
Jumping Aspects Revisited

Bruno De Fraine, Wim Vanderperren,
Davy Suvée

System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels, Belgium

bdefrain,wvdperre,dsuvee@vub.ac.be

Johan Brichau
Programming Technology Lab (PROG)

Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussels, Belgium

jbrichau@vub.ac.be

ABSTRACT
In this paper, we propose an extension of the JAsCo aspect-
oriented programming language for declaratively specifying
a protocol fragment pointcut. The proposed pointcut lan-
guage is equivalent to a finite state machine. Advices are
attached to every transition specified in the pointcut pro-
tocol. We claim that stateful aspects benefit from run-time
weaving and therefore introduce the JAsCo run-time weaver.
When employing this run-time weaver, a stateful aspect is
only woven at the join points it is currently interested in.
When a state-change occurs, it is rewoven to the new target
join points. Hence, a real jumping aspect is realized, that
literally jumps from join point(s) to join point(s).

Keywords
Aspect-Oriented Software Development, Run-Time Weav-
ing, Stateful Aspects, JAsCo

1. INTRODUCTION
An aspect definition generally consists of two separate parts:
the aspect applicability condition (pointcut specification)
and the aspect functionality (advice). The aspect applica-
bility condition determines when the aspect’s functionality
should be invoked. In early aspect-oriented languages, this
condition was often expressed in terms of static locations
in the base program. However, it was argued early on that
conditions in terms of run-time events were more appropri-
ate (e.g. jumping aspects [3], AspectJ’s dynamic join point
model [19], event-based AOP [10],. . .).

The importance of dynamic applicability conditions is very
well illustrated by a relatively new kind of aspects: state-
ful aspects [8]. These aspects describe their applicability
in terms of a sequence of run-time events. The true dy-
namic nature of their applicability condition even implies
that these aspects can benefit from a run-time weaver that
enables aspects to ‘jump’ in a very literal sense. This con-
cept is illustrated in the context of JAsCo [28], which is a

dynamic aspect language with support for the definition of
stateful aspects, and which provides a run-time weaver for
dynamically adding and removing aspect behavior.

The following section describes how stateful aspects benefit
from a run-time weaver. Section 3 describes stateful as-
pects in JAsCo, together with an analysis of the drawbacks
of static weaving. Section 4 describes run-time weaving in
JAsCo and weaving of stateful aspects using run-time weav-
ing. Section 5 describes related work and section 6 concludes
the paper and discusses future work.

2. STATEFUL ASPECTS BENEFIT FROM
RUN-TIME WEAVING

Stateful aspects [8] are aspects that are triggered by the oc-
currence of a consecutive sequence of events. They are con-
sidered stateful because their applicability condition needs
to consider the notion of state to keep track of the (past) se-
quence of events. In contrast, the applicability condition of
traditional aspects is stateless because the aspect applies on
all the events that it matches. For example, consider a state-
ful logging aspect that only requires to write data to a log if
a user is logged in. The applicability condition of this state-
ful logging aspect can be described in terms of a sequence
of events. The first event is the execution of the login()

method. Subsequent events trigger the aspect’s advice that
writes data to a log until the execution of the logout()

method, which terminates the applicability of the stateful
logging aspect. Another example, which is used in this
paper, is a simple publish/subscribe collaboration, imple-
mented using an aspect. In such a stateful publish/subscribe
aspect, the aspect only publishes to a subscriber after it has
actually subscribed, i.e. the publish advice is only applicable
after the execution of the subscribe() method.

Some AOP languages, such as JAsCo [28], provide linguistic
support for the description of stateful aspects. In JAsCo, the
aspect applicability condition of stateful aspects is described
by means of a declaratively specified protocol that describes
the desired sequence of events. An implementation of such
a protocol in JAsCo is shown later on, in section 3.2. Al-
though stateful aspects could be simulated using traditional
aspects by keeping an explicit state variable in the aspect
code, such a manual implementation is a cumbersome and
error-prone task. More importantly, it involves tangling the
aspect-applicability mechanism with the aspect’s function-
ality inside of the advice, which is undesirable. Providing

1

linguistic support for the implementation of stateful aspects
frees the programmer from the burden of writing the state
bookkeeping code, which allows for a trivial and clean im-
plementation of stateful aspects.

However, the weaving of stateful aspects using a static weaver
results in a significant performance overhead, as code needs
to be woven at any possible join point that is considered
by the stateful aspect. Although a stateful aspect might be
interested in many different join points in its lifetime, only
a limited set of join points are applicable at a particular
point in time. Hence, the stateful aspect is only interested
in the occurrence of a particular subset of events, i.e. those
events that are applicable given the aspect’s state. Con-
sequently, the presence of woven code at those join points
that are not applicable only induces a performance over-
head. Static weaving of stateful aspects also results in a
severe limitation in expressiveness because the possible join
points need to be known at compile-time. Some stateful as-
pects however require to compute the applicable join points
at run-time. For instance, reconsider the case of the simple
publish/subscribe protocol. In some cases, a decision about
the events that should be published can only be taken upon
subscribing (i.e. at run-time). This means that the aspect
can only be woven at the required join points after the sub-
scription event.

To resolve these problems, we propose to weave stateful as-
pects at run-time. Instead of statically weaving code at any
possible join point that might be required for the execution
of the stateful aspect, the aspect is only woven at the ap-
plicable join points at run-time. In essence, when a stateful
aspect changes state (because an event expressed in the pro-
tocol has occurred), the run-time weaver unweaves the code
at those join points in which the aspect is no longer inter-
ested and reweaves it at the appropriate join points. This
realizes a real jumping aspect that literally jumps from join
point(s) to join point(s). As a result, no unnecessary wo-
ven code is left at inapplicable join points. Furthermore, a
run-time weaver provides the opportunity to determine the
join points at run-time. Also notice that when the aspect
is no longer applicable, it is completely unwoven and thus
does not cause a performance overhead any longer. Previous
work by Costanza [6] also motivates that aspects should be
able to vanish.

Run-time weaving thus provides a natural and efficient tech-
nique for the realization of stateful aspects. Of course,
run-time weaving itself also causes a significant performance
overhead. Nevertheless, for stateful aspects that do not re-
quire frequent reweaving (i.e. do not change state very of-
ten), the performance gain from the absence of woven code
at unnecessary join points can be far greater than the per-
formance loss induced by run-time weaving.

3. JASCO LANGUAGE
3.1 Introduction
The JAsCo [28] AOP approach is an aspect-oriented ex-
tension for Java that allows for a clean modularization of
crosscutting concerns. The JAsCo language tries to stay as
close as possible to the original Java syntax and concepts,
and introduces only two new entities, namely Aspect Beans
and Connectors. An aspect bean is an extended version of

1 class PublishManager {
2
3 // Bookkeeping/notification code
4 void addListener(MethodListener ml) { ... }
5 void notifyListeners(String methodname, Object[] args) { ... }
6
7 hook Publish {
8 Publish(topublish(..args)) {
9 execute(topublish);
10 }
11
12 after() {
13 notifyListeners(thisJoinPoint.getMethodName(), args);
14 }
15 }
16 }

Figure 1: A JAsCo aspect bean for simple publish
behavior

a regular Java Bean that allows describing crosscutting con-
cerns independently of concrete component types and APIs.
JAsCo connectors on the other hand are used for deploying
one or more reusable aspect beans within a concrete com-
ponent context and provides support for describing their
mutual interactions.

The JAsCo language is illustrated by implementing the sim-
ple publication behavior that was mentioned in the previ-
ous section. Suppose the execution of certain methods of
a component should be published to interested listeners. It
should however be avoided to tangle the components logic
with code that manages this publication system. JAsCo al-
lows to specify this behavior as a reusable aspect bean that
is illustrated in figure 1. Note that an aspect bean looks very
similar to a regular Java Bean, and likewise implements a
number of ordinary Java class members. In addition, one or
more hook definitions that implement the crosscutting be-
havior can be specified. For example, the PublishManager

aspect bean contains a number of standard methods to man-
age and notify the listeners (lines 3-5), and a Publish hook
(lines 7-15) that is responsible for invoking the notification
after the execution of a relevant method. A hook has one
or more constructors that specify in an abstract way when
the behavior should be triggered, and one or more advice
methods (before, around, after . . .) that specify what
this behavior consists of. In this case, the constructor (lines
8-10) outlines that the hook behavior applies to the execu-
tion of the abstract method topublish. The after() advice
method (lines 12-14) then specifies that, after this event, the
listeners should be notified of the method name and the ar-
guments.

JAsCo’s abstract and reusable aspect beans are deployed
onto a concrete component context by making use of con-
nectors. Each connector allows to explicitly instantiate and

1 static connector PublishUpdates {
2
3 PublishManager.Publish publish =
4 new PublishManager.Publish(void ComponentX.update*(*));
5
6 publish.after();
7
8 }

Figure 2: A JAsCo connector for the publishing of
updates

2

initialize one or more logically related hooks. Figure 2 il-
lustrates a connector that instantiates the Publish hook of
figure 1 onto the update methods of the ComponentX com-
ponent. This is realized by passing these methods as a
wildcard to the hook constructor (lines 3-4). A connector
additionally allows to select and order the behavior meth-
ods of the instantiated hooks. In this case, it is specified
that the after() advice method of the Publish hook should
be executed whenever a join point of this hook is encoun-
tered (line 6). As a result of the declarations in the connec-
tor, the Publish hook is applied to the update methods of
ComponentX, and as such, registered listeners will be notified
after the execution of these methods.

Now consider an extension of the PublishManager aspect
bean where this publication only occurs after a certain sub-
scribe method has been executed. To capture this behav-
ior using traditional (stateless) aspect facilities, we have to
manually implement code that maintains a state regarding
this condition. This approach is illustrated in figure 3, where
the extended ConditionalPublishManager aspect bean is
presented. It contains two hooks: the new Subscribe hook
is responsible for setting the subscribed instance variable
to true after the execution of an abstract subscribe method,
and the ConditionalPublish hook extends the Publish hook
to make the publishing behavior apply only when the state
variable subscribed is true. In the specification of these
hooks, the usage of the isApplicable() hook method is
crucial. This JAsCo language construct allows to describe
a run-time condition for a hook as the advices are only exe-
cuted when the body of this method evaluates to true (sim-
ilar to the if pointcut construct in AspectJ). For the first
hook, the isApplicable() method in line 10 specifies that
the hook should not execute when the subscribed variable
already has a true value. For the second hook, the method
in line 18 specifies that the publishing behavior should only
apply when the subscribed variable reflects a subscribed
state. As no other elements of the Publish hook are modi-
fied, they can be inherited as such.

Although it is possible to implement the desired functional-
ity using only stateless aspect facilities, this is quite a cum-
bersome and error-prone task, since it requires to capture

1 class ConditionalPublishManager extends PublishManager {
2
3 boolean subscribed = false;
4
5 hook Subscribe {
6 Subscribe(subscribe(..args)) {
7 execute(subscribe);
8 }
9
10 isApplicable() { return !subscribed; }
11
12 after() {
13 subscribed = true;
14 }
15 }
16
17 hook ConditionalPublish extends Publish {
18 isApplicable() { return subscribed; }
19 }
20 }

Figure 3: An extended JAsCo aspect bean for con-
ditional publish behavior

each state in a separate hook and involves adding code to
maintain variables regarding this state. In the next sec-
tion, a stateful extension to the JAsCo language is presented
which solves these problems by allowing the developer to de-
claratively specify a protocol of expected pointcuts.

3.2 Stateful Aspects Language
Mainstream aspect-oriented approaches rarely support pro-
tocol history conditions. In many cases, it is only possible
to refer to previous join points when they still have an acti-
vation record on the stack (i.e. using the cflow() keyword
in AspectJ). In order to solve this limitation, Douence et
al. [8] propose a formal model for aspects with general pro-
tocol based triggering conditions, named stateful aspects. In
this section, we illustrate how the JAsCo language is ex-
tended with stateful pointcut expressions, based on this for-
mal model.

1 class StatefulPublishManager extends PublishManager {
2
3 hook PublishSubscribe {
4
5 PublishSubscribe(subscribe(..args),
6 topublish(..args)) {
7
8 Waiting: execute(subscribe) > Publish;
9 Publish: execute(topublish) > Publish;
10 }
11
12 after Publish() {
13 notifyListeners(thisJoinPoint.getMethodName(), args);
14 }
15 }
16 }

Figure 4: A JAsCo stateful aspect bean for the sim-
ple subscribe/publish protocol

To illustrate the JAsCo stateful aspects syntax, reconsider
the simple publish-subscribe protocol from the previous sec-
tions. Only when a subscription event occurred, the as-
pect should start publishing. Figure 4 illustrates how this
protocol can be declaratively described by making use of
the JAsCo stateful aspect language. The constructor of
the stateful hook PublishSubscribe (line 5-10) describes
a protocol-based pointcut expression. Every line in the con-
structor defines a new transition within the protocol. Each
transition is labeled with a name (e.g. Waiting), defines
a JAsCo pointcut expression (e.g. execute(subscribe))
and specifies one or more destination transitions that are
matched after the current transition is fired. A transition
fires when its pointcut expression evaluates to true. For ex-
ample, the Waiting transition only fires whenever the con-
crete method(s) bound to the abstract method parameter
subscribe are executed. In that case, transition Publish

is activated and will be evaluated for the subsequent join
points encountered during the application’s execution.

A stateful aspect always starts by evaluating the first defined
transition. As a result, a protocol subscribe-topublish is
described. In between the fired transitions, other join points
can also be encountered. As such, a sequence of events
methodY-subscribe-methodX-topublish is also a valid in-
stance for the defined protocol and will trigger the associated
transitions.

On every transition defined in the stateful constructor, ad-

3

vices can be attached which are executed whenever the tran-
sition is fired. For example, the after Publish advice (line
12-14) is only triggered whenever the transition Publish is
fired. In other words, the advice is executed whenever the
concrete method(s) bound to the abstract method parame-
ter topublish are executed in that state of the stateful as-
pect. To sum up, the stateful PublishSubscribe hook will
only start notifying interested subscribers when a subscrip-
tion event occurred.

Figure 5 illustrates how the stateful aspect of figure 4 is
instantiated and deployed using a JAsCo connector. This
example is similar to the connector of figure 2 as it bounds
the abstract method topublish to the update methods of
ComponentX. Additionally, the subscribe abstract method
parameter is bound to a concrete subscription method of
a certain PSComponent. Consequently, as soon as this sub-
scription method has been executed, the aspect will start
intercepting update methods on ComponentX and will start
notifying its registered listener(s).

1 static connector PSConnector {
2 StatefulPublishManager.PublishSubscribe ps =
3 new StatefulPublishManager.PublishSubscribe(
4 boolean PSComponent.subscribe(),
5 void ComponentX.update*(*)
6);
7 }

Figure 5: The JAsCo connector for deploying the
stateful PublishSubscribe hook.

3.3 Advanced Language Features
In addition to attaching advices on each transition sepa-
rately, it is also possible to describe global advices that are
triggered for all fired transitions. In this case, the advice
is specified as usual, but the transition label is omitted. It
is also possible to attach a specific isApplicable method
to a particular transition in the protocol. Hence, the tran-
sition will only fire when both the pointcut expression and
the isApplicable condition evaluate to true. Likewise to
advices, a global isApplicable condition can be specified
which is applied to all transitions. In that case, transi-
tions are only fired when they satisfy their pointcut expres-
sion and both the global and local isApplicable conditions.
The following code fragment shows both a global and local
isApplicable condition.

1 isApplicable() {
2 // global condition for all transitions
3 }
4 isApplicable XTrans() {
5 // local condition only relevant for the transition XTrans
6 }

The JAsCo stateful aspects constructor can also specify mul-
tiple destination transitions for a given transition. The syn-
tax is illustrated in the code fragment below. After firing
the XTrans transition, both the YTrans and QTrans transi-
tions are evaluated for subsequent encountered join points
(line 4). Note that the destination transitions are evalu-
ated in the sequence defined in the destination expression.
As such, when both the YTrans and QTrans transitions are
applicable for a given join point, only the YTrans transition
will be fired and only the YTrans destination transitions will

be evaluated for subsequent encountered join points. This
allows to keep the protocol deterministic and efficient to exe-
cute. It is also possible to omit a destination transition for a
certain transition. In that case, when the transition fires, no
more transitions need to be evaluated and the aspect van-
ishes. This concept is illustrated by the QTrans transition
(line 6). Also notice that this transition describes a more
involved pointcut designator using the cflow keyword.

In case the stateful aspect requires to start by evaluating
more than one transition, the start keyword can be em-
ployed. This keyword is followed by a list of starting transi-
tions for matching join points when the aspect is deployed.
Multiple start transitions are specified similarly to multiple
destination transitions, by using || as delimiters. When no
start transition is specified, the first defined transition is
used as the starting one.

1 //starting with two transitions:
2 start > XTrans || QTrans;
3 //two destination transitions:
4 XTrans: execute(methodA) > YTrans || QTrans;
5 //no destination transition:
6 QTrans: execute(methodB) && !cflow(methodC);
7 YTrans: execute(methodC) > YTrans;

The syntax proposed in the previous paragraphs provides a
way for specifying powerful protocols but might be too te-
dious in case of simple protocols. Therefore JAsCo also sup-
ports a simpler syntax for protocols that do not require mul-
tiple destination transitions for a given transition. The fol-
lowing code fragment illustrates a constructor that is equiv-
alent to the constructor of figure 4. Labeling transitions is
still possible in order to be able to attach local advices to
specific transitions.

1 PublishSubscribe(subscribe(..args), topublish(..args)) {
2 execute(subscribe) > Publish: execute(topublish) > Publish;
3 }

The JAsCo stateful aspect language also supports triggering
aspects on the opposite (complement) of a protocol. Fur-
thermore, JAsCo stateful aspects are non-strict per default,
i.e. they allow non-specified intermediate transitions. Spec-
ifying strict protocols is also supported. The discussion of
these features is however outside of the scope of this pa-
per. The interested reader is referred to [30, 15] for more
information.

3.4 Implementing Stateful Aspects
A naive approach to realize a stateful aspect would be to
weave it at all possible join points defined within its protocol.
This induces a performance overhead at all these join points,
while the stateful aspect is only interested in a limited set of
join points corresponding to the subsequent transitions that
are to be evaluated. In order to implement stateful aspects
more efficiently, a genuine run-time weaver is required which
is able to reweave the stateful aspect each time a transition
is fired.

Another major problem with statically weaving stateful as-
pects is that the pointcuts have to be defined in advance.

4

As argued in section 2, it would be interesting to dynami-
cally decide the concrete join points that have to be used for
triggering the subsequent transitions. In that case, a static
binding of the abstract method parameters of the hook con-
structor is not possible and a run-time weaver is necessary
for reweaving the stateful aspect after a transition has fired.

To address these shortcomings, we propose to employ a run-
time weaver. The following sections introduce the JAsCo
run-time weaver and explain how stateful aspects are imple-
mented employing this weaver.

4. TOWARDS RUN-TIME WEAVING
The JAsCo technology was originally trap-based. At every
join point a trap is inserted that defers execution to the
JAsCo run-time infrastructure. This infrastructure will trig-
ger any aspects that apply to the join point or, when no
aspects are applicable, it will return to the normal execu-
tion. As such, dynamic aspect addition and removal be-
comes possible because the aspects behavior itself is not sta-
tically woven. The JAsCo distribution contains a preproc-
essor tool that inserts traps at all possible join points be-
fore run-time by transforming the necessary classes. These
transformations are performed through the byte-code adap-
tation library Javassist [5]. The main problem of this pre-
processing approach is performance. Applications equipped
with JAsCo traps execute often more than ten to twenty
times slower than the original, which is unacceptable. This
overhead stems in part from the naive interception system,
namely inserting traps at all possible join points.

In order to improve the performance of JAsCo, the JAsCo
HotSwap framework [29] is introduced. HotSwap is a custom-
made byte-code instrumentation framework that allows al-
tering the byte-code of a class, even if it is already loaded
into the virtual machine. As such, it is possible to install
traps just-in-time when a new aspect is added to the sys-
tem. Likewise, the original method byte-code is re-installed
when the aspect is removed and no other aspect are ap-
plicable. JAsCo HotSwap has two different implementa-
tions, depending on the virtual machine version. For Java
1.4, HotSwap employs the Java Debugging Interface (JDI)
to dynamically replace classes. When a 1.5 compatible vir-
tual machine is detected, HotSwap employs the novel Java
Programming Language Instrumentation Services (JPLIS)
API, which avoids running the virtual machine in debug-
ging mode. Both libraries are standard libraries available
in most standalone (i.e. not embedded) virtual machine im-
plementations, making JAsCo perfectly portable over a wide
range of platforms. They also make sure that the applica-
tion is left in a consistent state after byte-code of a class has
been replaced. The byte-code manipulations themselves are
also performed through the Javassist library.

In principle, JAsCo HotSwap already suffices to efficiently
implement stateful aspects as it allows to only insert traps to
join points where the stateful aspect is currently interested
in. However, by inserting traps that refer to the JAsCo run-
time infrastructure, the performance of JAsCo is still not
optimal. In several benchmark experiments, the JAsCo ad-
vice execution performance is measured [29, 15] to be five
to ten times slower than the statically woven language As-
pectJ. This overhead is mainly caused by the additional in-

direction these traps impose. In addition, the traps have a
fixed implementation for every possible advice attached, so
they have to capture all possible relevant run-time informa-
tion. However, capturing the actual arguments in an array
for instance, is a very expensive operation. When the ac-
tual arguments are not required in the advices, a substantial
performance gain can be realized by avoiding capturing this
run-time information.

4.1 The JAsCo Run-Time Weaver
In order to improve the run-time performance of JAsCo
AOP, a run-time weaver is proposed. Instead of inserting
traps, a highly optimized code fragment is inserted into the
target join points. This code fragment directly invokes all
applicable advices in the correct sequence and thus avoids
the indirection through the JAsCo run-time infrastructure.
The JAsCo approach is however a dynamic AOP approach.
As such, the woven join point behavior might become in-
valid. This event occurs when a connector is added that
instantiates a hook that is applicable on a join point where
aspects are already attached or when a connector is removed
that contains an applicable hook for such a join point. In ad-
dition, it is possible to change some properties of a connector
dynamically so that the applicable context of the instanti-
ated hooks is altered. The JAsCo run-time weaver is able to
cope with these issues. When no advices are applicable any
longer, the original byte-code of the method is reinstalled.

Generating optimized code for a target join point is not al-
ways achievable because some pointcut expressions have to
be re-evaluated for every execution of the join point (pre-
cisely because of the dynamic join point model). For exam-
ple, when a hook defines a cflow condition in its constructor,
this constructor has to be re-evaluated for every execution
of a join point. The entire constructor body does not have
to be re-evaluated however. In this case, only the result of
the cflow condition is able to change for different executions
of the join point. As such, partial evaluation techniques are
used to cache a partially evaluated constructor. In addition,
for the particular cflow construct, it is sometimes possible
to statically analyze whether the condition might ever be
true or not by examining the call graph of an application.
This technique is elucidated in [26].

Another major optimization of the JAsCo run-time weaver
consists of detecting which static and dynamic reflective join
point information the aspects might require. Suppose for in-
stance that an aspect only requires the method name of the
current join point. In that case, most AOP implementations
still capture all actual arguments in an array, which is a very
expensive operation, even though they are not required. The
JAsCo aspect bean compiler analyzes in detail which contex-
tual join point information is required and stores this infor-
mation in the compiled aspect so that the run-time weaver
can exploit this. If the applicable aspects at a join point only
require the method name for instance, only this information
is captured. Obviously, because this detection happens at
compile-time, it has to be conservative and thus might still
capture too much. For example, if a logging advice contains
a dynamic test for selecting whether it logs only the method
name or also the arguments, the advice is analyzed to re-
quire the actual arguments and the method name, while in
some cases it only requires the method name. Nevertheless,

5

this analysis allows for a significant optimization in a large
number of cases.

The main drawback of the run-time weaver is the increased
run-time overhead for adding and removing aspects. In the
trapped approach, when a trap is already placed, adding a
new aspect does not require any HotSwap overhead what-
soever. Also, even if a new trap has to be inserted, this is a
lot less costly than weaving because the code for the trap it-
self remains constant whereas with run-time weaving, a new
code fragment has to be computed for each individual join
point. In order to address this overhead, JAsCo is still able
to combine the regular preprocessing approach with the run-
time weaver and even with the trapped HotSwap approach.
Classes that are preprocessed to include traps are never sub-
ject to run-time weaving. In addition, it is possible to define
a global function that dynamically decides whether a trap is
inserted or whether the run-time weaver is employed. This
function has the following signature:

boolean inlineCompile(JoinPoint jp, Vector hooks)

When the method returns true, the run-time weaver is em-
ployed, otherwise a trap is inserted. Both reflective infor-
mation about the join point and the list of applicable hooks
are available for deciding whether run-time weaving is ap-
propriate. As such, a heuristic function can be implemented
that for example only activates the run-time weaver for join
points that are executed more than twenty times in the
past second. JAsCo thus effectively combines and integrates
three alternative aspect weavers.

4.2 Performance Evaluation
In order to evaluate the performance of the novel JAsCo
run-time weaver, we employ the AWBench [17] benchmark1.
This benchmark is a project of the AspectWerkz team and
is especially created to compare the performance of dynamic
AOP systems. AWBench is a micro benchmark and consists
of 12 tests, all advising a single method in a different way.
Every test is executed two million times and the average ex-
ecution time of the method is recorded. When a certain test
is not directly supported by the AOP approach, it is simu-
lated using the best available alternative (e.g. when no af-
ter throwing advice is available, it is simulated using around
advice). We compared the performance of JAsCo with the
following AOP approaches: AspectJ 1.2 [19], JBoss/AOP
1.0 [16], AspectWerkz 2.0 [18], Spring/AOP 1.1.1 [27], dy-
naop 1.0 Beta [11] and cglib 2.0.2 [4]. The next paragraph
shortly introduces the technologies employed in each of these
approaches. Notice that this selection is not meant as a
comprehensive overview of dynamic AOP approaches. Nev-
ertheless it includes a significant portion of the practically
used dynamic AOP systems.

AspectJ and AspectWerkz both use a traditional weaver
that invasively weaves the aspects into the target classes
at run-time. Similar to JAsCo, AspectWerkz also features a
genuine run-time weaver while AspectJ is limited to compile-
time weaving. JBoss/AOP uses an approach similar to the
original JAsCo technology, namely inserting traps to all ad-

1The AWBench distribution including JAsCo can be down-
loaded here: http://ssel.vub.ac.be/jasco/awbench

vised join points. In contrary to JAsCo, the traps are in-
stalled at load-time and can never be removed. As such,
at join points where no traps are attached, dynamic as-
pect interference is impossible. Spring/AOP and dynaop are
two proxy-based approaches that employ the Java Dynamic
Proxies feature to dynamically attach advices to objects.
Dynamic Proxies are instance-based, so it is easily possi-
ble to only advice one object of a certain class. The main
drawback however is that class-based aspect application is
more difficult to realize. In addition, Dynamic Proxies in-
duce a relatively high performance overhead. cglib (Code
Generation Library) is not an AOP framework per se, but a
byte-code adaptation library with extensive AOP features.

Figure 6 on page 7 illustrates the results of running the AW-
Bench with the introduced approaches. The performance of
JAsCo using the trapped approach to attach aspects is also
measured. Notice the logarithmic scale of the results to fit
all results in one clear chart. In all benchmarks the three ap-
proaches that use weaving (JAsCo, AspectJ, AspectWerkz)
perform significantly better than the others. In the most
simple before advice for example, JAsCo executes more than
a hundred times faster than Spring/AOP. The trapped ap-
proaches (JBoss/AOP and JAsCo no-RTW) perform worse
than weaving but still execute considerably faster than the
proxy-based approaches (Spring/AOP and dynaop).

For the before advices where the run-time context is fetched
declaratively, the three woven approaches perform equally
well. All three optimize the join point interception to only
fetch that data that is requested. When reflection is used
however, JAsCo is able to improve on both AspectWerkz
and AspectJ. This is because JAsCo has a fine-grained re-
quired context detection, also when it is reflectively queried.
thisJoinPoint vs. thisJoinPointStaticPart is the only
difference accounted for by AspectJ and AspectWerkz. When
thisJoinPoint is employed, all possible run-time context in-
formation (target object and type, caller object and type,
actual arguments and types, etc...) is stored, whereas only
a fraction of this dynamic information might be effectively
required.

In addition, when several advices are combined or when an
around advice is employed JAsCo seems to improve more
significantly on AspectJ and certainly on AspectWerkz. In
all the other tests JAsCo, AspectJ and AspectWerkz are
very close. As such, it seems that the performance of compile-
time and run-time weaving approaches converges and prob-
ably a boundary of traditional weaving has been reached.
In any case, the run-time performance of JAsCo has been
improved quite considerably when comparing it with the
trapped approach and thus the goal of the run-time weaver
has been accomplished.

4.3 Implementing Stateful Aspects using the
Run-Time Weaver

The previous paragraphs motivate and explain the JAsCo
run-time weaver. As explained before, stateful aspects also
particularly benefit from run-time weaving. A naive ap-
proach for integrating a stateful aspect would be weaving
it at all possible join points defined within the protocol.
This induces a performance overhead at all these join points,
while the stateful aspect is only interested in a limited set of

6

Unadviced

JAsCo

AspectJ

AspectWerkz

CgLib

JAsCo noRTW

JBOSS/AOP

DynAOP

Spring/AOP

1 10 100 1000

Before Advice

No Context Access

Reflective Method Name

Access

Reflective Target Object

Access

Joinpoint Execution Time (ns)

Unadviced

JAsCo

AspectJ

AspectWerkz

CgLib

JAsCo noRTW

JBOSS/AOP

DynAOP

Spring/AOP

1 10 100 1000

Before Advice

Declarative Args Access

(primitive types)

Declarative Args Access

(Object types)

Declarative Args Access

(Object types) + Declarative

Target Object Access

Joinpoint Execution Time (ns)

Unadviced

JAsCo

AspectJ

AspectWerkz

CgLib

JAsCo noRTW

JBOSS/AOP

DynAOP

Spring/AOP

1 10 100 1000

Around Advice

Reflective Target Object

Access

Reflective Method Name

Access

Joinpoint Execution Time (ns)

Unadviced

JAsCo

AspectJ

AspectWerkz

CgLib

JAsCo noRTW

JBOSS/AOP

DynAOP

Spring/AOP

1 10 100 1000

 Combining Advice

Before+After

Stacked 2 Around, Declarat-

ive Args and Target Object

Access

Joinpoint Execution Time (ns)

Unadviced

JAsCo

AspectJ

AspectWerkz

CgLib

JAsCo noRTW

JBOSS/AOP

DynAOP

Spring/AOP

1 10 100 1000 10000 100000

After Returning/Throwing

After Returning

After Throwing

Joinpoint Execution Time (ns)

Figure 6: AWBench benchmark results run on a PENTIUM4, 2GHZ, 256 RAM with Ubuntu Linux 4.10,
Java 1.5.0 update 1. Notice the logarithmic scale of the timings in order to keep every result readable.

join points corresponding to the subsequent transitions that
are to be evaluated. By employing the run-time weaver, it
is possible to only weave the stateful aspect at those join
points where the aspect is currently interested in. When a
transition is fired, the weaver unweaves the aspect at the join
points associated with the current transition and weaves it
back in at the join points relevant for the subsequent tran-
sitions. As such, a real jumping aspect is realized. Notice
that when the aspect vanishes because no subsequent tran-
sitions are defined, it is completely unwoven. As a result, no
performance overhead for the aspect is endured any longer.

The weaving process itself does however also require a sig-
nificant overhead. Therefore, when a given protocol is en-
countered many times in a short time interval, it might be
more efficient to weave the aspect at all possible join points
of the protocol instead of weaving and unweaving it on-the-
fly. This can be configured in JAsCo by using the novel
Java 1.5 annotations (meta-data). When the @WeaveAll an-
notation is supplied to the hook, as illustrated by the code
fragment below, the run-time weaver weaves the aspect at
all join points and never unweaves it unless the aspect itself
is manually removed or vanishes.

1 @jasco.runtime.aspect.WeaveAll
2 hook StatefulHook { ...

In order to implement the stateful pointcut itself, the point-
cut is translated to a Deterministic Final Automaton (DFA)
[13]. The JAsCo stateful aspects language is equivalent to a
DFA because every expression defines one DFA transition,
two DFA states and possibly several connection DFA tran-
sitions for the destinations. Therefore, the JAsCo compiler

compiles a stateful aspect constructor to a DFA that is in-
terpreted at run-time. Every transition of a DFA contains
a representation of the pointcut definition and possibly an
isApplicable condition. When a join point is encountered,
the outgoing transitions of the current state are evaluated
with the given join point and when a match is encountered,
the state machine moves to the destination state. When this
event occurs, all associated advices are executed and the as-
pect is rewoven to the new join points corresponding to the
outgoing transitions of the destination state. Because of this
implementation strategy, a stateful aspect can be executed
very efficiently. It suffices to check only the transitions of the
current state, as JAsCo stateful aspect protocols are regular
and can be interpreted by a regular DFA. When non-regular
protocols are allowed, a history of all relevant encountered
events should be maintained, which is very expensive.

5. RELATED WORK
The emerging stateful aspect research is still quite young and
at the moment not many AOP approaches support its ideas
and concepts. Douence et al. are the first ones to propose an
extension of their formal aspect model [7], to support state-
ful aspects [8]. The advantage of having a formal model
is that it allows to automatically deduce possible malicious
interactions among aspects. Furthermore, the model sup-
ports the composition of stateful aspects using well-defined
composition operators. A proof of concept implementation
of this model, based on static program transformations, is
available [9]. JAsCo improves upon this implementation,
as only a subset of join points needs to be woven, whereas
a static approach requires to weave all possible join points
defined within the protocol.

7

Walker et al. introduce declarative event patterns (DEPs)
[31] as a means to specify protocols as patterns of multi-
ple events. Here, AspectJ aspects are augmented with spe-
cial DEP constructs that can be advised. Their approach
is based on context-free grammars, and involves a transfor-
mation of the DEP constructs into regular AspectJ aspects
that contain an event parser. While DEPs can recognize
properly nested events and thus possess an even higher de-
gree of declarative expressibility than the JAsCo approach,
they only provide the ability to attach advice code to the
entire protocol. Separate transitions of the protocol can as
such not be advised, and several overlapping protocols are
required to mimic JAsCo stateful aspect behavior. Further-
more, the fact that DEPs lose their identity in a preprocess-
ing step that reduces them to standard aspects, rules out
the possibility for optimizations by a weaver that analyzes
the feasible transitions of the protocol.

Finally, Masuhara et al. [20] propose an extension of the
AspectJ pointcut language to identify join points which are
based on the data flow of values within an application. Their
novel dflow pointcut designator allows to declaratively spec-
ify that a particular join point can only match if its argu-
ments are originating from the arguments/return value of a
previously encountered join point. By explicitly declaring
this preferred data flow, this mechanism allows specifying
a more precise pointcut then possible using the current As-
pectJ pointcut designator language. Although a data flow
aspect is not completely similar to a stateful aspect, this
research illustrates the need for a mechanism that allows
the specification of aspect behavior defined in terms of the
history of previously encountered join points. It should how-
ever be mentioned that JAsCo stateful aspect are also able
to capture data flow pointcuts. This however requires a
programmatic approach, which is not as declarative as the
approach proposed by Masuhara et al.

Apart from the dynamic AOP technologies employed during
our performance evaluation, several other AOP approaches
have been introduced for enabling dynamic AOP. Many of
these approaches make use of traps and a corresponding
registry infrastructure for dynamically (un)weaving aspects.
Event-based aspect oriented programming (EAOP) for in-
stance, allows specifying crosscutting concerns by employ-
ing event patterns which are described using a formal lan-
guage [10]. On the implementation level, EAOP inserts
traps that query a central execution monitor that has a
global view of the executing application and which con-
tains all active EAOP artifacts. In contrast to JAsCo how-
ever, EAOP inserts these traps by employing source-code
transformations, which obstruct performance optimizations.
JAC [21] also make use of traps. Here, these traps are auto-
matically inserted at load-time of the application by making
use of byte-code transformations. The Dynamic Aspect-
Oriented Platform (DAOP) [22] is an approach that targets
legacy component-based systems and allows flexible applica-
tion of aspects at run-time. DAOP introduces a distributed
platform, where a middleware layer is employed for stor-
ing the aspect composition information. DAOP does not
require any component adaptation and allows aspects to re-
main first-class entities at run-time.

PROSE [24] and Wool [25] both employ the Java Virtual

Machine Debugging Interface (JVMDI) for intercepting the
program’s execution. A dedicated execution monitor is de-
ployed on top of the JVMDI, which allows capturing the
relevant execution events. Whenever an event is encoun-
tered where an aspect is applied upon, the corresponding
aspect behavior is triggered. Wool improves upon PROSE,
as it also allows to invasively insert join points. In addi-
tion, aspects are able to implement their own heuristics for
deciding whether they should be invasively inserted or not.
The Wool heuristics improve on JAsCo as they can be cus-
tomized on a per-aspect basis whereas in JAsCo only one
global heuristics function can be specified.

PROSE2 [23] and Steamloom [2] both aim at achieving an
aspect-aware Java Virtual Machine in order to boost the
run-time performance of AOP. PROSE2 proposes a next-
generation implementation for the original PROSE approach,
this by incorporating the execution monitor for joint points
into the virtual machine itself. This execution monitor is
then responsible for notifying the AOP engine which exe-
cutes the corresponding advices. Steamloom is implemented
as an extension of IBM’s Jikes Research Virtual Machine [14]
and employs its adaptive optimization system for decorat-
ing the base application with aspects. Similar to JAsCo,
this mechanism allows for the structure-preserving compi-
lation of reusable aspects which are explicitly deployed at
run-time. The main advantage over a run-time weaver is
that it avoids the weaving overhead, which makes it very
suitable when aspects are deployed and removed frequently.

Filman [12] finally proposes dynamic injectors in order to
introduce aspects within an application. These dynamic in-
jectors are incorporated into the OIF (Object Infrastructure
Framework), a CORBA centered aspect-oriented system for
distributed applications. Dynamic injectors are first-class
objects that can be added and adapted at run-time. At the
implementation level, a wrapping approach is employed for
injecting the logic of an aspect within a component commu-
nication channel.

6. CONCLUSIONS AND FUTURE WORK
This paper presents an extension of the JAsCo language
that allows to declaratively specify a regular protocol frag-
ment pointcut. Advices can be attached to each transition
in the protocol. Furthermore, we present the JAsCo run-
time weaver, of which the run-time performance is able to
compete with current state-of-the-art AOP. In this paper
we claim that stateful aspects benefit from run-time weav-
ing because 1) they can be executed faster and 2) dynamic
pointcut introduction becomes possible. By implementing
stateful aspects using the JAsCo run-time weaver, genuine
jumping aspects are realized that jump from join point(s) to
join point(s) depending on the state of the aspect. It is even
possible that the aspect vanishes when no new join points
are defined for a certain state.

A limitation of the current stateful aspects language is that
it only supports regular protocols. Protocols that require
a non-regular language (like for example n times A; B; n

times C, where n can be a different number in every oc-
curance of the protocol), cannot be represented. For in-
stance, in order to enhance the example of figure 4 with an
unsubscribe transition so that the aspect is unwoven when

8

no subscribers are present, a non-regular protocol has to be
used because the aspect has to wait for an equal amount of
unsubscriptions as subscriptions before it can be unwoven.
The advantage of keeping the protocols regular is that they
can be efficiently evaluated using a DFA. A naive implemen-
tation of a non-regular protocol would require to keep the
complete history of all encountered join points in memory,
which is not very practical. In literature, several domain-
specific optimization techniques for interpreting non-regular
languages have been proposed [1]. Extending the JAsCo
stateful aspects language to non-regular protocols while still
allowing an efficient implementation is subject for future
work.

Another intesting area for future work consists of developing
heuristics for deciding whether the run-time weaver has to
be used or whether the trapped approach is desired. As
such, the performance of JAsCo-enabled applications can
be automatically tweaked. For long running applications, it
could be even possible to exploit learning strategies in order
to learn the most optimal heuristic.

7. ACKNOWLEDGEMENTS
Bruno De Fraine and Davy Suvée are supported by a doc-
toral scholarship from the Institute for the promotion of
Innovation by Science and Technology in Flanders in the
Industry (IWT).

8. REFERENCES
[1] J. Aycock and N. Horspool. Schrodinger’s token.

Software Practice and Experience, 31(8), 2001.

[2] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.
Virtual machine support for dynamic join points. In
Proceedings of AOSD, Lancaster, UK, Mar. 2004.

[3] J. Brichau, W. D. Meuter, and K. D. Volder. Jumping
aspects. In Workshop on Aspects and Dimensions of
Concerns (ECOOP 2000), June 2000.

[4] cglib. cglib Project. http://cglib.sourceforge.net/.

[5] S. Chiba. Load-time structural reflection in Java. In
Proceedings of ECOOP, LNCS, Cannes, France, July
2000.

[6] P. Costanza. Vanishing aspects. In Workshop on
Advanced Separation of Concerns (OOPSLA 2000),
Oct. 2000.

[7] R. Douence, P. Fradet, and M. Südholt. A framework
for the detection and resolution of aspect interactions.
In Proceedings of GPCE, Pittsburgh, USA, Oct. 2002.

[8] R. Douence, P. Fradet, and M. Südholt. Composition,
reuse and interaction analysis of stateful aspects. In
Proceedings of AOSD, Lancaster, UK, Mar. 2004.

[9] R. Douence, P. Fradet, and M. Südholt. Trace-based
aspects. Aspect-Oriented Software Development, Sept.
2004.

[10] R. Douence, O. Motelet, and M. Südholt. A formal
definition of crosscuts. In Proceedings of
REFLECTION, Kyoto, Japan, Sept. 2001.

[11] dynaop. dynaop Project. http://dynaop.dev.java.net/.

[12] R. Filman. Applying aspect-oriented programming to
intelligent systems. In Position paper at the ECOOP
2000 workshop on Aspects and Dimensions of
Concerns, Cannes, France, June 2000.

[13] J. Hopcroft, R. Motwani, and J. Ullman. Introduction
to Automata Theory. Addison Wesley, 2st edition,
2001.

[14] IBM. The Jikes Research Virtual Machine.
http://www-
124.ibm.com/developerworks/oss/jikesrvm.

[15] JAsCo. JAsCo Distribution Website.
http://ssel.vub.ac.be/jasco.

[16] JBoss Inc. JBoss/AOP Project.
http://www.jboss.org/developers/projects/jboss/aop.

[17] Jonas Bonér and Alexandre Vasseur. AspectWerkz
AWBench Project.
http://docs.codehaus.org/display/AW/AOP+Benchmark.

[18] Jonas Bonér and Alexandre Vasseur. AspectWerkz
Project. http://aspectwerkz.codehaus.org/.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen,
J. Palm, and G. Griswold. An overview of AspectJ. In
Proceedings of ECOOP, Budapest, Hungary, June
2001.

[20] H. Masuhara and K. Kawauchi. Dataflow pointcuts in
aspect-oriented programming. In Proceedings of
APLAS, Bejing, China, Nov. 2003.

[21] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A flexible solution for aspect-oriented
programming in Java. In Proceedings of
REFLECTION, Kyoto, Japan, Sept. 2001.

[22] M. Pinto, L. Fuentes, M. Fayad, and J. Troya.
Separation of coordination in a dynamic aspect
oriented framework. In Proceedings of AOSD,
Enschede, The Netherlands, Apr. 2002.

[23] A. Popovici, G. Alonso, and T. Gross. Just-in-time
aspects: efficient dynamic weaving for Java. In
Proceedings of AOSD, Boston, USA, Mar. 2003.

[24] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In
Proceedings of AOSD, Enschede, The Netherlands,
Apr. 2002.

[25] Y. Sato, S. Chiba, and T. Michiaki. A selective,
just-in-time aspect weaver. In Proceedings of GPCE,
Erfurt, Germany, Sept. 2003.

[26] D. Serini and O. D. Moor. Static analysis of aspects.
In Proceedings of AOSD, Boston, USA, Mar. 2003.

[27] Spring. Spring/AOP Project.
http://www.springframework.org/.

[28] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
an aspect-oriented approach tailored for
component-based software development. In
Proceedings of AOSD, Boston, USA, Mar. 2003.

9

[29] W. Vanderperren and D. Suvée. Optimizing JAsCo
dynamic AOP through HotSwap and Jutta. In
Proceedings of Dynamic Aspects Workshop, Lancaster,
UK, Mar. 2004.

[30] W. Vanderperren, D. Suvée, M. A. Cibrán, and
B. De Fraine. Stateful aspects in JAsCo. In Submitted
to SC 2005, LNCS, Edinburgh, Scotland, Apr. 2005.

[31] R. Walker and K. Viggers. Implementing protocols via
declarative event patterns. In Proceedings of the ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, Newport Beach, USA, Nov.
2004.

10

