained to implementation
language although this will
change as AOP gains wider
acceptance

Supports any textual document
and therefore any language

Language Independence

Generates code which (in the
case of advice) is bound at run
time.

Allows static autogeneration of
code and refactoring.

Code Generation

Not supportedAllows code to be generalised to
aid reuse in different contexts

Templates

Addresses problems of
crosscutting concerns and code
tangling.

Only non crosscutting concerns
supported

Separation of Concern

Not supported natively,
dependent on IDE

Very comprehensive
configuration possible

Configuration Mechanism

AOPFram ingCapability

Possible in JAC and JMangler.
Future versions of AspectJ will
have support.

Not supportedDynamic Runtime Evolution

Supports evolution of legacy
systems at source and byte
code level

Lim ited at presentUse on Legacy Systems

Constrained to implementation
language although this will
change as AOP gains wider
acceptance

Supports any textual document
and therefore any language

Language Independence

Generates code which (in the
case of advice) is bound at run
time.

Allows static autogeneration of
code and refactoring.

Code Generation

Not supportedAllows code to be generalised to
aid reuse in different contexts

Templates

Addresses problems of
crosscutting concerns and code
tangling.

Only non crosscutting concerns
supported

Separation of Concern

Not supported natively,
dependent on IDE

Very comprehensive
configuration possible

Configuration Mechanism

AOPFram ingCapability

We can observe that the strengths of one technique are the
weaknesses of the other and vice versa. A hybrid of the two
approaches can provide essentially all the combined benefits thus
increasing configurability, modularity, reusability, evolvability
and longevity of product line assets.

4. Framed Aspects
Our approach to framed aspects is based on using aspects to
encapsulate otherwise tangled features in the SPL and use frames
to provide parameterisation and reconfiguration support for the
feature aspects. The approach has been realised in the form of the
Lancaster Frame Processor which is a trimmed down
implementation of the functionality offered by XVCL. It only
takes certain frame constructs and forces the programmer to use
AOP techniques for the remainder. This balance of AOP and
frames reduce the template code clutter induced by frames alone
and at the same time provides effective parameterisation and
reconfiguration support through the ability to create meta
variables and options which can be bound to a specification from
the developer when the frame processor is executed.
Returning to our caching example, in the guide SPL, it should be
possible for the cache to be configured to different specifications.
Utilising framed aspects we have developed a cache that can be
configured with the following parameters: <Scheme,
MaxCacheSize, PercentToDel, ContentType> where Scheme =
Access or Date or Size, MaxCacheSize = any integer,
PercentToDel = any value between 1 and 100, and ContentType =
Document, String, etc.

CacheAspect

int cacheSize = <@MaxCacheSize>;
int percentToDel = <@PercentToDel>;

private Hashtable cache = new Hashtable();
// ..code
void around(Editor g, String url): args (g,url) &&

call (public void Network.requestInfo(Editor, String))
{
PageContent cachedPage=(PageContent) cache.get(url);
if(cachedPage==null)

{
proceed(g,url);
PageContent page=new PageContent(g.getDocument());
addToCache(url,page);
}

else
{
g.setDocument(cachedPage.getContent());
}

}
<adapt frame = “ContentType”>
<adapt frame = “Scheme”>

class PageContent
{
<ContentType> content;
// impl
}

Specification
<Scheme= “Access”, MaxCacheSize= “100”, PercentToDel = “50”, ContentType = “Document”>

Size

Date

Access

deleteRecords { impl }

Introductions on PageContent
New fields
New method implementations

Scheme

String

Document

Document methods

ContentType

CacheAspect

int cacheSize = <@MaxCacheSize>;
int percentToDel = <@PercentToDel>;

private Hashtable cache = new Hashtable();
// ..code
void around(Editor g, String url): args (g,url) &&

call (public void Network.requestInfo(Editor, String))
{
PageContent cachedPage=(PageContent) cache.get(url);
if(cachedPage==null)

{
proceed(g,url);
PageContent page=new PageContent(g.getDocument());
addToCache(url,page);
}

else
{
g.setDocument(cachedPage.getContent());
}

}
<adapt frame = “ContentType”>
<adapt frame = “Scheme”>

class PageContent
{
<ContentType> content;
// impl
}

Specification
<Scheme= “Access”, MaxCacheSize= “100”, PercentToDel = “50”, ContentType = “Document”>

Size

Date

Access

deleteRecords { impl }

Introductions on PageContent
New fields
New method implementations

Scheme
Size

Date

Access

deleteRecords { impl }

Introductions on PageContent
New fields
New method implementations

Scheme

String

Document

Document methods

ContentType

String

Document

Document methods

ContentType

Fig. 4. Using parameterised <adapt> to provide variations in the

cache aspect

The choice of different scheme strategies has an impact on the
data structure within the cache as well as the deletion method.
We can capture this within an aspect very easily by using the
introduction mechanism where new fields and methods are
inserted on defined objects. We could then use inheritance to
inherit these properties when we need them. However, a much
cleaner approach is to frame these properties and use a
parameterised adapt to incorporate them into our aspect (cf. fig.
4). To make the aspect more reusable across different platforms
(i.e. J2SE and J2ME) we could generalise parts of the cache

aspect CacheAspect

 {

 private Hashtable cache = new Hashtable();

 // ..code

 void around(Editor g, String url): args (g,url) &&

 call (public void Network.requestInfo(Editor, String))

 {

 PageContent cachedPage=(PageContent) cache.get(url);

 if(cachedPage==null)

 {

 proceed(g,url);

 PageContent page=new PageContent(g.getDocument());

 addToCache(url,page);

 }

 else

 {

 g.setDocument(cachedPage.getContent());

 }

 }

 // inner class for data structures

 }

1

2

3

aspect so that they can store information without being
constrained to the J2SE Document. The use of a framed aspect
for the cache has effectively created a reusable and simpler to
manage component, which would have been difficult to realise in
AOP or frames alone without inducing some degree of
complexity. We believe that the same technique can be applied to
ease the introduction of other features into product lines.
There are numerous ways of utilising the framed aspect approach.
In the previous example the aspect code was affected directly
with frame tags, however we have found an alternative approach
for use in more complex scenarios where there is a need for more
control of how different modules (alternative and optional
features) can be merged together in terms of constraints and rules
for configuration (cf. fig. 5).

Fig 5. Alternative approach to using framed aspects
We have found that this approach offers a very powerful
mechanism for removing even more of the invasive frame code
(mainly due to the moving of option and adapt tags from the
framed aspect code to the composition rules) and have developed
a methodology which allows a feature diagram using FODA [19]
for a given reusable aspect component to be created and mapped
directly to framed aspects. A future paper [20] will demonstrate
this approach in more detail.

5. Related Work
The framed aspect approach displays many similarities with
feature oriented programming (FOP, Genvoca et al) [13], where
modules are created as a series of layered refinements, SALLY
[14], where introductions can be parameterised and Aspectual
Collaborations [15] where modular programming and AOP
techniques are combined. In FOP, composition is performed by
layers stacked upon one another, with upper layers adding
refinements to the lower ones via parameterisation, however, the
technique is limited at present to static crosscutting feature
refinements. With regards to SALLY, only its special style of
introductions can be parameterised whereas in framed aspects any
AOP construct can be in any AOP language. Aspectual
Components have a similarity to framed aspects as they allow for
external composition and black box reuse. Emerging AOP
frameworks such as AspectWerkz, JBoss AOP and Nanning
Apsects allow for aspects to be created as standard classes and
configured via XML files which contain advice and other AO
details. The main difference with framed aspects over the
aforementioned is in the language independence of frames and the
flexibility of parameterisation where any programming construct
can be a parameter.

6. Conclusion
In this paper we have shown how aspects can benefit from the
parameterisation and generalisation support that frame technology
brings. We have demonstrated how the integration of new
features into a product line can be simplified and believe the same
technique can be applied to different concerns. We believe that
our approach offers an effective approach to achieve the best of
what both technologies have to offer in terms of flexibility,
reusability and evolvability. Product line engineering benefits
from the configurational power that framed aspects bring and
helps to improve the integration of features that would normally
crosscut multiple modules in OO and traditional framing
technologies. Utilising AO and Frames allows crosscutting
concerns to be localised thus improving system comprehensibility
and minimising design erosion of architectures.
References

[1] Bassett, P.: Framing Software Reuse - Lessons from the Real
World, Prentice Hall (1997).

[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C. V., Loingtier, J.-M., Irwin, J.: Aspect Oriented
Programming, Proc. ECOOP ’97.

[3] Davies, N et al.: Lancaster GUIDE Project homepage
http://www.guide.lancs.ac.uk/

[4] Cusumano, M.A. and Selby R.W.: Microsoft Secrets, Simon
& Schuster, New York (1998).

[5] Colyer, A., Blair, G., Rashid, A.: Managing Complexity in
Middleware. Workshop on Aspect Components and Patterns,
AOSD 2003.

[6] Lientz, B., Swanson, E., and Tompkins, G.: Characteristics
of Application Software Maintenance, CACM 21(6) June
1978.

[7] XVCL homepage, http://fxvcl.sourceforge.net

[8] AspectJ Team, "AspectJ Project",
http://www.eclipse.org/aspectj/, 2003.

[9] IBM Research, Hyperspaces,
http://www.research.ibm.com/hyperspace/

[10] AspectWerkz homepage, http://aspectwerkz.codehaus.org/

[11] Mikhajlov, L. and Sekerinski, E.: A Study of The Fragile
Base Class Problem. Proc. ECOOP ’98, Lecture Notes in
Computer Science, 1445, (Springer-Verlag 1998), pp. 355-
382.

[12] Fayad, M. E. and Schmidt, D. C.: Object-Oriented
Application Frameworks. CACM 40(10), pp. 32-38, (1997).

[13] Batory, D., Sarvela, J. N., Rauschmayer, A.: Scaling Step-
Wise Refinement. ICSE 2003.

[14] Hanenberg, S. and Unland, R.: Parametric Introductions.
Proc. of AOSD 2003, pp. 80-89.

[15] Lieberherr, K., Lorenz, D. H., Ovlinger, J.: Aspectual
Collaborations: Combining Modules and Aspects. The
Computer Journal, 46(5) 2003.

Specification Composition
Rules

Framed
Aspects

Customised Aspect
Declaration

[16] Lehman M. M., Ramil J. F. and Kahen, G. A Paradigm for
the Behavioural Modelling of Software Processes using
System Dynamics. Technical report Imperial College
London 2001.

[17] JBoss AOP homepage,
http://www.jboss.org/developers/projects/jboss/aop.jsp

[18] Nanning Aspects homepage, http://nanning.codehaus.org

[19] Kang, K. C. et al. Feature Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report, CMU/SEI-90-
TR-21,Software Engineering Institute, Carnegie Mellon
University, 1990.

[20] Loughran, N., Rashid, A. Framed Aspects: Supporting
Configurability and Variability for AOP, submitted to ICSR
2004.

[21] Van Gurp J. and Bosch J., Design Erosion: Problems and
Causes, Journal of Systems & Software, vol 61, issue 2,
2002.

