
Software Plans for Separation of Concerns
David Coppit

Department of Computer Science
McGlothlin-Street Hall

The College of William and Mary
Williamsburg, VA 23185 USA

david@coppit.org

Benjamin Cox
Department of Computer Science

McGlothlin-Street Hall
The College of William and Mary

Williamsburg, VA 23185 USA

btcoxx@cs.wm.edu

ABSTRACT
Complex software often has concerns which cut across the mod-
ules of the system. Aspect-oriented programming languages
such as AspectJ attempt to address this problem by providing a
new abstraction for encapsulating such concerns called aspects.
Aspects are integrated automatically during compilation with
the base code at well-defined join points. This approach is diffi-
cult to apply when concerns are highly context-dependent and
have complex relationships not supported by the language. In
this paper, we propose an alternative approach based on soft-
ware plans. In this approach, a specialized editor is first used to
annotate code segments as belonging to one or more concerns.
The user can then specify a limited view of the code, a plan,
which consists of some desired subset of the concerns. Using
this plan view, the user can directly implement any complex
relationship between overlapping, interdependent concerns. We
present our approach using a motivating example from the GNU
grep tool. We also present our prototype editor implementation.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques–
program editors.

General Terms
design, languages

Keywords
software plans, separation of concerns, aspects

1. INTRODUCTION
Complex software often has multiple overlapping and interde-
pendent concerns. The traditional approach is to attempt to ag-
gregate related concerns using a functional or object-oriented
decomposition of the code. More recently, language designers
have provided more powerful language abstractions for repre-
senting concerns as cross-cutting aspects [6,7]. In all of these
approaches, source code is re-modularized in an attempt to im-
prove the cohesion of code serving certain concerns while
minimizing the coupling between the modules.
Unfortunately, these approaches are difficult to apply to over-
lapping and interdependent concerns. In such cases, modulariz-
ing a system to improve the coupling and cohesion of one con-
cern may increase the tangling of other concerns. For example,
debugging code is often scattered throughout the software. At-
tempting to restructure the system to improve the cohesion of

the “debugging” concern would aversely affect the functional or
object-oriented decomposition.
Unfortunately, aspect-oriented programming languages only
partially address this problem. An inherent assumption of as-
pect-oriented programming languages is that it is possible to
provide general declarative mechanisms for specifying the loca-
tion of cross-cutting concerns, and that these mechanisms can be
used by the aspect weaver to automatically integrate the concern
code into the existing modular structure. AspectJ [7], for exam-
ple, allows the programmer to specify join points at calls to
methods and constructors, references or uses of fields, execu-
tions of exception handlers, object initialization, etc. Each of
these join points requires only limited context, and are suitable
for automatic integration by the weaver. None allow a concern
to be integrated into an arbitrary program location. Indeed, it is
not clear that this can be done automatically for concern code
which depends heavily on its context in the base code. For ex-
ample, trace messages used during debugging to record the flow
of execution of a program depend heavily on context, and can
not be integrated automatically by a weaver.
Carver and Griswold’s [2] analysis of concerns in GNU sort
demonstrates that such complex interdependencies between
concerns and base code, which they call “invasive composi-
tions”, do arise in practice. Proper integration of such concerns
by the weaver would require code modifications to be coordi-
nated at multiple locations, and for concerns to be composed in
the correct order. They note that one approach to dealing with
such difficulties using existing join point models is to decom-
pose complex expressions into a series of more “atomic” ex-
pressions, and extend the model to allow any series of state-
ments to be a join point.
Murphy et. al [10] describe the process of restructuring code so
that aspects can be encapsulated using the limited join point
mechanisms provided by languages such as HyperJ and AspectJ.
For example, they describe a somewhat byzantine approach to
dealing with concern-specific code in if-then-else branches.
For AspectJ, an “around” advice is used to bypass the original
implementation of a method, instead executing “concern-
optimized” versions of code which contain the appropriate
branch of the code depending on the concern. They also de-
scribe a similar approach in which concern-specific code is
moved to the beginning or end of a method, where the aspect
weaver can integrate aspects.
In this paper we propose an alternative approach which avoids
the difficulties associated with an automatic weaver, while still
allowing concerns to be conceptually separated. The code is

treated by the source editor as multiple inter-related layers or
plans. A plan is a view of the software that contains only the
code segments related to those concerns of immediate interest.
The developer can edit the code in this view, in which case the
editor automatically updates the concern information (e.g. tag-
ging new code as belonging to the same set of concerns as the
edited code). Because a particular code segment may be tagged
as belonging to multiple concerns, it may also be visible in a
different plan. When the source code is finally compiled, the
editor renders the tagged code as a traditional monolithic code
representation.
Currently, we have finished enhancing an integrated develop-
ment environment to support editing of plans. Our next step is to
test the approach in one or more case studies. Eventually we
hope to enhance the editor to provide better automated support
for tagging and editing of code related to particular concerns.
In Section 2 we present our approach in more detail, with a mo-
tivating example. Section 3 describes the implementation of
plans in the Eclipse IDE. Section 4 describes our planned
evaluation. Section 5 presents related work. Section 6 describes
key challenges, and Section 7 concludes.

2. APPROACH
In this section we present our approach in more detail. We will
use the GNU grep [4] program as a running example, showing
how even a simple program can have complex relationships
between concerns.

Figure 1 presents the key function in grep for searching a file,
directory, or input stream for a given pattern. 1 In this example,
we have used a line of code as the smallest code segment that
can be related to a concern. The bars to the left of the lines indi-
cate the concerns that are related to the line. The bars are col-
ored, and bars of the same color are aligned in the same column.
In this case, we have tagged the code with seven concerns:
▌Processing of input streams
▌Processing of a directory
▌Processing of a file
▌Error handling
▌Binary files
▌The -c option to output the number of matches
▌The -l option to output the matching filenames
For example, the first and last few lines are not tagged, indicat-
ing that they appear in all plans. The first conditional block is
tagged as belonging to the “Processing of input streams” con-
cern, and the next conditional block is tagged as belonging to
both the “Processing of a directory” and “Processing of a file”
concerns.

1 The code has been modified slightly to improve clarity.

 static int ▌▌▌▌ if((desc<0) && !isdir(file)) {
 grepfile (char const *file, struct stats *stats) ▌▌▌▌ suppressible_error (file, e);
 { ▌▌▌▌ return 1;
▌▌▌ int desc; ▌▌▌▌ }
▌▌▌ int count;
 int status; ▌▌▌ if(file!=NULL)
 ▌▌▌ filename = file;
▌ if(file == NULL) {
▌ //set file descriptor ▌▌▌▌▌ #if defined(SET_BINARY)
▌ desc = 0; //set file descriptor to standard input ▌▌▌▌▌ /* Set input to binary mode. Pipes are simulated with files
▌ filename = label ? label : _("(standard input)"); ▌▌▌▌▌ on DOS, so this includes the case of "foo │ grep bar". */
▌ } ▌▌▌▌▌ if (!isatty (desc))
 ▌▌▌▌▌ SET_BINARY (desc);
▌▌▌ if(file != NULL) { ▌▌▌▌▌ #endif
▌▌▌ //open file or directory
▌▌▌ while ((desc = open (file, O_RDONLY)) < 0 && errno == EINTR) ▌▌▌ count = grep (desc, file, stats);
▌▌▌ continue;
▌▌▌ } ▌▌ if(count < 0)
 ▌▌ status = count + 2;
▌▌▌▌ if((desc>0) && isdir(file)) {
▌▌▌▌ if (is_EISDIR (e, file) && directories == RECURSE_DIRECTORIES) { ▌▌▌ if(count >= 0) { //file or stream
▌▌▌▌ if (stat (file, &stats->stat) != 0) { ▌▌▌▌▌▌ if (count_matches) {
▌▌▌▌ error (0, errno, "%s", file); ▌▌▌▌▌▌ if (out_file)
▌▌▌▌ return 1; ▌▌▌▌▌▌ printf ("%s%c", filename, ':' & filename_mask);
▌▌▌▌ } ▌▌▌▌▌▌ printf ("%d\n", count);
 ▌▌▌▌▌▌ }
▌▌▌▌ return grepdir (file, stats);
▌▌▌▌ } ▌▌▌ status = !count;

▌▌▌▌ if (!suppress_errors) { ▌▌▌▌▌▌▌ if (list_files == 1 - 2 * status)
▌▌▌▌ if (directories == SKIP_DIRECTORIES) { ▌▌▌▌▌▌▌ printf ("%s%c", filename, '\n' & filename_mask);
▌▌▌▌ switch (e) {
▌▌▌▌ #if defined(EISDIR) ▌▌▌▌▌▌ if(file == NULL) { //stream error checking
▌▌▌▌ case EISDIR: ▌▌▌▌▌▌ off_t required_offset =
▌▌▌▌ return 1; ▌▌▌▌▌▌ outleft ? bufoffset : after_last_match;
▌▌▌▌ #endif ▌▌ ▌▌▌▌▌▌ if ((bufmapped ││ required_offset != bufoffset)
 ▌▌ ▌▌▌▌▌▌ && lseek (desc, required_offset, SEEK_SET) <
0
▌▌▌▌ case EACCES: ▌▌▌▌▌▌ && S_ISREG (stats->stat.st_mode))
▌▌▌▌ /* When skipping directories, don't worry about ▌▌▌▌▌▌ error (0, errno, "%s", filename);
▌▌▌▌ directories that can't be opened. */ ▌▌▌▌▌▌ }
▌▌▌▌ return 1;
 ▌▌▌ if (file != NULL) { //file or directory
▌▌▌▌ break; ▌▌▌ while (close (desc) != 0) {
▌▌▌▌ }//end switch ▌▌▌▌▌▌ if (errno != EINTR) {
▌▌▌▌ }//end if (directories == SKIP_DIRECTORIES) ▌▌▌▌▌▌ error (0, errno, "%s", file);
▌▌▌▌ }//end if (!suppress_errors) ▌▌▌▌▌▌ break;
 ▌▌▌▌▌▌ }
▌▌▌▌ suppressible_error (file, e); ▌▌▌ }

▌▌▌▌ return 1; ▌▌▌ }//end if (file != NULL)
▌▌▌▌ }//end if((desc<0) && isdir(file)) ▌▌▌ }//end if(count >= 0)

 return status;
 }

Figure 1: The grepfile function tagged with concerns

Note that even in this simple function there are many crosscut-
ting concerns that make the code difficult to understand. For
example, the binary filesystem concern is completely independ-
ent of the error handling concern. In this case, we could create a
plan in which either concern is viewed and edited without the
other.
There are also concerns that are dependent on other concerns.
For example, the error handling concern is dependent on the
directory, file and stream concerns. Viewing the error handling
concern code which deals with directories without also viewing
the directory concern would result in meaningless code. There is
also an implicit ordering dependency between the “Binary files”
concern and the file, directory, and stream processing concerns–
the file descriptor must be set to binary mode before calling the
grep() function.
The editor automatically tags new lines of code as belonging to
the concerns of the edited text. For example, if the programmer
is editing a block of code related to the “binary files” concern,
the editor will automatically tag new code as belonging to that
concern. While this approach suffices for the majority of editing
operations, it is not a complete solution. For less common edit-
ing of concern code, the developer can manually tag a code
segment as belonging to a concern. In using our prototype im-
plementation, we have identified several situations where pro-
gram analysis by the editor can provide automated assistance to
further reduce the need for manual tagging. We discuss this
issue in more detail in Section 6.
Once the code is tagged, the developer can specify a plan con-
sisting of one or more concerns. Plans allow the developer to
deliberately ignore concerns which are not apropos to the cur-
rent activity. For example, consider the plan shown in Figure 2,
a view of the system that contains the stream concern but not the
file, directory, or error-checking concerns. The code is more
than half as short and is easier to understand. In addition, the
plan provides a coherent, even compilable, view of the code.

Plans are easy to use and allow the programmer to focus on
different aspects of interest. The programmer can use plans to
manage complex overlapping concerns, and can easily resolve
interactions between two concerns by creating a new plan that
shows both. Tags also serve as documentation, helping a devel-
oper unfamiliar with the code to easily and quickly determine
the concerns associated with a given line of code, as well as
interactions between concerns.

3. PROTOTYPE IMPLEMENTATION
Figure 3 shows a screenshot of our prototype implementation. In
this view, the code for the grep utility is currently being edited.
In the left are the colors associated with the various concerns.
The programmer has selected some text to be tagged, and one
can see the names of the available concerns in the cascaded
context menu. As the programmer modifies the code, the IDE
will automatically update the concern meta-data.
In our current implementation, the smallest code segment that
the editor allows to be tagged is a single line. Currently the
source code is stored internally as a single monolithic represen-
tation (even though, in general, lines of code for unrelated con-
cerns can have any ordering). When the file is saved, the mono-
lithic representation is saved as the file, and the concern infor-
mation is saved separately. This provides backwards-
compatibility with tools that expect a traditional monolithic
format. Currently the tool does not perform any analysis for
automatic tagging of code.
In order to implement this functionality, we customized the
open source Eclipse IDE [2]. Eclipse provides an API for the
IDE which allows developers to extend its functionality. For
example, we mark ranges of text for a particular concern using
the Position class. Similarly, our annotations are implemented
using the Annotation and AnnotationRulerColumn classes.
We have also modified the Eclipse IDE to allow the user to
specify a plan as a set of visible concerns. Our current policy
allows the user to force concerns to be hidden, or to optionally
hide concerns. Code related to the latter type of concern will be
visible if it is also tagged with some other visible concern.

4. EVALUATION
In order to evaluate our approach we will conduct several case
studies in which our editor is used to develop several software
systems. While developing the software we will investigate the
theoretical as well as practical strengths and weaknesses of our
approach:

• Are concerns conceptually separable? It may be the case
that there is a poor correspondence between concerns and
code.

• Is an editor-based application sufficient to easily separate
the concerns? A primarily syntax-based tool may not be
powerful enough to allow the user to easily separate con-
cerns.

• Does this approach lower the conceptual complexity? Is it
easier to write and understand code with tangled concerns?
Is it easier to maintain code using this method?

• Is it possible to effectively filter irrelevant concerns while
preserving all the necessary details in a coherent manner?
We believe that our proposed approach to filtering lines

 static int
 grepfile (char const *file, struct stats *stats)
 {
▌▌▌ int desc;
▌▌▌ int count;
 int status;

▌ if(file == NULL) {
▌ //set file descriptor
▌ desc = 0; //set file descriptor to standard input
▌ filename = label ? label : _("(standard input)");
▌ }

▌▌▌ count = grep (desc, file, stats);

▌▌▌ if(count >= 0) { //file or stream
▌▌▌▌▌▌ if (count_matches) {
▌▌▌▌▌▌ if (out_file)
▌▌▌▌▌▌ printf ("%s%c", filename, ':' & filename_mask);
▌▌▌▌▌▌ printf ("%d\n", count);
▌▌▌▌▌▌ }

▌▌▌ status = !count;

▌▌▌▌▌▌▌ if (list_files == 1 - 2 * status)
▌▌▌▌▌▌▌ printf ("%s%c", filename, '\n' & filename_mask);

▌▌▌▌▌▌ if(file == NULL) { //stream error checking
▌▌▌▌▌▌ off_t required_offset =
▌▌▌▌▌▌ outleft ? bufoffset : after_last_match;
▌▌▌▌▌▌ if ((bufmapped ││ required_offset != bufoffset)
▌▌▌▌▌▌ && lseek (desc, required_offset, SEEK_SET) < 0
▌▌▌▌▌▌ && S_ISREG (stats->stat.st_mode))
▌▌▌▌▌▌ error (0, errno, "%s", filename);
▌▌▌▌▌▌ }//end if (file != NULL)
▌▌▌ }//end if(count >= 0)

 return status;
 }

Figure 2: The stream-only plan for the grepfile function

will yield coherent plans. However, it may be the case that
this approach, more often than not, results in plans that are
not understandable.

• What programming languages work well using this ap-
proach? Because of the line-oriented nature of this ap-
proach, procedural languages seem most suited. However,
object-oriented languages may also work well.

5. RELATED WORK
Aspect-oriented programming (AOP) [6] uses “aspects” to en-
capsulate the concerns. The aspects are then “woven” into the
code automatically by the compiler. The original formulation of
AOP required custom compiler support for weaving different
types of aspects. More recent efforts in the development of As-
pectJ [7] have attempted to provide a general method for writing
aspects and weaving them into the base object-oriented code.
Our approach is editor-oriented rather than language- or com-
piler-oriented, and can therefore be used with a range of lan-
guages. In addition, our approach allows (and requires) the pro-
grammer to express the complex relationships between overlap-
ping and interdependent concerns. In contrast, languages such as

AspectJ limit the integration of aspects and base code to only
those program locations (join points), which are supported by
the language. In particular, the language does not allow arbitrary
aspect code to be inserted into arbitrary locations in the main
code. For example, the two lines in Figure 1 which implement
the -l functionality (near the middle of the right column) are
dependent on the context. They are dependent on the execution
of the grep function call, as well as the previous line assigning
setting the value of status. The former is supported by As-
pectJ’s “after returning” advice, but AspectJ’s “set()” pointcut
designator does not provide enough context to allow the -l code
will be integrated after the assignment.
Lai and Murphy [8] analyze the relationship between concerns
and code structure. Their FEAT tool allows the user to tag lines
of code in a manner very similar to ours. However, their tool
does not support the notion of software plans—all code related
to all concerns is always visible. However, their tool does parse
the code to create an abstract syntax representation, which al-
lows them to analyze the relationship of a set of concerns to the
existing code structure. In particular, they measure the propor-
tion of files which contain code related to a concern (“spread”),

Figure 3: The grepfile function tagged with concerns

the proportion of tokens for a concern which are also involved
with another concern (“tangle”), and the proportion of tokens in
files for a concern which involve that concern (“density”).
Program slicing [11] attempts to reduce the complexity of code
by extracting only those lines of code that can alter, or are al-
tered by, a particular variable. The extracted subset is a working
program that is similar to our “plans”. Unlike their automated
approach, our approach is manual but more flexible in that any
set of lines can be associated with a concern. Also, it is not al-
ways the case that a program variable correlates to a single con-
cern. A variable may have multiple uses in different concerns in
a program; conversely, a particular concern may require the use
of multiple variables.
Information transparency [5] attempts to identify related sec-
tions of code that are dispersed throughout the source code, by
using inference and searching tools. The basic idea is to identify
concerns lexically, based on characteristics such as variable
names, or syntactically, based on characteristics such as loop
structure. Unlike information transparency, in our approach the
tool helps the programmer explicitly define which sections of
code are related, and does not involve after-the-fact deduction.
More effort is involved to tag lines of code, but our approach
can provide coherent views of the code, while information
transparency presents disconnected but related lines of code.
Finally, some editors support hiding of #ifdef/#endif text
based on user-specified values for the relevant symbols. Emacs
[3], for example, has a hide-ifdef-mode [9]. The basic idea is
similar to what we propose, although editor support is limited.
In fact, our early experiments to assess the feasibility of a line-
based tagging strategy used the C pre-processor in this manner.
However, using pre-processor directives is obviously tedious
and results in overly difficult to read code.

6. OPEN QUESTIONS
Initial use of our tool has already revealed a number of key open
questions. The first question is the extent to which the manage-
ment and tagging of code with concern information can be
automated. Aspect languages relieve the developer of the burden
of integrating aspects into base code. Our approach, in contrast,
allows the user to integrate highly context-dependent concerns
into the base code, but provides editor-based concern manage-
ment capabilities instead of automated integration. The costs
associated with manual integration of concerns are no worse
than that of code developed without aspects in mind. However,
tagging of concerns is an additional cost, and should therefore
be as inexpensive as possible. We are not yet sure of the extent
to which our current editing operations help the user to tag code.
One method to enhance automatic tagging is to employ program
analysis to infer that lines of code belong to the same concern.
For example, the use of a variable defined to be in another con-
cern would indicate that the code using the variable belongs to
that concern.
The second issue is the view consistency problem. Editing op-
erations in a given plan should modify the hidden code in a
consistent manner. For example, there are a number of ways to
handle the situation in which the user deletes a block of code
containing hidden text belonging to a concern not in the current
plan. Our tool’s current strategy is to detect this situation and
disallow the operation. In effect, this forces the user to make the

hidden text visible and resolve the conflict. An alternative is to
use an internal representation of the code which better models
concern dependencies—if the hidden concern is independent of
the current plan, the visible code can be deleted while leaving
the hidden concern. Obviously, a complete solution requires
program analysis to guarantee that the deletion of the visible
code does not change the semantics of the hidden code.
A third open question is the extent to which code can truly be
simplified in the manner illustrated in Figure 2. It seems that
some rewriting of the visible code in a plan is necessary in order
to arrive at a concise, easy-to-understand representation. We
took some liberty in Figure 1 by splitting an if-then-else
statement into the first two if-then statements. This allowed
us to tag the entire if-then statements as belonging to one
concern or the other. In the original representation, we would
have been forced to tag the contents of the branches and not the
if-then statements themselves in order to avoid else clauses
without associated if statements. A side effect of this strategy
is empty “{}” blocks in certain plans. Clearly some sort of
“pretty printing” of the code is necessary to remove such noise,
as well as careful management of editing operations.
Finally, we must expand our own evaluation of the approach
outlined in Section 4 to include evaluation via user studies. Ad-
dressing the issues described above can help reduce the costs
associated with using this approach. However, it should be pos-
sible to evaluate the basic idea using the prototype we have
already implemented.

7. CONCLUSION
In this paper we have presented a new, editor-based approach to
dealing with tangled concerns. Inspired by the use of plans in
other engineering disciplines, our approach attempts to provide
the developer with the capability to create complex relationships
between concerns, while, at the same time, providing mecha-
nisms for keeping them manageable.
While our approach shows some promise, evaluation is an obvi-
ous area of future work. In addition, there is an opportunity to
exploit information from analysis of the source code in order to
automate much of the manual labor required by our initial proto-
type. In addition, the filtering can be made “smarter” to address
anomalies such as empty “{}” brackets resulting from hiding the
body of the block.

ACKNOWLEDGEMENTS
We would like to thank the Eclipse developers, especially Tom
Eicher, for their technical assistance in modifying Eclipse to
support editing of plans. We would also like to thank the
anonymous reviewers for their helpful comments.

REFERENCES
[1] Lee Carver and William G. Griswold. Sorting out concerns.
Position paper for Multi-Dimensional Separation of Concerns
Workshop, OOPSLA 1999.
[2] Eclipse.org, The Eclipse homepage. URL: http://www.-
eclipse.org/
[3] The GNU Project, The Emacs homepage. URL: http://-
www.gnu.org/software/emacs/emacs.html
[4] The GNU Project, The grep homepage. URL: http://www.-
gnu.org/software/grep/grep.html

[5] W. G. Griswold. Coping with Crosscutting Software
Changes Using Information Transparency. In Reflection 2001:
The Third International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns, Kyoto, September
2001.
[6] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-oriented programming. In ECOOP'97: Proceed-
ings of the European Conference on Object-Oriented Program-
ming, pages 220-42. Springer-Verlag, 9-13 June 1997.
[7] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of As-
pectJ. In J. Lindskov Knudsen, editor, ECOOP 2001: Object-
Oriented Programming 15th European Conference, volume
2072 of Lecture Notes in Computer Science, pages 327-353.
Springer-Verlag, Budapest, Hungary, June 2001.

[8] Albert Lai and Gail C. Murphy. The Structure of Features in
Java Code: An Exploratory Investigation. Position paper for
Multi-Dimensional Separation of Concerns Workshop, OOP-
SLA 1999.
[9] Brian Marick and Daniel LaLiberte. hide-ifdef-mode.el.
URL: http://www.mit.edu/afs/athena/contrib/epoch/lisp/hideif.el
[10] Gail C. Murphy, Albert Lai, Robert J. Walker, and Martin
P. Robillard. Separating Features in Source Code: An Explora-
tory Study. In Proceedings of the 23rd International Conference
on Software Engineering, pages 275-85, Toronto, Canada, 12-19
May 2001. IEEE.
[11] Mark Weiser. Program slicing. IEEE Transactions on Soft-
ware Engineering, SE-10(4):352-7, 1984.

