
Flexible Call-by-call Settlement
An Opportunity for Dynamic AOP

Christian Hofmann
TU Ilmenau

Ehrenbergstraße 29
98693 Ilmenau, Germany

hofmann ch@gmx.de

Robert Hirschfeld
DoCoMo Euro-Labs

Landsberger Straße 312
80687 Munich, Germany

hirschfeld@acm.org

Jeff Eastman
Windward Solutions
1081 Valley View Ct.

Los Altos, CA 94024, USA

jeff@windwardsolutions.com

ABSTRACT
Dynamic aspect-oriented programming is gaining interest
due to its ability to provide attractive solutions to challeng-
ing technical problems. Most scenarios presented to date
are motivated by the technical capabilities of a particular
platform rather than application-level requirements to be
addressed. In this paper, we describe a scenario taken from
telecommunications where settlement systems of operators
and call-by-call providers need to be integrated in a flexible
manner after the system’s initial deployment. By compar-
ing static and dynamic object-oriented and aspect-oriented
approaches, we present a case for dynamic AOP.

1. CALL-BY-CALL SCENARIO
In the telephony domain, rate plans vary from provider to
provider. There are many different tariffs, for for example:
local, long distance, international, or toll-free calls. There
are also variations in how and when customers are billed.
Besides other ways to compete in this market, there are
call-by-call providers offering dial-around services. Here cus-
tomers can choose their actual connectivity provider for each
individual call by dialing a specific prefix or toll-free number
prior to the actual destination phone number to be called
(Figure 1).

The great flexibility offered to customers to select the best
(and in most cases cheapest) connectivity provider demands
a corresponding flexibility in the core telephony network and
its supporting systems. Network operators and call-by-call
providers can choose to start or terminate business relation-
ships at any time. Such decisions are rarely synchronized
with the design, development, or deployment of the responsi-
ble software systems. Most of these partnerships are formed
and terminated while their systems are being operated long
after their initial deployments. Entering into a partnership
requires both operators and providers to integrate their op-
erations environments. Such integration requires agreement

make call

make call using
call−by−call provider

Customer Provider

Call−by−Call Provider

Telephony

Figure 1: Dial-Around Services

on data and data formats to be exchanged as well as the
way this data is to be transmitted.

Settlement is one such area to be addressed (Figure 3). Both
operators and providers run their own settlement pipelines
that are unlikely to be exactly compatible in the formats
of call data records to be processed. Nor are the interfaces
required to interchange raw or processed call data records
standardized. Finally, security policies to be enforced and
communication protocols and endpoints to be utilized have
to be agreed upon. For customer convenience, some oper-
ators offer combined invoices to simplify customer billing.
Items charged for by a call-by-call provider need to be listed
separately from the ones charged for by the operator to make
cost distribution explicit and transparent to the customer.
The way items are listed may also vary from partnership to
partnership.

As it might have become apparent from the problem descrip-
tion so far, integrating settlement systems is a rather com-
plex task. Complexity increases by the general requirement
to keep system down time minimal, on both the operator
and the provider side. An operator can partner with several
call-by-call providers over a period of time, as similarly a
call-by-call provider might partner with several operators to
render its services to its customers.

In our paper we discuss selected system functionality as indi-
cated by the use-cases marked gray in Figure 3. We identify
variation points needed to support the aforementioned es-
tablishment and termination of partnerships, and describe

Call By Call Provider B

Call Record Processing

Unprocessed
Call Records

Processed
Call Records

Call By Call Provider A

Call By Call Provider C

Customer

OPERATOR

Billing

Call Record Processing

* Invoice Format

Different Requirements
* Separate Invoice

Unprocessed
Call Records

Processed
Call RecordsIncoming Call Records

Data Exchange

Data ExchangeData Exchange

Data Exchange

Different Requirements
* Formats
* Protocols
* Security
* Legal Requirements

Different Requirements
* Formats
* Protocols
* Security
* Legal Requirements

Invoice Issuing

Figure 2: Variation Points

charge call

issue invoice

<<include>>

charge routing fee

credit call fee

provide call data

<<include>>

CustomerOperator

Call−by−Call Provider

Provider

Settlement System

Figure 3: Call-by-call Settlement

how these variation points can be realized by applying both
object-oriented and aspect-oriented approaches. We show
how dynamic composition is of benefit in both cases; rec-
ognizing the dynamic aspect-oriented approach as the most
beneficial one.

2. SELECTED VARIATION POINTS
As indicated in the previous section, integrating settlement
systems offer interesting challenges. From the point of view
of each participant, its settlement system is considered the
stable part in such an activity. The settlement of calls can
be described as the processing of call data records. It is typ-
ically performed as a sequence of processing steps that can
be conveniently arranged within a settlement pipeline. Each
step is responsible for one particular task. Example tasks

are data record collection, correlation of ingress and egress
records, fraud detection, duplicate removal, and billing. In
general, a settlement system converts raw data records into
processed records that in turn are used for billing all partic-
ipating parties (Figure 2).

While operators process their call data records themselves,
records of call-by-call providers are processed preferably at
a provider’s site. After sorting and collecting records for
every individual provider (for example according to the di-
aling prefix used to initiate the call), all such records are
transmitted to each corresponding provider. There they are
handled similarly to the processing performed at the oper-
ator’s site. At the end of a provider’s settlement pipeline,
calls are settled either by the provider directly or, for cus-
tomer convenience, by the operators customers originated
their calls. In the former case, the provider uses its own
billing system. In the latter case, all processed call data
records need to be transferred back to the operator where
they are phased back into the operator’s settlement system.
There this data is eventually used to prepare the customer’s
bill that enlists provider charges separately and differently.

From this description we can infer at least three variation
points to be present to allow for operator-provider settle-
ment system integration:

• Raw call record transfer from the operator to the provider,

• Processed call record transfer from the provider back
to the operator, and

• Provider-specific billing by an operator.

Both the first and the second item most likely require data
conversion from one system’s representation to the other’s.
Also, it has to be decided which security policies (including
encryption mechanisms) to enforce and which transmission
protocol suites to use (Figure 4).

Call�By�Call Provider B

Call�By�Call Provider C

Unprocessed
Call Records

Call�By�Call Provider A

Data Exchange

Incoming Call Records

Data Exchange

Unprocessed
Call Records

OPERATOR

Different Requirements
* Formats
* Protocols
* Security
* Legal Requirements

Format II

Encryption

CallRecordConversion CallRecordTransmission

Provide Call Data

Protocol Format

Protocol I Protocol II Format I

Figure 4: Call Record Exchange

The third item, provider specific billing needs to reflect le-
gal constraints and requirements (such as privacy concerns)
or company guidelines (such as style guides for bill render-
ing). Also, customers may often still select to receive their
invoices by mail instead of viewing them online via the Web
(Figure 5).

To integrate two such settlement systems, at least one if
not both of them need to be adapted, at all of the varia-
tion points mentioned above. In addition to that, system
downtime must be kept at a minimum. This requirement
makes runtime adaptation very attractive for system inte-
gration. Partnership changes need not then equate to an
off-line system modification. The following sections discuss
four approaches to address system integration and show how
system downtime can be avoided.

Customer

Billing

* Invoice Format

Different Requirements
* Separate Invoice

Processed
Call Records

Operator

Invoice Issuing

Invoice by Mail Online Invoice Separate Invoices

Invoice Format

Invoice

Invoice Delivery

One Invoice

Figure 5: Invoice

3. OBJECT-ORIENTED
VARIATION POINTS

First we show how some of the variation points outlined
in the previous section can be implemented with object-
oriented technology, relying on polymorphism or dynamic
registries with explicit dispatch.

3.1 Static Object-Oriented
Figure 6 models call records, different kinds of calls, and
the specifics needed by individual providers via single inher-
itance. Here we can see that the kind of call or call-type
(in our example only long-distance and international are
addressed) acts as the dominant decomposition criterion.
Both implementations can offer different ways of charging,
or - from the operator’s point of view - different ways of
creating provider bills. To further distinguish long-distance
and international call records by provider, we need to sub-
class each of them and enhance every such subclass with
provider-specific behavior that might be duplicated across
neighboring branches of the class tree. Such behavior can
comprise call-record conversions or the selection of transmis-
sion protocols.

Call

+ sendBill
+ createCustomerBill
+ sendCallRecord
...

A−LongDistanceCall

+ sendBill
+ createCustomerBill
+ sendCallRecord
...

B−LongDistanceCall

LongDistanceCall

...

+ charge
+ createProviderBill

...

+ charge
+ createProviderBill

InternationalCall

+ sendBill
+ createCustomerBill
+ sendCallRecord
...

A−InternationalCall

+ sendBill
+ createCustomerBill
+ sendCallRecord
...

B−InternationalCall

start
end
...

+duration
...

Figure 6: Dominant Decomposition by Call-type

If we decide to use provider-specifics as the dominant decom-
position criteria, we might end up with a class tree as shown
in Figure 7. Information specific to long-distance or inter-
national calls needs to be modeled by further sub-classing
our provider-specific classes. This modeling step will intro-
duce duplication across neighboring branches of the class
tree similar to the dominant decomposition by call-type de-
scribed above.

In languages providing multiple inheritance or mix-in be-
haviors, we might end up with a class model as depicted in
Figure 8. While with mix-ins there can still be a dominant
decomposition (here kind of call, or call-type), mix-ins are
a means to help us avoiding code duplications by combining
crosscutting concerns in our implementation model.

Note that all models described above aim not only for imple-
mentation reuse, but also for simplicity of method dispatch
by using polymorphism. Such dispatch is necessary to se-
lect the appropriate implementation that matches, at each
variation point, the correct provider and call type. Dispatch
is also needed when transmitting raw call records from an

Call

+ sendBill
+ sendCallRecord
...

A

+ sendBill
+ sendCallRecord
...

B

+ charge
+ createCustomerBill
+ createProviderBill
...

A−LongDistanceCall

+ charge
+ createCustomerBill
+ createProviderBill
...

B−LongDistanceCall

+ charge
+ createCustomerBill
+ createProviderBill
...

A−InternationalCall

+ charge
+ createCustomerBill
+ createProviderBill
...

B−InternationalCall

start
end
...

+duration
...

Figure 7: Dominant Decomposition by Provider-

specifics

LongDistanceCall

...

+ charge
+ createProviderBill

+ sendBill
...

A

+ sendBill
...

B

...

+ sendBill
+ createCustomerBill

A−LongDistanceCall

...

+ sendBill
+ createCustomerBill

B−LongDistanceCall

Call

...

+ sendBill
+ createCustomerBill

B−InternationalCall

...

+ sendBill
+ createCustomerBill

A−InternationalCall

...

+ charge
+ createProviderBill

InternationalCall

start
end
...

+duration
...

Figure 8: Mix-in Solution

operator to one of its partnering call-by-call providers, and
when transmitting processed call records from a provider
back to to one of its partnering operators. Finally, similar
selection criteria also apply for provider-specific customer
billing at the operator’s site.

When using a static object-oriented approach, we need to
know all possible partners in advance at development time in
order to provide a complete set of implementations covering
all possible dispatches that might be necessary during sys-
tem operation. Since, in a static object-oriented approach,
code cannot change at runtime, all necessary dispatch code
needs to be provided initially. Code that turns out to be
incomplete then requires the exchange of deployed system
components. This requires expensive hardware and software
fail-over solutions to avoid system outages and down-time in
the high availability (99.999%) telecom world.

3.2 Dynamic Object-Oriented
A dynamic object-oriented solution benefits from language
platforms that allow to load and integrate additional code
into or remove code from a running system. Examples of
such platforms range from Java with its dynamic class load-
ers to Smalltalk or Lisp. In the latter two there is no distinc-
tion between code and data, thus any data made available at
runtime can also be interpreted as computation. This allows
partnership-specific processing data to be incorporated into
the system at runtime, or removed to storage for use at an-
other time. Since such behavior is difficult to be visualized
in rather abstract models, we will provide code to describe
one such solution. Due to its flexibility, usability and open
source availability, we opted for Squeak/Smalltalk [4, 2] to
do so.

Smalltalk has a powerful mechanism for expressing small
units of computation as blocks and block contexts. A block
is an object that embodies a sequence of operations. It is
only executed after a value message is received by the block.
A block context holds the dynamic state, such as parameter
values, for execution of a block. Since blocks are, as anything
else in Smalltalk, regular objects, they can be manipulated
and stored as any other object.

A simple dynamic and customizable dispatch mechanism
can be implemented by using a dictionary (similar to a hash
table in Java) as a dispatch table. The dictionary allows
us to store a set of associations where we use an associa-
tion’s key part to store the information necessary for dis-
patch selection, and the association’s value part to store the
code to be activated in the context of a dispatch. The code
is provided as a block. On dispatch we would simply use
the dispatch criteria to look up an associated block. Once
obtained, this block is executed by simply sending a value
message as mentioned above.

In our scenario, we can create a dispatch dictionary for each
variation point with call prefixes or identifiers as keys and
the appropriate provider-specific sequence of operations as
values.

Object s u b c l a s s : #RawCal lRecordExchange
i n s t a n c e V a r i a b l e s : ’ d i s p a t c hTab l e

d e f a u l t A c t i o n ’

RawCallRecordExchange>>

initialize
d i s p a t c hTab l e := D i c t i o n a r y new .
d e f a u l t A c t i o n := [: anObject | s e l f e r r o r] .

RawCallRecordExchange>>

addSelector: anArray
a c t i o n : aB lockContex t
d i s p a t c hTab l e add : anArray −> aB lockContex t .

RawCallRecordExchange>>

removeSelector: anArray
d i s p a t c hTab l e removeKey : anArray

i f A b s e n t : [] .

RawCallRecordExchange>>

dispatchOn: anArray with: aCallRecord
(d i s p a t c hTab l e at : anArray
i f A b s e n t : [d e f a u l t A c t i o n])

v a l u e : aCa l lR e c o r d .

RawCallRecordExchange>>

sendCallRecord: aCallRecord
| p r e f i x |
p r e f i x := aCa l lR e c o r d c a l l P r e f i x .
s e l f d i spatchOn : { p r e f i x . #b e f o r e .

#s endCa l lR e c o r d : . }
with : aCa l lR e c o r d .

. . .
s e l f d i spatchOn : { p r e f i x . #a f t e r .

#s endCa l lR e c o r d : . }
with : aCa l lR e c o r d .

rawExchange := RawCal lRecordExchange new .
rawExchange
addSe l e c t o r :
{ 01071 . #b e f o r e . #s endCa l lR e c o r d : . }

a c t i o n :
[: aCa l lR e c o r d |
aCa l lR e c o r d s e r v e r
a u t h en t i c a t eU s i n gKe r b e r o s .
aCa l lR e c o r d a u t h e n t i c a t e d
i f T r u e : [aCa l lR e c o r d s e r v e r connec t]] .

rawExchange
addSe l e c t o r :
{ 01071. #a f t e r . #s endCa l lR e c o r d : . }

a c t i o n :
[: aCa l lR e c o r d |
aCa l lR e c o r d s e r v e r d i s c onn e c t]] .

. . .
rawExchange s e ndCa l lR e c o r d : aCa l lR e c o r d .

Every time a new partner (an operator or a provider) needs
to be added to the system, all dictionaries at our variation
points are populated with the call prefixes or identifiers of
the new partner and the code block specific to the new part-
ner and the concerned variation point. If a dispatch for the
new partner needs to be carried out, we simply look up and
evaluate the code block associated with that partner. Ter-
minating a partnership only involves removing all dictionary
entries associated with the partner separated from. Start-
ing or terminating relationships does not require a system
rebuilt and exchange as in the static object-oriented case.
With this dynamic registry and dispatch mechanism we can
modify the running system without requiring elaborate fail-
over mechanisms required by static methods.

4. ASPECT-ORIENTED
VARIATION POINTS

As with the static and dynamic object-oriented implemen-
tations of our variation points, there are static and dynamic
aspect-oriented implementations as well. In the following
we see how aspect-orientation helps us to avoid the coding
of explicit selections or explicit dispatches by using the dis-
patch mechanisms already built-in into an aspect-oriented
composition platform.

4.1 Static Aspect-oriented
Figure 9 shows an aspect-oriented model of call records,
kinds of calls, and the specifics needed by individual providers.
In contrast to our object-oriented models, for instance the
one in Figure 6, we decided to model only kinds of calls
within a call records hierarchy. This hierarchy acts as the
base system of our aspect-oriented model in which we ex-
press call record exchange and issuing invoices to customers.

Besides the reduction of code duplication, our aspect-oriented
model also frees us from explicitly selecting a particular im-
plementation for a specific operator or provider since such
conditionals are hidden within the static compositions or
residual test of the aspect composition.

Within a static aspect-oriented model the solution space
must be known completely at compile-time, requiring us to
know all possible combinations and their implications on our
integrated system when it is deployed. If, after the deploy-
ment of our integrated system, we discover that we were
wrong, we would have to perform similar corrective actions
as the ones needed to update a statically modeled object-
oriented system.

4.2 Dynamic Aspect-oriented
As with the dynamic object-oriented solution, the dynamic
aspect-oriented solution benefits from the malleability of dy-
namic programming and composition platforms at runtime.
Examples of such platforms are Steamloom, Prose, or As-
pectS. Since AspectS [3] is our research platform, we provide
our sample code for this system.

We do not describe a different aspect model for the dynamic
case since the static one discussed previously will do just
fine. To implement our variation point for exchanging raw
call-records, we first extend AspectS so that we can easily ex-
press aspects and their associated advice constructs that are
active or inactive depending on a particular provider. This
requires nothing else than allowing aspects to be provider-
specific. We implement a provider-specific activation block
and make it accessible to an advice qualifier object via the
#providerSpecific attribute.

AsMethodWrapper class>>

providerSpecificActivator
ˆ [: a s p e c t : ba seSende r |

| r e s u l t r e c e i v e r |
r e c e i v e r := baseSende r r e c e i v e r .
r e s u l t := a sp e c t h a sP r o v i d e r :
r e c e i v e r ca l l e rNumber p r e f i x .
a s p e c t := baseSende r := n i l .
r e s u l t] copy f ixTemps

Call

LongDistanceCall InternationalCall

+totalCallTime
...

start
end
...

CallRecordExchangeSessionManagement

server closeConnection.
after: sendCallData

server sendPassword: aPassword.
server establishConnection.

server authenticate.
before:sendCallData

CustomerBilling

Call Record Exchange
Issuing Invoice

+ sendCallData
+ createCustomerBill
...

+ sendCallData
+ createCustomerBill
...

self callerNumber prefix = 1234
qualifier:

before:createCustomerBill
self customerBill addHeaderForA

Figure 9: Aspect-Oriented Composition

More code is necessary to make the provider-specific advice
qualifier attribute work. It requires the following changes to
class AsAspect:

Object s u b c l a s s : #AsAspect
i n s t a n c eVa r i a b l eName s :

’ r e c e i v e r s s e nd e r s
s e n d e r C l a s s e s p r o j e c t s p r o v i d e r s
c l i e n t A n n o t a t i o n s adv i c e i n s t a l l e d ’

c l a s sVa r i a b l eName s : ’ ’
p o o l D i c t i o n a r i e s : ’ ’
c a t e go r y : ’ AspectS−Aspec t s ’

AsAspect>>

providers
ˆ p r o v i d e r s

AsAspect>>

providers: anIdentitySet
p r o v i d e r s := a n I d e n t i t y S e t .

AsAspect>>

initialize
s e l f r e c e i v e r s : I d e n t i t y S e t new ;
s e nd e r s : I d e n t i t y S e t new ;
s e n d e r C l a s s e s : I d e n t i t y S e t new ;
p r o j e c t s : I d e n t i t y S e t new ;
p r o v i d e r s : I d e n t i t y S e t new ;
c l i e n t A n n o t a t i o n s : I d e n t i t y D i c t i o n a r y new ;
adv i c e : n i l ;
i n s t a l l e d : f a l s e

AsAspect>>

addProvider: aProvider
ˆ s e l f p r o v i d e r s add : aP r o v i d e r

AsAspect>>

removeProvider: aProvider
ˆ s e l f p r o v i d e r s remove : aProce s s

i f A b s e n t : []

AsAspect>>

hasProvider: aProvider
ˆ s e l f p r o v i d e r s i n c l u d e s : aP r o v i d e r

Now we can implement our raw call record exchange, making
use of our newly defined advice qualifier attribute. Here it
is interesting to note that the association key we used in the
dynamic object-oriented example to select the appropriate
dispatch is represented as a provider specific activator in
our dynamic aspect-oriented example. The values of the
previously used associations (code blocks) can now be found
in our AspectS code as the before and after blocks of the
respective advice constructs.

AsAspect s u b c l a s s : #RawCal lRecordExchangeAspect

SessionManagementAspect class>>

prefix: anInteger
ˆ s e l f new

a d dP r o v i d e r P r e f i x : a n I n t e g e r

RawCallRecordExchangeAspect>>

adviceSendCallDataProvider
ˆ AsBe f o r eA f t e rAdv i c e

q u a l i f i e r : (A sA d v i c e Qu a l i f i e r
a t t r i b u t e s : { #r e c e i v e r C l a s s S p e c i f i c .

#p r o v i d e r S p e c i f i c . })
p o i n t c u t : [{ As J o i nP o i n tD e s c r i p t o r

t a r g e t C l a s s : I n t e r n a t i o n a l C a l l
t a r g e t S e l e c t o r : #sendCa l lData .

A s J o i nP o i n tD e s c r i p t o r
t a r g e t C l a s s : L ongD i s t a n c eCa l l
t a r g e t S e l e c t o r : #sendCa l lData . }]

b e f o r eB l o c k : [r e c e i v e r s e r v e r
a u t h en t i c a t eU s i n gKe r b e r o s .

r e c e i v e r s e r v e r a u t h e n t i c a t e d
i f T r u e : [r e c e i v e r s e r v e r connec t]]

a f t e r B l o c k : [r e c e i v e r s e r v e r d i s c onn e c t]

a s p e c t := RawCal lRecordExchangeAspect
p r e f i x : 12345.

a s p e c t i n s t a l l .

Looking at the code above we can see that the dynamic
aspect-oriented solution does not require an explicit dispatch
to be provided by a developer since this dispatch is intrin-

sic to all aspect-oriented platforms. Whenever necessary,
the underlying aspect system accesses the activation block
provided by us, evaluates this block, and, depending on the
outcome of this evaluation, activates the associated advice
code or not. So, in addition to all the flexibility gained by
our dynamic object-oriented solution, we also achieve sim-
plification of our code by the utilization of a hidden but well
known and proven system-provided dispatch mechanism.

5. SUMMARY
In this paper we provide a scenario taken from telecommu-
nications to motivate the need for dynamic aspect-oriented
programming languages and systems. Our scenario describes
how constantly changing relationships between operators
and call-by-call providers affect their system integration re-
quirements (here in the context of settlement), and how
one of the most important of these requirements – keep-
ing system downtime to a minimum – can be supported by
employing dynamic composition in general, and dynamic
aspect-oriented composition in specific. While focusing on
dynamic aspect composition, we do not argue for or against
the merits of aspect-orientation in general; this is done ad-
equately elsewhere [1].

OO AO

static
implicit dispatch
fixed set of providers
explicit selection

implicit dispatch
fixed set of providers

dynamic explicit dispatch implicit dispatch

Table 1: Properties of the Proposed Solutions

Table 1 summarizes the properties of the proposed solutions
ranging from static and dynamic object oriented techniques
to dynamic aspect-oriented composition. It is no surprise
that all decisions made in advance of building a software
system can be modeled, implemented, and optimized via
early-bound object- or aspect-oriented systems. Later deci-
sions, more precisely decisions made after the construction
and deployment of a software system can be modeled, im-
plemented, and, most importantly to us, adapted only in
late-bound object- and aspect-oriented systems. In addition
to adaptability, an aspect-oriented system has many other
advantages enabling the support of unanticipated software
evolution[5]. In our example, use of the built-in dynamic
dispatch mechanism allows us to avoid explicit and critical
dispatching code.

6. ACKNOWLEDGEMENTS
We would like to thank Matthias Wagner and Monika Fuchs
for their valuable discussions and contributions.

7. REFERENCES
[1] http://www.aosd.net.

[2] A. Goldberg and D. Robson. Smalltalk-80: The

Language and its Implementation. Addison-Wesley,
1983.

[3] R. Hirschfeld. AspectS - aspect-oriented programming
with squeak. In M. Aksit, M. Mezini, and R. Unland,
editors, Objects, Components, Architectures, Services,

and Applications for a Networked World, International

Conference NetObjectDays 2002, LNCS 2591, pages
216–232, Erfurt, 2003. Springer.

[4] D. Ingalls, T. Kaehler, J. Maloney, W. Wallace, and
A. Kay. Back to the future: the story of Squeak, a
practical Smalltalk written in itself. ACM SIGPLAN

Notices, 32(10):318–326, Oct. 1997.

[5] G. Kniesel, J. Noppen, T. Mens, and J. Buckley.
Unanticipated software evolution. Lecture Notes in

Computer Science, 2548:92–107, 2002.

