
Aspect-Oriented Design and Implementation of a Java
Bytecode Analyzer Framework

Susumu YAMAZAKI
∗

Fukuoka Laboratory for
Emerging & Enabling
Technology of SoC

Fukuoka Industry, Science &
Technology Foundation

816-8580, JAPAN

yamazaki@fleets.jp

Michihiro MATSUMOTO
†

Fukuoka Laboratory for
Emerging & Enabling
Technology of SoC

Fukuoka Industry, Science &
Technology Foundation

816-8580, JAPAN

michim@fleets.jp

Tsuneo NAKANISHI
‡

Graduate School of
Information Science and
Electrical Engineering

Kyushu University
816-8580, JAPAN

tun@f.csce.kyushu-
u.ac.jp

ABSTRACT
We propose a new type of Java bytecode analyzer framework
based on aspect-oriented design and programming. We also
observe that aspect-oriented design and programming im-
prove separation of concerns of many of the characteristics
of the design, including extensibility, type safety, and ex-
ecution efficiency of its design and implementation, when
compared to existing analyzer frameworks based on object-
oriented design and programming. This paper reports how
the following concerns are separated in our framework: the
extension of elementary objects, the separation of parser and
instruction set, the Visitor Pattern, binary operations and
non-functional concerns such as verification.

1. INTRODUCTION
A Java bytecode analyzer framework has a wide range of
applications, including bytecode-level optimizing compilers,
ahead-of-time compilers, verifiers, aspect weavers. One of
the most widely used frameworks is Soot [10], which has
been created using extensible object-oriented design and im-
plementation. As a result, it experiences some problems in
separation of concerns, type safety, execution efficiency, etc.

Therefore, we propose a new type of Java bytecode an-
alyzer framework based on aspect-oriented design and pro-
gramming using AspectJ [5] (this framework uses Javassist
[1] as a bytecode reader and writer). We observe that aspect-
oriented design and programming improved separation of

∗Graduate School of Information Science and Electrical En-
gineering, Kyushu University
†Graduate School of Information Science and Electrical En-
gineering, Kyushu University
‡System LSI Research Center, Kyushu University

To appear in the Third AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software (ACP4IS), March, 2004, Lancaster,
UK.

concerns of many characteristics of design, including exten-
sibility, type safety, and execution efficiency of design and
implementation of the framework, when compared to the ex-
isting analyzer frameworks based on object-oriented design
and programming.

1.1 Framework Overview
Java bytecode [7] is a variable length code based on the stack
machine model. In our framework, a parser first translates
the bytecode into a sequence of objects corresponding to
each instruction. The instruction object is also based on
the stack machine model. Although we do not currently
support translation into 3-address code or the static single
assignment (SSA) form, it may be supported later if neces-
sary.

Our framework contains several analyzers. The most cen-
tral of these is the dataflow analyzer, which can be easily
customized. Our framework also contains interprocedural
analyzers such as class hierarchy analyzers. Moreover, we
can create a composite analyzer, consisting of other analyz-
ers that are called when the composite analyzer is called.

1.2 Contributions and Organization
Through the design and implementation of the analyzer
framework, we observed many advantages, both general and
application specific. We also observed limitations in the cur-
rent AspectJ. The rest of this paper outlines these advan-
tages and limitations in the following order:

• We discuss the structured extension of elementary ob-
jects maintaining type safety and execution efficiency
in Section 2.

• We propose the separation of an extendable bytecode
parser from instruction sets in Section 3.

• We propose a simple process description of each in-
struction using the Smart Instruction Visitor in Sec-
tion 4.

• We propose simple and extendable binary operations
in Section 5.



• We discuss problems of description of a verifier as an
aspect in Section 6.

• We discuss some related works in Section 7.

2. EXTENSIONS TO ELEMENTARY OBJECTS
It is often remarked that aspect-oriented programming im-
proves separation of concerns. We point out that the most
effective example of this is that of elementary objects of a
framework, such as instruction objects.

For example, consider adding a new feature to an ana-
lyzer derived from a framework. A simple approach is to
add fields or methods to the elementary objects in order to
store the necessary information.

However, traditional object-oriented programming lan-
guages cannot add fields or methods to elementary objects
structurally, and so they tend to ’bloat’ chaotically. If a
structure is enforced, the class hierarchy can become deep.
In either case, maintainability and readability are degraded.

Within a framework, the extension of elementary objects
is realized by using an indirect approach such as table or the
Visitor Pattern [3], rather than by direct addition of fields
or methods. For example, in Soot elementary objects are
extended by adding tags. Tags are named, and may be re-
quested by searching a table using this name.

The above techniques may sacrifice type safety or execu-
tion efficiency. Soot sacrifices both of them: the retrieved
tag sacrifices type safety and must be cast downward before
it may be used, and execution is inefficient because of the
need for searching the table.

AspectJ can define fields and methods directly with clas-
sifications, as an aspect using an inter-type member decla-
ration. For example, if we add a field or a method necessary
for an analysis, we can define it structurally in an aspect
concerned with the analysis.

Indirect extension mechanisms such as tags in Soot, are
no longer needed. The type system of AspectJ ensures the
type safety of added fields and methods, and because they
are woven into classes directly, execution efficiency is im-
proved when compared to indirect extension.

3. SEPARATION OF THE BYTECODE PARSER
AND INSTRUCTION SETS

A bytecode parser scans binary class files, generates instruc-
tion objects corresponding to the byte sequences, and inserts
labels. It also sets the relationships between instructions, for
example using a succeed set, which is a set of instructions
that may be executed after other instructions except those
throwing exceptions in a manner similar to that of a Fac-
tored Control Flow Graph [2].

We now focus on setting succeed sets, which depend on
the class of an instruction. Instructions are divided into
non-terminator and terminator categories: a succeed set of
a non-terminator includes the next instruction, while a suc-
ceed set of a terminator does not.

Instuctions may also be divided into non-branch, branch
and switch categories: a succeed set of a non-branch instruc-
tion does not include any special jump target; a succeed set
of a branch instruction includes one jump target; and a suc-
ceed set of a switch instruction includes two or more jump
targets.

A succeed set can be determined by the classification,
rather than by the instruction set, but the instruction set

public class Parser {
public static class Instruction {

void setSucc
(Instruction[] table, int pc) {}

...
}
public static interface Terminator {}
public static interface Branch {...}
public static interface Switch {...}
static aspect addNextToSucc {

pointcut addNextToSucc(Instruction inst,
Instruction[] table, int pc)

: call(void Instruction.setSucc
(Instruction[], int))

&& target(inst) && args(table, pc)
&& !target(Terminator);

before(Instruction inst,
Instruction[] table, int pc)
: addNextToSucc(inst, table, pc) {
...

}
}
static aspect addBranchTargetToSucc {

pointcut addBranchTargetToSucc
(Instruction inst,
Instruction[] table, int pc)
: call(void Instruction.setSucc

(Instruction[], int))
&& target(inst) && args(table, pc)
&& target(Branch);

before(Instruction inst,
Instruction[] table, int pc)

: addBranchTargetToSucc(inst,
table, pc) {

...
}
...

}
}

Figure 1: Bytecode Parser using AspectJ

determines how a concrete instruction class is classified. In
addition, another process, such as one detecting PEIs (po-
tential exception-throwing instruction) [2], may require an-
other classification. Therefore, because Java is a language
that supports single inheritance and multiple supertypes, we
must realize such a classification using interface.

However, Java does not allow interface to have concrete
methods, so the process of setting succeed sets is distributed
among code sections containing concrete instructions.

AspectJ solves this problem. Firstly, we provide two
aspects to the parser. The first aspect is addNextToSucc,
which adds the next instruction to the succeed set if the
current instruction is a non-terminator. The second aspect
is addBranchTargetToSucc, which adds the target instruc-
tion(s) to the succeed set if the current instruction is a
branch or a switch. Secondly, we make a concrete instruction
class implement the interface corresponding to the classi-
fication. Lastly, if the order of the succeed set is important,
we can set the priority order using the precedence declara-
tion between addNextToSucc and addBranchTargetToSucc.
Figure 1 and Figure 2 show example code of a parser and a
instruction set.



import Parser.*;

public class Aload extends Instruction {...}
public class Return extends Instruction

implements Terminator {...}
public class Ifeq extends Instruction

implements Branch {...}
public class Goto extends Instruction

implements Terminator, Branch {...}
public class Tableswitch extends Instruction

implements Terminator, Switch {...}
...

Figure 2: Java Bytecode Instruction Set Example

In general, if there are classifications into some given classes,
and if the classifications determine the corresponding pro-
cesses, we can write simple code so that the classifications
and the processes are represented using interface and as-
pects, respectively.

Although multiple-inheritance has similar effects, this ap-
proach using aspects has two advantages: we can add a
classification without modifying existing code, and we can
also avoid the method confliction problem. For example, an
instruction that is both a non-terminator and a branch is
realized easily in AspectJ but cannot be realized naturally
using multiple-inheritance.

4. THE SMART INSTRUCTION VISITOR
BASED ON THE STACK-MACHINE MODEL

An operation corresponding to a given instruction often in-
cludes common processes. For example, because Java byte-
code is based on the stack machine model, operations such
as push or pop are commonly included in the operations
corresponding to each instruction.

Therefore, we provide a Smart Instruction Visitor as part
of our framework, based on the Java bytecode model, which
is a domain-specific variant of the Visitor Pattern [3]. The
programmer has access to four basic operations (push, pop,
load, store) and the processes corresponding to each in-
struction. The programmer does not need to write all of
these and can override only those necessary.

Because Java bytecode is a typed language, we provide
variations of basic operations corresponding to different types.
For example, pushInt corresponds to the type int. We
also provide push and pop operations that handle values
using the appropriate types for getfield, putstatic, etc.
Moreover, we provide variations for basic operations corre-
sponding to 32- and 64-bit types to satisfy the Java bytecode
specification. Finally, we provide variations of push and pop

corresponding to either two 32-bit types or one 64-bit type,
for dup2, etc.

In our framework, we describe the process corresponding
to each instruction as a method that is supplied an instruc-
tion object and zero or more arguments, and that returns
zero or one result. For example, a process corresponding
to the instruction idiv is defined as a method that is given
an instruction object and two division values, and returns a
result value object.

It is effective to define pointcuts for methods correspond-
ing to instructions that have common features. This enables
the methods to be defined structurally from various view-
points.

public abstract class InstructionVisitor {
... // S1
protected void push(Object value) {}
protected void push2(Object value) {

push(value);
}
...
protected void pushInt(Object value) {

push(value);
}
...
protected void pushDouble(Object value) {

push2(value);
}
...
protected Object pop() {

return null;
}
...
protected void store

(int index, Object value) {}
...
protected Object load(int index) {

return null;
}
... // S2
public static abstract aspect Pointcuts {

pointcut intBinaryOperator
(InstructionVisitor v,
Instruction inst,
Object value1, Object value2)
: execution

(Object InstructionVisitor+
.at(Instruction+, Object, Object))
&& target(v)
&& args(inst, value1, value2)
&& args(Idiv, Object, Object)
&& ...;

...
} // S3
protected Object at

(Iload inst, Object loadedValue) {
return loadedValue;

}
protected Object at

(Idiv inst,
Object value1, Object value2) {
return null;

}
... // S4
static aspect InsertCode {

private abstract void Instruction.at
(InstructionVisitor v);

...
private void Iload.at

(InstructionVisitor v) {
Object value

= v.loadInt(this.index);
value = v.at(this, value);
v.pushInt(value);

}
private void Idiv.at

(InstructionVisitor v) {
Object value2 = v.popInt();
Object value1 = v.popInt();
Object result

= v.at(this, value1, value2);
v.pushInt(result);

}
...

}
}

Figure 3: The Smart Instruction Visitor



untyped


int
 double

Object

StringInputStream


File-

InputStream


Buffered-


InputStream


int[]
double[] Object[]

null

bottom

Primitive type

Object type


Array type

Figure 4: The Type Property Space for Java

Figure 3 shows the implementation of the Smart Instruc-
tion Visitor. The basic operations, various pointcuts, pro-
cesses corresponding to instructions and inner processes, are
defined from S1, S2, S3 and S4, respectively.

The basic behavior is as follows: Methods receiving a
Visitor are first defined using inter-type method declarations
(S4). The corresponding basic operations and processes are
called in these methods. For example, the inner method of
idiv calls popInt, twice. The process corresponding to idiv

is called with the instruction object and the returned values,
and pushInt is called with the returned value.

We provide default implementations of basic operations
and processes corresponding to each instruction. Relation-
ships between the variations of basic operations are rep-
resented as an invocation from more constrained variation
methods to the less constrained (S1). Therefore, all a pro-
grammer must do is to override the necessary methods.

5. SIMPLE AND EXTENSIBLE BINARY OP-
ERATION

To realize a data flow equation as a framework, we need to
implement the binary operation of properties. In type check-
ing, for example, we must calculate the least upper bound
(∪) of the type property at the merge points [8].

Figure 4 shows a lattice representing the property space
for type checking [6]. Bottom ⊥ represents an initial value,
so the least upper bound of property P and ⊥ is P (⊥∪P =
P ∪ ⊥ = P ). Top > in type checking means untyped, and
the least upper bound of property P and > is > (> ∪ P =
P ∪ > = >).

Next, the least upper bound of the same primitive type,
such as int, is the type and the least upper bound of a dif-
ferent primitive type is untyped. For example, Pint ∪Pint =
Pint, Pint∪Pfloat = >. Note that the rule of top and bottom
precedes this rule, i.e. Pint ∪ ⊥ = ⊥.

Next, the least upper bound of the object type is a com-
mon ancestor. For example, PFileInputStream∪PBufferedInputStream =
PInputStream. Note that the rules for bottom, top, and prim-
itive types precede this rule. Moreover, the least upper

bound of an object type is a class with zero or more in-
terfaces, because Java provides single inheritance of class
but multiple subtyping of interfaces.

Last, the least upper bound of null and the primitive
type is untyped, and the least upper bound of null and the
object type is the object type. Note that the rule of bottom
precedes this rule.

Consider the implementation of binary operations with a
least upper bound based on these rules. A naive implemen-
tation may use instanceof. For example, Figure 5 shows
the implementation of a primitive type property, but this
implementation is less extensible and maintainable. If we
add a new type property, we must modify all meet methods,
which calculate the least upper bounds. Moreover, if we
change the order of precedence of the rules, we must swap
the order of if in some methods.

Next, consider the implementation using double-dispatch,
as shown in Appendix A. The advantage of this technique
is that maintainability is improved because each method is
simplified. However, the problems remain, as we must mod-
ify all property classes to add a new type property. We also
must modify many classes to swap the precedence order of
the rules. Moreover, we need to write the same process as
many methods, such as the implementation of Bottom and
Untyped.

AspectJ solves these problems simply (see Figure 6). The ac-
tual processes are implemented using around without proceed
in the coordinator aspect. For example, BottomCoordinator
describes the process of involving bottom and something
else. Moreover, the process of combining different types is
described in a combination coordinator. For example, a pro-
cess of involving a combination of object types and primitive
types is described in ObjectAndPrimitiveCoordinator.

Next, sort coordinators in precedence in topological or-
der of lattice from the bottom. A combination coordinator
precedes the coordinator of each property. The content of
the method meet in the class Property is meaningless ex-
cept when throwing an exception, when it is called with an



public class PrimitiveType extends Property {
public Property meet(Property p) {

if(p instanceof Bottom) {
return this;

}
if(p instanceof Untyped) {

return p;
}
if(p instanceof ...) ...
...

}
}

Figure 5: The Implementation of the Primitive Type
Property using instanceof

unexpected combination of properties.
This implementation solves the above problems. If we

add a new type property, we must only write a coordinator
and give the appropriate precedence order. If we must write
a special behavior for combination with other properties, we
must only write an appropriate combination coordinator. If
we change the order of precedence, we must only modify the
precedence. Moreover, we do not need to write the same
process in many methods.

6. THE VERIFIER AS AN ASPECT
Our framework provides a bytecode verifier using a parser
and a type checker. One of the advantages of aspect-oriented
programming is the ability to unify the cross-cutting concern
of a non-functional features such as verification. We have ac-
tually implemented the verifier in this way. An overview of
our current implementation of the verifier is shown in Ap-
pendix B. During implementation, we found that there are
two limitations in current AspectJ.

Firstly, AspectJ is not expressive enough to structure as-
pects. In our implementation, the verifier depends strongly
on the inner structure of the parser and the type checker.
So, not only must we modify the verifier whenever we modify
the parser or type checker, but we cannot reuse the verifier
with, for example, another instruction set. This problem is
partially solved by using aspect structuring, i.e. dividing
the verifier into parts that are dependent and independent
of instruction sets. However, AspectJ cannot currently sep-
arate the verifier in this manner. Abstract pointcuts are
useful, but insufficient to perform this separation.

It may not be possible to provide advice with informa-
tion only from a pointcut. For example, we cannot provide
advice to detect the overflow of the operand stack naturally,
because its pointcut gives only an operand stack object as
a parameter, and the object does not provide a method to
retrieve the maximum stack size defined in each method.

This may be solved by defining advice and an inter-type
field declaration by adding information about the corre-
sponding method to the stack object. However, this is a
specific and ad hoc approach.

7. RELATED WORK
Joeq [11] is an extensible virtual machine and compiler in-
frastructure. Of course, it can be used as a bytecode ana-
lyzer framework, and it has many sophisticated features.

Joeq provides the Visitor framework, enabling a simple
analyzer implementation. Joeq can realize an analyzer by

public aspect Coordinator {
declare precedence: BottomCoordinator,

...
ObjectAndPrimitiveCoordinator,
ObjectTypeCoordinator,
PrimitiveTypeCoordinator,
...
UntypedCoordinator;

}
public abstract class Property {

public Property meet(Property p) {
throw new RuntimeException

("unsupported property:"
+ this + ", " + p);

}
}
public abstract aspect PropertyCoordinator {

pointcut meet(Property p1, Property p2)
: execution(

Property Property+.meet(Property+))
&& target(p1) && args(p2);

}
public class Bottom extends Property {}
public aspect BottomCoordinator

extends PropertyCoordinator {
Property around(Property p)

: meet(Property, p)
&& target(Bottom) {
return p;

}
Property around(Property p)

: meet(p, Property)
&& args(Bottom) {
return p;

}
}
...
public class ObjectType extends Property {}
public aspect ObjectTypeCoordinator

extends PropertyCoordinator {
Property around

(ObjectType p1, ObjectType p2)
: meet(Property, Property)
&& target(p1) && args(p2) {
// calculate least upper bounds on types

}
}
...
public aspect ObjectAndPrimitiveCoordinator

extends PropertyCoordinator {
Property around

(ObjectType p1, PrimitiveType p2)
: meet(Property, Property)
&& target(p1) && args(p2) {
return new Untyped();

}
Property around

(PrimitiveType p1, ObjectType p2)
: meet(Property, Property)
&& target(p1) && args(p2) {
return new Untyped();

}
}

Figure 6: The Implementation of the Type Property
using AspectJ



overriding the defined methods in advance for some situa-
tions, such as field accesses in an instance so, a programmer
cannot unify arbitrary methods with the same behavior. On
the contrary, our Smart Instruction Visitor can realize the
analyzer using pointcuts, which can be defined freely by a
programmer without performance penalty.

Joeq also provides a dataflow framework, where the bi-
nary operations of properties are defined in the centralized
dataflow problem class. Though Whaley does not show an
implementation detail for binary operations, it would be
complicated for some analyzers, such as a type analyzer.

Though OVM [9] focuses on the virtual machine, its de-
sign policy can apply a bytecode analyzer. The main ad-
vantage of OVM is its memory efficiency; the OVM inter-
mediate representation (OvmIR) uses the Flyweight Pattern
[3]. Our current implementation, on the other hand requires
more memory than OVM.

OVM also adopts the Runabout Pattern [4], making it
more extensible, but with worse execution performance than
the Visitor Pattern approach. This tradeoff is unavoidable
when using Java and Java-based languages such as AspectJ.
OVM focuses on the customization of the intermediate rep-
resentation, so OVM has opted for extensibility and the
Runabout approach but, because the main target of our
framework is Java bytecode, we choose to optimize perfor-
mance by using the Visitor approach.

Ideally, our approach should be mixed: in the early stage
of development, we should take the Runabout approach, and
when the specifications of the intermediate representations
are almost fixed, we should switch to the Visitor approach.
To make the switch easier, we will need an automatic code
translator to convert from the Runabout to the Visitor.

8. CONCLUSIONS AND FUTURE WORK
We have built a Java bytecode analyzer framework that
uses aspects, and have observed five advantages. Firstly, we
realized extensions of elementary objects structurally and
maintained type safety and execution efficiency. Secondly,
we implemented a bytecode parser that is independent of
any single concrete instruction set. Thirdly, we simplified
the description of processes for each instruction using the
Smart Instruction Visitor based on the stack machine model.
Fourthly, we realized binary operations that are simple, ex-
tensive, and easy to maintain. Finally, we unified the de-
scription of a cross-cutting concern of a wide ranging non-
functional features such as verification.

However, we also observed that AspectJ currently has
two limitations: it is not expressive enough to structuralize
aspects deeply on the basis of their inner structure; and it
does not provide a general approach to write advice that
cannot be described with its pointcut only.

In the future, we will build a bytecode translator frame-
work based on aspect-oriented software development, en-
abling us to build many applications such as a bytecode-level
optimizing compiler.

9. ACKNOWLEDGMENTS
This research was partly supported by a grant from the Co-
operative Link of Unique Science and Technology for Econ-
omy Revitalization (CLUSTER) by Ministry of Education,
Culture, Sports, Science and Technology (MEXT).

10. ADDITIONAL AUTHORS

Additional authors: Teruaki KITASUKA (Kyushu Univer-
sity, email: kitasuka@f.csce.kyushu-u.ac.jp) and Akira
FUKUDA (Kyushu University,
email: fukuda@f.csce.kyushu-u.ac.jp).

11. REFERENCES
[1] S. Chiba. Load-time structural reflection in Java. In

Proceedings of European Conference on
Object-Oriented Programming (ECOOP 2000), Sophia
Antipolis and Cannes, France., pages 313–336.
Springer-Verlag, June 2000.

[2] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar.
Efficient and precise modeling of exceptions for the
analysis of Java programs. In Workshop on Program
Analysis For Software Tools and Engineering, pages
21–31, Sept. 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns — Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[4] C. Grothoff. Walkabout revisited: the Runabout. In
Proceedings of European Conference on
Object-Oriented Programming (ECOOP 2003),
Darmstadt, Germany., pages 103–124.
Springer-Verlag, July 2003.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of European Conference on
Object-Oriented Programming (ECOOP 2001),
Budapest, Hungary., pages 327–353. Springer-Verlag,
June 2001.

[6] X. Leroy. Java bytecode verification: Algorithms and
formalizations. Journal of Automated Reasoning,
30(3–4):235–269, 2003.

[7] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1999. Second Edition.

[8] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer, Berlin, 1999.

[9] K. Palacz, J. Baker, C. Flack, C. Grothoff,
H. Yamauchi, and J. Vitek. Engineering a
customizable intermediate representation. In ACM
SIGPLAN 2003 Workshop on Interpreters, Virtual
Machines and Emulators (IVME’03), pages 67–76.
ACM Press, June 2003.

[10] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot – a Java optimization
framework. In CASCON’99, Sept. 1999.

[11] J. Whaley. Joeq: A virtual machine and compiler
infrastructure. In ACM SIGPLAN 2003 Workshop on
Interpreters, Virtual Machines and Emulators
(IVME’03), pages 58–66. ACM Press, June 2003.

APPENDIX
A. DOUBLE-DISPATCH FOR BINARY OP-

ERATION
Figure 7 shows a binary operation using double-dispatch.
The behavior of this operation is somewhat complicated.



When the method meet is called, it calls the method with*

corresponding to the class of the receiver this. For exam-
ple, if the receiver is Bottom, it calls the method withBottom.
Note that the receiver and the argument of the call is swapped.
This realizes binary operations by defining processes corre-
sponding to each class of receiver and the argument of meet.

B. OUR CURRENT IMPLEMENTATION OF
THE VERIFIER

Figure 8 shows a section of the verifier code.
We can divide this into parsing-time verification and

type-checking-time verification subsections. The former sub-
section includes the pointcut insertLabel and the after ad-
vice of insertLabel. The parser calls the method insertLabel

when it finds a branch instruction. If the branch refers to a
location outside the bounds of the code, insertLabel throws
an IndexOutOfBoundsException. The advice of the verifier
catches the exception, and rethrows a VerifyException.

The latter subsection includes the stackUnderFlow and
stackOverFlow parts. The TypeChecker class extends our
dataflow analyzer framework, and uses LinkedList in the
Java class library as the operand stack.

We designed our framework to separate an analyzer from
the target bytecode, i.e. the analyzer should not hold any
analysing state information about the target bytecode, and
the target bytecode should hold all of this analyzing state
information. The operand stack then belongs to the target.

The LinkedList throws a NoSuchElementException when
the list is empty and the method removeFirst is called, so
the pointcut and the advice of stackUnderFlow catches the
exception and rethrows a VerifyException.

In contrast, the implementation of stackOverFlow ex-
periences a problem when attempting to retrieve the max-
imum stack size. The advice of stackOverFlow can access
the operand stack and this join point. We may extract infor-
mation about the type checker classes from this join point.
According to our design policy, however, the type checker
classes do not hold any code information, such as the max-
imum stack size.

On the other hand, the operand stack originally does
not hold the maximum stack size because it is an instance
of LinkedList in the Java class library. If we wish to add
the maximum stack size to the stack, we must establish the
maximum stack size of the list in advance. It is difficult to
ensure this setting for general cases.

public abstract class Property {
public abstract

Property meet(Property p);
protected abstract

Property withBottom(Bottom p);
protected abstract

Property withUntyped(Untyped p);
protected abstract

Property withPrimitiveType
(PrimitiveType p);

...
}
public class Bottom extends Property {

public Property meet(Property p) {
p.withBottom(this);

}
public Property withBottom(Bottom p) {

return p;
}
public Property withUntyped(Untyped p) {

return p;
}
public Property withPrimitiveType

(PrimitiveType p) {
return p;

}
...

}
public class Untyped extends Property {

public Property meet(Property p) {
p.withUntyped(this);

}
public Property withBottom(Bottom p) {

return this;
}
public Property withUntyped(Untyped p) {

return this;
}
public Property withPrimitiveType

(PrimitiveType p) {
return this;

}
...

}
public class PrimitiveType

extends Property {
public Property meet(Property p) {

p.withPrimitiveType(this);
}
public Property withBottom(Bottom p) {

return this;
}
public Property withUntyped(Untyped p) {

return p;
}
public Property withPrimitiveType

(PrimitiveType p) {
...

}
...

}

Figure 7: The Implementation of the Type Property
using Double-Dispatch



public aspect Verifier {

pointcut insertLabel(Instruction inst, int pc)

: call(void Instruction

.insertLabel(Instruction[], int))

&& target(inst) && args(Instruction[], pc);

after(Instruction inst, int pc)

throwing (IndexOutOfBoundsException e)

: insertLabel(inst, pc) {

throw new VerifyException(

"The target branch is out of bounds: "

+ pc + ":" + inst);

}

pointcut stackUnderFlow()

: call(Object LinkedList.removeFirst())

&& within(TypeChecker);

after() throwing (NoSuchElementException e)

: stackUnderFlow() {

throw new VerifyException

("stack under flow");

}

pointcut stackOverFlow(LinkedList stack)

: call(void LinkedList.addFirst(Object))

&& target(stack)

&& within(TypeChecker);

before(LinkedList stack)

: stackOverFlow(stack) {

int maxStack = ...; // how can we get?

if(stack.size() >= maxStack) {

throw new VerifyException

("stack over flow:" + maxStack);

}

}

}

Figure 8: The Implementation of the Verifier


