
Transaction Management in EJBs: Better

Separation of Concerns With AOP

Johan Fabry∗

Vrije Universiteit Brussel, Pleinlaan 2
1050 Brussel, Belgium

Johan.Fabry@vub.ac.be

March 8, 2004

1 Introduction

The long-term goal of our research is to enhance transaction management in
multi-tier distributed systems through the use of higher-level, semantical infor-
mation and advanced transaction models. As a part of this research, we have
performed an evaluation of transaction management in Enterprise JavaBeans,
and found it lacking in multiple respects.

Most relevant for this workshop is the bad separation of concerns, as we
will show below. In the worst cases, code handling the concern of transaction
management can be split in three distinct locations. We feel it would be better
to centralize this code into one location, by using a well-defined aspect. Our
current work is the implementation of such an aspect, which we introduce here.

This paper first details how Enterprise JavaBeans aims for container-based
separation of the transaction concern, and discusses how this concern remains
split. Second, we describe our proposed transaction management aspect for
EJBs, which aims to integrate this split concern into one. Third, we conclude
and project our future work.

2 Container-Based Tx Management in EJBs

Enterprise JavaBeans (EJB) [8] is a well-known and widely used Java com-
ponent architecture for middleware applications, which, among other services,
provides for Container-based Transaction management. The EJB Object, which
defines business code, lets its’ Container manage transactions by declaring trans-
actional properties for each method in a separate file: the deployment descriptor.

2.1 Declarative Transaction Management

In EJB, transaction management is provided by the container, and this behavior
is usually determined by the transaction attributes set in the EJB’s deployment

∗Author funded by the Institute for the Promotion of Innovation by Science and Technology
in Flanders (IWT) in the context of the CoDAMoS project.

1



descriptor. This is called declarative transaction management [5] and is an
instance of Container-based separation of concerns, since the Container will
perform transaction management.

In the deployment descriptor, the Bean declaratively states its transaction
requirements for every business method. For example, Required states that the
method must be executed within the scope of a transaction, and if needed, a
new transaction will start, while Mandatory states that the method invocation
will fail if not executed within a transaction scope.

Because all calls to an EJB Object are mediated by the Container, this Con-
tainer can now transparently start and end transactions. If a transaction is
created upon execution of a method, the Container will commit or rollback this
transaction when the method ends. The decision to rollback the transaction
is primarily based on exceptions thrown. If the method (or a nested method
called by this method) throws a system exception: a RuntimeException, a
RemoteException, or a subclass of these exceptions, the transaction will be
rolled back, and the method will throw a TransactionRolledbackException.
Also, a transactional method can mark itself for rollback by calling the
setRollbackOnly() method on the Container, and determine its rollback flag
by calling the getRollbackOnly() method on the Container. When a transac-
tional method that is marked for rollback ends, the transaction will be rolled
back but no exception will be thrown.

Declarative transaction management is said to achieve a greater separation
of concerns [5] and is said to allows the transactional behavior of the EJB to be
modified without needing to change the implementation of the business logic [8] .
Therefore, the same Bean should be able to be reused over different applications
with different transactional requirements.

However, while declarative transaction management is a promising evolution
in transaction management, this new concept, as implemented in EJB, has a
number of significant drawbacks. One of these drawbacks is especially relevant
here: the incorrect separation of concerns.

2.2 Separation of Concerns?

As said above, declarative transaction management is said to achieve a greater
separation of concerns, resulting in cleaner business method code. However,
if we further investigate how declarative transaction management is currently
implemented in EJB, we see that this is not really the case.

Consider commits and rollbacks: the decision to commit or rollback a trans-
action is made primarily based on exceptions thrown during method execution.
If a system exception is thrown, the transaction will be rolled back when the
method ends, if not, the transaction will be committed. Also, the method may
call the getRollbackOnly() and setRollbackOnly() methods on the Con-
tainer to obtain and set the rollback flag.

However, to call the above container methods, or to manually throw a sys-
tem exception breaks separation of concerns. Since the method now contains
code whose concern is to handle a section of the transaction, transaction man-
agement is not cleanly separated out. In other words: to cleanly use declarative
transaction management, the method may never get or set its’ rollback flag.
Manipulating this flag not only taints the method with the transaction manage-
ment concern, but also splits this concern in two disjunct parts.

2



Furthermore, consider what should be done in case of a rollback. Conceptu-
ally, handling of the rollbacks of transactions is a part of the concern of trans-
action management. Therefore, to have a clean separation, such error-handling
code should also be defined when stating the methods’ transaction requirements.
Sadly, in EJB this is not the case. When a transaction is rolled back due to a
system exception, the method will throw a TransactionRolledbackException
to the caller of the method, and when a transaction is rolled back due to the use
of setRollbackOnly() the caller will not be informed of this in any way. So,
when using the setRollbackOnly(), the method needs to additionally signal
this to the caller by either returning an ‘error’ value or throwing an exception.

The above implies that handling a rollback can only be done from within
the method callers’ code. Conceptually, this means not only that the caller is
now tainted with the error-handling part of transaction management, but also
that transaction management is split up in three disjunct sections: the trans-
action declaration, manipulation of the rollback flag and a-posteriori handling
of rollbacks. Furthermore, since the callers to the transactional method need to
specify the error-handling code, this may lead to code duplication if there are
multiple callers to the method.

In other words, declarative transaction management, as currently imple-
mented in EJB, only provides a clean separation of concerns in the most trivial
cases. This is when a transaction never rollbacks: no transactional system errors
may occur, deadlocks may not be broken through a rollback, and the application
itself may not decide to perform a rollback. In all non-trivial cases, declarative
transaction management, as currently implemented in EJB, provides a worse
separation of concerns than traditional transaction demarcation. This is be-
cause the transaction concern is forcefully split up in three distinct parts, in
different sections of the application, whereas in traditional transaction demar-
cation these three parts are contained within one location: the implementation
of the transactional method.

3 Toward a Comprehensive Aspect for Tx Ma-
nagement of EJBs

We feel it would be better to separate out transaction management of EJBs into
one complete section, instead of three disjunct sections. To do this, we propose
defining transaction management in one, comprehensive aspect.

There is a body of existing work on defining transaction management as an
AspectJ [1] aspect, either stand-alone by Kienzle and Gerraoui [4] or as a by-
product of specifying a persistence aspect by Soares et al.[7] and also by Rashid
and Chitchyan [6]. However, each approach not only is unrelated to EJBs but
also falls short of our proposed comprehensive aspect. Briefly put, the work
of Kienzle and Gerraoui [4] is inadequate with regard to exception-handling, as
stated by the authors themselves. The work of Soares et al. [7] has been deemed
as too application-specific [6], and the work of Rashid and Chitchyan [6] omits
the handling of rollbacks.

We have started work on defining a more comprehensive aspect, using the
technique of logic meta-programming to write our custom aspect weaver [9]. The
use of LMP for AOSD is not new: LMP has, among others, been used to define

3



domain-specific aspects [2], and to argue for more expressive crosscut languages
[3].

An integral part of our transaction management solution is a custom-built
transaction monitor. Woven code uses traditional transaction demarcation calls
to our transaction monitor, instead of using the Container’s transaction moni-
tor. This is because, in future work, we want to provide extended transaction
capabilities which are not available using the standard transaction monitor, as
defined in the EJB standard.

3.1 Declaring transactional methods

Our weaver uses logic programming to reason about the method code, and can
easily detect some of the methods’ properties, which helps in crosscut definition.
For example: if a method M calls getters and setters of an entity bean, it makes
sense to make M transactional. Furthermore, if M only calls getters, we can
mark the transaction as read-only1. Note that, at this time, we do not perform
any recursive analysis: methods called by M are not investigated for getters
and setters.

This automatic detection of transactional methods is the default behavior
of our weaver: all classes within a given package are investigated, and transac-
tion demarcation code is inserted for all methods that should be transactional.
This demarcation code also includes exception handling, equal to the standard
EJB behavior, i.e. the transaction is rolled-back in case of a system exception.
The woven code now behaves as if all transactional methods were declared as
RequiresNew in the EJB’s deployment descriptor.

The weaver can also be used in a more conventional manner, by specifying
which methods should be made transactional in a separate transactions aspect
file. In such a file, for a given bean, the method signatures are listed and
postfixed either with new or none, indicating whether a new transaction should
be started or the method is not transactional. For the parameter list of method
signature, the * wildcard may be used, indicating applicability regardless of
parameter types. Also, default behavior for a bean can be set to be either
new, none, or detect, this last signifying automatic transaction detection. An
example transactions aspect is below:

transactions CounterBean
{

increment(int count) new;
get(*) none;
default detect;

}

Note that we can also use the weaver to automatically generate these aspect
declarations, effectively explicitizing the information implicit in the code.

3.2 Adding Exception Handlers for Rollbacks

However, as we have said above, we want tot go further than this; our trans-
action aspect also centralizes exception handling for transaction-related excep-

1This information can be used by the transaction monitor at run-time to optimize through-
put

4



tions. Indeed, we can define exception handlers for methods, by simply ap-
pending a number of catch blocks, containing java code, to the transactional
declaration of the method. Within this code, the transaction can be rolled back
by simply calling a txRollback() method. If the transactional method throws
an exception that is not caught by these handlers, or the handlers do not call
the txRollback() method, the transaction will commit when the method ends.

Lastly, we add an extra feature which is not available in EJB transaction
management: restarting a transaction from an exception handler. When restart-
ing, the transaction rolls back and the method is restarted (by re-calling the
method), which implies the creation of a new transaction. Transaction restart
is indicated by using a catch block with as body the restart keyword.

An example aspect definition containing these kinds of exception handlers
is given below:

transactions CounterBean
{

increment(int count) new catch (RuntimeException ex)
{txRollback(); ex.printStackTrace(); System.exit(1)}

catch (RemoteException ex) restart;
get(*) none;
default detect catch(Exception ex)

{ txRollback(); ex.printStackTrace(); System.exit(1)};
}

This effectively centralizes transaction declaration and handling of rollbacks
due to exceptions in one location, and avoids unnecessary code duplication (for
exception handling) in callers of the Beans’ methods. One last element that is
missing in this centralized transaction aspect, is the use of setRollbackOnly()
to set the rollback flag. This occurs when, somewhere within the execution of
the method, some heuristic determines that the transaction should be rolled
back. At this time, we do not yet support this use of heuristics, we consider it
as future work.

While it may seem unnecessary to have rollback handlers in the aspect when
not being able to declare heuristics that will trigger a rollback, this is not the
case. Significant causes for a rollback can already be found in this setup: trans-
actional system errors may occur and deadlocks may be broken though a roll-
back. For these cases, our system is arguably better than the EJB implementa-
tion: instead of transaction declaration and rollback handling separated in two
places, these are now integrated into one.

4 Conclusion and Future Work

This paper started with a discussion of Container-Based Transaction Manage-
ment, as currently implemented by enterprise JavaBeans. Bean methods declare
their transaction properties in the deployment descriptor, and the Bean Con-
tainer automatically starts and ends transactions if required. Transactions are
rolled back if the method ends in a system exception, or if the method set the
rollback flag of the transactions.

Sadly, handling of exceptions and rollbacks produces a bad separation of
concerns: code concerned with transaction management is now not localized

5



in one place but in three places. First we have declaration of the transaction
properties in the deployment descriptor, second we have determining of rollbacks
in the bean itself and third handling of rollbacks in the beans’ callers.

After discussing transaction management in EJB’s, we proposed a better
solution with regard to separation of concerns. We have shown our current work,
which can detect the need for transactional methods, and integrates transaction
handling and the handling of rollbacks in one aspect. Heuristically determining
a rollback within the method code is not yet supported. However, the current
incarnation already has its merits because it is useful for handling exceptions
due to e.g. network outages, forced rollbacks due to deadlocks, and so on.

Also, as a result of explicitly treating rollback handling, we considered de-
fault strategies for handling a rollback, and have already implemented a trans-
action restart. This leads us into future work: we are further exploring handling
of rollbacks in the context of advanced transaction models, such as the use of
compensating transactions.

Lastly, as future work, we will investigate how we can integrate the ‘missing’
concern part: rollback heuristics, into the transaction aspect.

5 Acknowledgments

Thanks to Thomas Cleenewerck and Jessie Dedecker for proof-reading and Theo
DHondt for supporting this research.

References

[1] The AspectJ project. http://eclipse.org/aspectj.

[2] J. Brichau, K. Mens, and K. De Volder. Building composable aspect-specific
languages. In Proc. Int’l Conf. Generative Programming and Component
Engineering, pages 110–127. Springer Verlag, 2002.

[3] K. Gybels and J. Brichau. Arranging language features for more ro-
bust pattern-based crosscuts. In 2nd International Conference on Aspect-
Oriented Software Development. ACM, 2003.

[4] J. Kienzle and R. Guerraoui. Aop: Does it make sense? - the case of
concurrency and failures. In Proceedings of ECOOP 2002. Springer Verlag.

[5] R. Monson-Haefel. Enterprise JavaBeans. O’Reilly, third edition, 2001.

[6] A. Rashid and R. Chitchyan. Persistence as an aspect. In 2nd International
Conference on Aspect-Oriented Software Development. ACM, 2003.

[7] S. Soares, E. Laureano, and P. Borba. Implementing distribution and per-
sistence aspects with AspectJ. In Proceedings of OOPSLA 02. ACM.

[8] Sun Microsystems. Enterprise JavaBeans specification.
http://java.sun.com/products/ejb/docs.html.

[9] R. Wuyts. A Logic Meta-Programming Approach to Support Co-Evolution
of Object-Oriented Design and Implementation. PhD thesis, Department of
Computer Science, Vrije Universiteit Brussel, Belgium, January 2001.

6


	Introduction
	Container-Based Tx Management in EJBs
	Declarative Transaction Management
	Separation of Concerns?

	Toward a Comprehensive Aspect for Tx Management of EJBs
	Declaring transactional methods
	Adding Exception Handlers for Rollbacks

	Conclusion and Future Work
	Acknowledgments

