
Towards the development of Ambient Intelligence 
Environments using Aspect-Oriented techniques* 

 
L. Fuentes, D. Jiménez, M. Pinto 

Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga 
Boulevard Louis Pasteur, 35 29071 Málaga (SPAIN) 

Email: {lff, priego, pinto}@lcc.uma.es 
 

 

                                                           
* This research was funded by the CICYT under grant TIC2002-04309-C02-02. 

Abstract 
Nowadays the interest in Ambient Intelligence Environments 

has grown considerably due to new challenges posed by the 
evolution of society requirements to more friendly environments. 
Ambient Intelligence technology is not fully developed and 
integrated in everyday life, but a lot of organisations are interested 
in it. On the other hand, Aspect Oriented Software Development is 
considered a growing technology that improves the modularity and 
adaptability of complex large-scale systems. Then, our goal is the 
development of an Ambient Intelligence Aspect-Oriented platform 
adapting DAOP, a component and aspect platform. 

1. INTRODUCTION 

Today computational devices are being used in hundreds of 
human activities, ranging from office work, industrial 
systems and domotic systems. Hardware and computational 
technologies have evolved to satisfy the services demanded 
from these activities, like phone communications or games. 
This evolution has been in parallel with the development of 
new kinds of devices. These new devices like the last 
generation of mobiles and PDAs, pose high CPU and 
storage capacity requirements demanded to perform the new 
services. Examining carefully the current state-of-art we can 
see that the future of all these new technologies is the 
convergence to the Ambient Intelligence concept or AmI. 
 
The origins of the AmI are first found in 1991, when Mark 
Weiser wrote an article about Ubiquitous Computing [1]. 
For Weiser, the ubiquitous computing term is the opposed to 
virtual reality. Where virtual reality puts people inside a 
computer-generated world, the ubiquitous computing forces 
the computer to live in the real world. The Ubiquitous 
Computing is then referred as the capacity of integrating 
autonomous computational devices in the real world. The 
devices are able to extract data from the real world that 
surrounds them and perform some data processing in order 
to obtain results that can be used afterwards by others 
devices. The main characteristic of the ubiquitous 
computing is that minimises the computer device intrusion 
in real world. Ideally, the human beings in an AmI 
environment will not notice the devices. 
 
As an example of this type of interactions we can consider 
the communication between a humidity sensor device and a 
garden irrigation device. The former device will inform the 

later one about humidity variations, and the irrigation device 
will take actions to preserve the environment humidity 
according to the user preferences. Another example that we 
will examine more carefully in this paper is the application 
of AmI technologies to a car equipped with several devices 
that communicate among themselves and provide some 
useful services like user identification, local traffic 
information services, road obstacle detection sensors or car 
diagnostic services. 
 
Weiser shows the need of finding new ways to obtain a 
better integration of the information technology in everyday 
life activities. He postulates that this integration must 
include the people social behaviour and the technology 
accessibility as main concepts. The proposed concepts are 
very general, but the main idea from his work is that devices 
will need to be adapted to people and that this will only be 
possible by developing much more natural interfaces 
between human beings and machines (voice, hand gesture, 
etc.). But in spite of the efforts the project was not 
successful, mainly because in that date, the available 
technology does not meet the requirements necessary to 
support the proposed ideas. 
 
In the last few years, Weiser’s ideas were retaken when the 
new technologies like mobile and wireless networks started 
to evolve. In consequence, the AmI concept has been 
adopted after several meetings of the European ISTAG [2] 
(Information Societies Technology Advisory Group) and 
encompasses a broader vision of the ubiquitous computing 
idea proposed by Weiser. The meetings started in 2001 and 
the goals were to promote and extend the use of ubiquitous 
computing technologies in the 6th European Community 
Programme for Research and Technological Development. 
 
The initial meeting ended with the creation of several 
documents for the IPTS (Institute for Prospective 
Technology Studies). The documents can be found at 
http://www.cordis.lu/ist/istag.htm. The ISTAG said that the 
examples proposed in those documents would be 
technologically viable for year 2010. In the documents, they 
have also pointing out the critical development areas of 
technology and the main fields of application (genomic, 
biotechnology, information society technology, nano-
technology, nano-science, aeronautic and space, food 
production security, sustainable development and economic 
and politics sciences). 



In addition to the advances in hardware and computational 
technologies AmI should take advantage of the new 
software development technologies that have emerged in the 
last years. The importance of applying advanced software 
technology have been made manifest after seeing the 
difficulties of developing concrete AmI oriented projects 
like Aura [12] or Oxygen [13]. In this sense, we think that 
AmI applications are good candidates to be modelled using 
Aspect-oriented Software Development techniques or 
AOSD [3]. Since AmI environments are dynamic and are 
characterized by the runtime changes of interactions among 
users and devices, presenting strong requirements of 
dynamic adaptability, they are good candidates to benefit 
from aspect separation techniques. 
 
In AOSD, aspects are defined as properties of an application 
that cut across some or all the application objects or 
components [11]. The AOSD tries to identify, isolate and 
extract these properties from the application core 
functionality, modelling these properties as aspects. Aspects 
can evolve independently from component functionality, so 
applications become more modular and, in addition, we can 
reuse those aspects in others similar applications. Moreover, 
we can replace the number and type of aspects that are 
applied to an application without modifying the application 
code. We think that identifying and separating aspects we 
reduce the complexity of the evolution management of AmI 
applications both at design and at runtime. In this paper we 
will try to identify the most relevant aspects that are found 
when decomposing an AmI application in software 
components and how DAOP, a component and aspect 
platform can help us in the application development process. 
 
After this introduction we will show in section 2 the most 
relevant aspects we found in AmI applications. In section 3, 
we will show our proposal towards the definition of a 
platform for AmI applications and finally, we will expose 
our conclusions and future work. 

2. ASPECTS IN AMBIENT INTELLIGENCE 
ENVIRONMENTS 

Before starting to explain which aspects we have identified 
in AmI environments, we will provide a brief summary of 
the characteristics that any AmI application must show and 
the problems that arise when we develop these applications. 
The three main characteristics are: 
 
Ubiquitous Computing, that is the ability of providing 
computational capabilities to any device everywhere in a 
non-intrusive way. These devices range in size from a board 
to a simple tag. There are three problems that we face when 
developing Ubiquitous Computing applications. First, the 
limited amount of energy [7] that those devices have 
available to function. Second, the low computing power that 
those devices provide and finally, the limited device storage 
capability known as the “nomadic data” problem. See [5] 
and [6]. This last problem appears due to the limited storage 
capacity of devices that make impossible store and retrieve 
all the information generated by them from everywhere. 

Ubiquitous Communication, that is the ability to 
communicate among them any kind of device. When we try 
to implement this characteristic, we face several different 
problems. The first one is the device and communication 
protocol heterogeneity. This heterogeneity prevents good 
communication interoperatibility between devices. The 
second problem is the dynamic nature of these 
environments. The applications are executed like being part 
of a large distributed application and the coordination 
between them is difficult. It requires a solid distributed 
network system, a homogeneous interchange information 
format, a communication coordination system, a dynamic 
aware location mechanism and a homogeneous way to 
achieve the heterogeneous devices interconnection. Another 
problem is the scalability in a distributed network system. 
When the system is crowded of devices, the 
communications channels become saturated and 
interferences and errors in communications start to rise. 
When this happens, the need of scalable adaptation 
strategies is a must. Finally, the last problem encountered is 
the communication security and privacy. The special nature 
of wireless communications makes them vulnerable to 
intrusions or data interception problems. We must assure the 
privacy of confidential and sensible data by encryption or 
others procedures. 
 
Natural Interfaces. The main goal of Weiser was the 
integration of devices in a human world. We must develop 
new ways of human-device interaction. To achieve this, we 
must solve two problems. Non–intrusive hardware, the 
hardware devices must be easily integrated into everyday 
object and become “invisible” to people. So, people do not 
have to care about how to interact with it. Natural interfaces, 
the devices must provide alternative human interfaces like 
voice or hand gesture recognition. While non-natural ways 
of communication like keyboard or mouse interfaces must 
tend to disappear. 
 
Ambient Intelligence relevant Aspects 
 
After describing the development problems that AmI 
applications must face, our next goal is to identify the main 
properties common to most AmI applications. Usually, 
these properties are independent of the functionality of 
different devices and therefore, it is a good approach to 
model them as aspects. Now, we are going to describe the 
most important properties that we have found: 
 
Access Control. Most part of AmI services define 
restrictions on which devices can access to them. For 
example, it will be a really bad idea to allow a child to open 
his parent door. The access control property applied to the 
AmI service will handle which actions can be done and 
which information will be available by defining a control 
access list for hardware or software components. This is a 
typical property that should be modelled as an aspect to 
allow the replacement of the access control mechanism 
without affecting the application code. 
 



Authentication. All devices and users in the environment 
must have a unique identifier. The authentication service is 
provided by most part of non-trivial applications in AmI 
environments. The device or user authentication can be 
performed using a username and a password, a digital 
signature, a user voice recognition mechanism, a digital 
certificate or any other identification method. We can model 
this property as an aspect and select the adequate method to 
achieve the user or device authentication. 
 
Awareness. The AmI environment is constantly changing, 
new services and applications appear and others disappear 
without warning. The awareness property will be 
responsible of notifying the changes in the state of devices. 
This property comes from the Collaborative Virtual 
Environments [4], but it is also applicable to AmI 
environments. We should select carefully the kind and 
amount of information transmitted because we must not 
flood the receiver with useless information. The awareness 
notifications are captured by the environment devices and 
the data retrieved keeps their environment perception 
updated. We think that this would be modelled as an aspect 
because detaching this code from device core functionality 
allows us to manage different levels of information that is 
sent or received and even modify this information before it 
reaches the target. This aspect is crucial in AmI 
environments due to their dynamic nature and the necessity 
of most devices in the environment to be aware of changes. 
 
Coordination. Occasionally it is interesting to perform 
certain specials operations when several circumstances are 
met in the environment. For example, when an event is sent 
indicating that a user has opened an AmI car door, we 
probably need to coordinate several AmI car components to 
react to this event. A coordination aspect can be modelled to 
handle the event and send adequate messages to the 
involved components. It is interesting to model this as an 
aspect because in AmI environments this kind of interaction 
is very common. 
 
Communication. AmI environments support heterogeneous 
devices with different communications protocols and data 
interchange structure. A communication aspect is useful to 
act as a bridge to interconnect different devices that 
normally cannot communicate. If we model this property as 
an aspect it would be possible to adapt the device 
communication protocol at runtime to accept 
communications from others devices. 
 
Encryption. Security in AmI environments is a must, 
because all the communications are open and thus easy to 
intercept and alter. We require a sophisticated mechanism to 
adapt the communication trust necessities at any time. The 
encryption property decouples the encryption security 
system from devices. Modelling this property as an aspect 
permits the replacement of the encryption model without 
affecting the application. Another possible aspect use is 
when the device is not capable of providing this encryption 
mechanism due to processing or storage limitations and the 

aspect can redirect the task to other specialised devices in 
the environment. 
 
Error handling and recovery. Applications in this moving 
and dynamic environment encompasses a high error rate, 
usually due to interferences, communication transmission 
errors, communication channel saturation or application 
unavailability. This aspect helps to achieve a better 
performance in this field providing specifics solutions 
considering the services and the devices available in the 
environment. For example, imagine that we are in a 
congress registration hall totally automated using AmI 
automatic registration devices. If one or several of this 
devices are out of service, an error handling aspect can 
select other working registration device from the 
environment and start the login process without reporting 
the error to the user. 
 
Language Internationalisation. In an AmI environment it is 
possible that not all users understand the natural language of 
AmI interfaces or the voice messages of certain devices. For 
example, an English user probably does not understand a 
Japanese character display or message. The applications 
should be able to adapt automatically the interface language 
to the user preferences. This property can be easily 
modelled as an aspect since crosscuts several components, 
and it is used to adapt a component to a user profile. 
 
Persistence and Nomadic Data or Pervasive Data [5]. Due 
to the fact that the information used by a device can be 
distributed in different locations, we must provide a 
mechanism to store it efficiently and the possibility of 
migrating this information to different devices while the 
user is moving. Thus, this property can be modelled as an 
aspect. Another use of this aspect is to remotely store 
information for devices that cannot locally store some 
information due to storage restrictions. 
 
To finish this section, we are going to show an example of a 
simple AmI application modelled with aspects. Suppose that 
we have a car that is equipped with AmI technology 
devices. Each device executes one or more specialised 
programs. The car has a navigation computer, a device 
connected to a traffic station and some other utility devices 
like proximity sensor, speech detection devices, car engine 
diagnosis device, air conditioner, etc. 
 
In the example, we are going to focus in devices that operate 
the car doors and windows. These devices are controlled by 
an AmI application modelled as a software component 
called “Car Door Component” as shown in Figure 1. In an 
AmI world there is no need of keys for cars. The user will 
be recognised by his voice when he approaches and orders 
the car to open the door. The authentication aspect will 
perform the user recognition task before executing the open 
door command. The authentication aspect is useful to avoid 
that unauthorised people open the door. If the user is 
correctly identified, the device will continue the order 
execution. After the authentication aspect has been applied, 
the car door device will open the door and finally the 



awareness aspect will be evaluated as shown in Figure 1. 
This aspect will deliver an event that contains information 
about who has open the door. This event is broadcasted to 
the environment so that all the components interested in it 
can catch and evaluate it. For example the navigation 
computer component after receiving the event executes a 
personalised greeting or adapt the seat to the user stored 
preferences, or notifying a traffic station about a new car in 
this street. 

 

Figure 1 Aspects and Car Door Component. 

We justify the use of aspects to be able to change the 
different authentication or awareness, methods without 
changing the application code. For instance, we can use 
digital signature or eye recognition instead of voice 
recognition for the authentication aspect. We can also (re) 
use the defined authentication and awareness aspects in 
others devices, like a car navigation device, a device that 
controls the driver seat preferences or an air conditioner 
device. 
 
To finish this section we will highlight several questions. In 
our model, aspects can be executed in sequential or parallel 
mode. We can also define if an aspect will be applied before 
of after the component has processed a message. In the 
example we have executed the two aspects sequentially, 
authentication before the device command execution and 
awareness after completing the command execution. If any 
of the aspects fail during the evaluation, the execution 
process stops and an exception is raised notifying the 
problem. Finally the last issue is that most of the proposed 
aspects like authentication, access control awareness or 
encryption can be developed using any aspect platform or 
aspect oriented language (for example AspectJ [14]). 

3. ASPECT-ORIENTED AMBIENT 
INTELLIGENCE PLATFORM 

The CAM/DAOP platform has been designed by our group 
to support the development of component and aspect based 
distributed applications. We have successfully developed a 
Java/RMI implementation of the platform and several 
collaborative applications [4]. This platform defines 
components and aspects as the application building blocks 
and performs the weaving process at runtime [8]. You can 
find additional information about how DAOP performs the 
dynamic weaving between components and aspects in [8] 
and [9]. The language we use to specify a kind of 
component and aspect composition is performed using an 
Architecture Description Language called DAOP-ADL [10]. 
This language uses XML to explicitly describe the 
architecture of an application that can be modified by 
DAOP at runtime. This is a powerful feature to reconfigure 

systems such as AmI environments. Our actual efforts are 
oriented to adapt the DAOP platform to the AmI 
requirements. 
 
The DAOPAmI platform 
 
Following the Weiser's vision [1], in a typical AmI 
environment there are hundreds of devices. This leads us to 
a heterogeneous environment populated of devices with 
very different capabilities and requirements. The current 
DAOP platform kernel implementation exceeds the storage 
and processing capabilities of many of the AmI typical 
devices and the communication and security requirements of 
AmI applications. So, we present a new platform, named 
DAOPAmI that extends the DAOP platform capabilities and 
the DAOP-ADL language to support the specific needs of 
AmI applications. Now we are going to explain the 
modifications performed upon the DAOP platform to adapt 
it to the AmI applications requirements. 

 
Figure 2 DAOPAmI kernel Architecture. 

In [1] Weiser proposed three different devices categories 
according to its capabilities (taps, tabs and boards). We 
follow this standard division in our architecture classifying 
the devices in three profiles (which are similar to J2ME [15] 
profiles). Figure 2 shows the services that each profile 
supports. Now, we are going to characterize each one. 
 

 <component role=”temperature”> 
…. 
  <delegatedComponent> 
    <roleInstance>temperature1</roleInstance> 
    <address >    150.214.108.46:1234</address> 
  </delegatedComponent> 
</component> 

 
Figure 3 Component delegation definition. 

Basic profile, this profile covers the simplest devices like 
sensors, identification cards, calendars or calculators, 
corresponding to Weiser’s taps. As is shown in Figure 2, 
devices must implement at least the communication service 
that allows them to send asynchronous or synchronous 
messages to other devices. Currently, we have re-
implemented this service using the J2ME communication 
API due to the low storage and processing capabilities of 
these devices. Additionally, they delegate the rest of 
platform functionality to other devices using a new service 
delegation mechanism provided by the DAOPAmI platform. 
Notice that devices not supporting the minimum DAOPAmI 
platform functionality are modelled as components inside 
other larger devices. 



 
Figure 4 DAOPAmI Air-Conditioner device configuration. 

DAOP uses role names to identify and address components 
and aspects. So we extend the component definition in 
DAOP-ADL with the physical address of the device 
modelled by this component. We also add a role instance 
name to identify individual components playing the same 
role (see Figure 3). Likewise, in the device side we specify 
the address of the software component that will receive the 
device output messages. 
 
Intermediate profile, this profile comprises most of the 
typical AmI devices that have a medium computational and 
storage capacity like PDAs, mobile phones or Laptops 
corresponding to Weiser’s tabs. They implement the basic 
profile functionality and additionally, as shown in Figure 2, 
the component factory service to manage software 
components. The property service that resolves some 
component and aspect data dependencies and finally the 
aspect evaluation service that manages the component-
aspect weaving mechanism. 
 
Full profile, this profile implements all the platform 
functionality including the intermediate profile and several 
additional services like the decision-making service, that 
performs automatic actions based on the environment and a 
set of logical rules. This service is very valuable to model 
flexible coordination aspects. The AAConfiguration service, 
that serves to configure applications and runtime. A 
persistence service to store temporal and persistent 
application data and finally a security service that 
guarantees the data and communications privacy. These 
devices have large amounts of storage and processing 
capabilities like advanced desktop computers and enterprise 
servers. This kind of devices are equivalent to Weiser`s 
boards. 
 
In the current CAM/DAOP platform implementation, when 
an application starts, it retrieves the application architecture 
configuration from local storage or from an application 
repository. But, what happens if the device does not 
implement any storage facilities or cannot access directly to 
an application architecture repository. In this case the 
DAOPAmI kernel can be configured to retrieve this 
information from other kernel, using the communication 
service. After retrieving the application architecture data the 
application execution starts normally. But a second problem 
arises. What about if the application demands some services 

that the device cannot support due to resource or hardware 
restrictions? In this case, the kernel can be configured to 
communicate with other kernels delegating the service 
execution using the delegation mechanism. 
 
Delegation mechanism example 
 
Suppose that we have an air-conditioner device and a 
temperature sensor located inside a car equipped with AmI 
technology. The temperature sensor and the air-conditioner 
devices both support an intermediate kernel, as is shown in 
Figure 4. The first one is modelled as a temperature sensor 
component and a coordination aspect that is applied to the 
output messages of this component. The component takes 
periodic heat measures and emits an event containing this 
information. The coordination aspect evaluates this event 
and distribute it to others components like the air-
conditioner. The air-conditioner device is modelled by a 
component that manages the physical device plus two 
aspects. The access control aspect ensures that the incoming 
messages come from valid device sources and the 
persistence aspect stores a list of received messages. 
 
But, what happens if the sensor device cannot support this 
configuration due to kernel memory constrains? To solve 
this, the temperature sensor device delegates the services 
execution to other kernel. In this new scenario, the 
temperature sensor application architecture definition has 
been modified, as explained before, to delegate all kernel 
services, except communication service, to the kernel 
executed in the sensor array device shown in Figure 5. The 
temperature sensor components and aspect are executed 
within the sensor array kernel, and all events and messages 
sent to the temperature sensor component are redirected to 
the sensor array kernel to be evaluated. 
 
An example: an AmI car 
 
Following the previous car example, now we are going to 
show a more complete car door configuration using several 
of the previously identified aspects. As shows Figure 6, 
when a user approaches to the car and order “open the 
door”, an authentication aspect will be executed in order to 
determine the user identity before the voice reaches the 
speech recognition component. After identifying the user 
voice as a valid one, the speech recognition component  

 

 
Figure 5 Temperature sensor service delegation. 



 
Figure 6 Extended Car Door device kernel configuration.

processes the voice signal and sends a message to the car 
door component notifying about the command. 
Afterwards, the car door kernel receives the message and 
the access control aspect is executed verifying that the 
user has the right to perform the action. After the 
verification, the component executes the requested 
command and then, the persistence aspect is applied to 
save an activity record. Finally the awareness aspect is 
executed, which broadcasts information about the 
performed action to the environment that can be used by 
other components. 
 
This example shows how the DAOPAmI kernel provides 
support to AmI application development using an AOSD 
approach. The use of aspects let us handle the AmI 
applications dynamic behaviour in a natural way and 
easily adapt it to unexpected situations. For example we 
can adapt the previous example to prevent that children 
can open the car door from inside. To achieve this, we add 
a new aspect before the access control aspect that retrieves 
the user location and profile including for example the 
user age from the AmI environment. With this 
information the new aspect determines if the command 
execution can proceed or not. Thus, we have modified 
completely the application behaviour without changing 
the code of existing components; we have just added a 
new aspect to the application architecture definition. 

4. CONCLUSIONS AND FUTURE WORK 

All ideas proposed in this article are a first approach to 
determine the architecture requirements to develop AmI 
applications and define the basic services that are needed. 
The next step will be extending the CAM/DAOP platform 
to support the new kernel services and the DAOP-ADL 
language to express the new requirements. We think that 
delegation mechanism is an improvement that solves 
problems related to resource-constrained AmI applications 
in the DAOP platform and proves that our AOSD 
approach is feasible. 
 
We think that AmI technology will be very important and 
will affect not only the way we see the software 
development but also the society and how people interact 
with computers and technology in general in the near 
future. We also think that the AOSD technology can help 
to produce more configurable and easy to manage AmI 
environments. AmI technology is still in its first stages 
and we need to do a lot of work before reaching the 
Weiser Ideas [1]. Our proposal tries to mix the best of 

both AmI and AOSD technologies by adapting an 
existing component-aspect dynamic platform. We think 
that this eases the AmI application development process 
and encourage the aspect reuse. 

5. REFERENCES 

[1] Weiser, M., “The computer for the Twenty-First 
Century”, Scientific American 165, 1991, p. 94-104. 
[2] Information Societies Technology Advisory Group. 
http://www.cordis.lu/ist/istag-reports.htm 
[3] Aspect-Oriented Software Development 
http://www.aosd.net 
[4] Pinto, M., Amor, M., Fuentes, L., Troya, J.M., 
”Collaborative Virtual Environment Development: An 
Aspect-Oriented Approach”, Proceedings of DDMA'01, 
2001. 
[5] J. Kubiatowicz et al, “OceanStore: An Architecture 
for Global-Scale Persistent Storage”. Proceedings of the 
ASPLOS November 2000. 
[6] The Coda File System. http://www.coda.cs.cmu.edu/ 
[7] Goldsmith A.J, “Design Challenges For Energy-
Constrained Ad Hoc Wireless Networks”, IEEE Wireless 
Communications, August 2002. 
[8] Pinto M., Fuentes L., Fayad, M.E., Troya, J.M., 
“Separation of Coordination in a Dynamic Aspect-
Oriented Framework”, Proceedings of AOSD’02, April, 
2002. 
[9] Pinto M., Fuentes L., Fayad, M.E., Troya, J.M., 
“Towards an aspect-oriented framework in the design of 
collaborative virtual environments”, Proceedings of 
FTDCS’01 workshop, November, 2001. 
[10] Pinto, M., Fuentes, L., Troya, J.M., “DAOP-ADL: an 
architecture description language for dynamic component 
and aspect-based development”, Proceedings of GPCE 
2003. pp 118-137, Erfut, Germany 2003. 
[11] Kiczales, et Al., “Aspect Oriented Programming”. 
Proceedings of ECOOP’97. 
[12] Toward Distraction-Free Pervasive Computing. 
Project Aura. IEEE Pervasive Computing 2002. 
http://www-2.cs.cmu.edu/~aura/ 
[13] MIT Oxigen Project http://oxygen.lcs.mit.edu/ 
[14] AspectJ http://eclipse.org/aspectj/ 
[15] Java 2 Platform Micro Edition. 
http://java.sun.com/j2me/

 


