AOSD 2006

5th International Conference on
Aspect-Oriented Software Development

Bonn, Germany
March 20-24, 2006

Industry Track
Proceedings

Matt Chapman
Alexandre Vasseur
Glnter Kniesel
(Eds.)

Technical Report IAI-TR-2006-3
ISSN 0944-8535

Institut fur Informatik 111
Universitat Bonn

universitétbonnl






Fifth International Conference on

Aspect-Oriented Software Development

Bonn, Germany
March 20-24, 2006

Industry Track

Improving the Performance of Database Applications with Aspect-Oriented

Programming
Uwe Hohenstein, Siemens, Germany

Using Aspects with Object-Oriented Frameworks
Michael Mortensen, Hewlett-Packard, United States
Sudipto Ghosh, Colorado State University, United States

On using AOP for Application Performance Management
Kamal Govindraj, Tavant Technologies, India
Srinivas Narayanan, Tavant Technologies, United States
Binil Thomas, Tavant Technologies, India
Prashant Nair, Tavant Technologies, India
Subin Peeru, Tavant Technologies, India

The Challenges of Writing Reusable and Portable Aspects in AspectJ:

Lessons from Contract4J
Dean Wampler, Aspect Research Associates, United States

Java Virtual Machine support for Aspect-Oriented Programming
Alexandre Vasseur, BEA, France
Joakim Dahlstedt, BEA, Sweden
Jonas Bonér, Terracotta Inc, United States

Lessons learned building tool support for AspectJ
Andy Clement, IBM, United Kingdom
Mik Kersten, University of British Columbia, Canada
Matt Chapman, IBM, United Kingdom
Adrian Colyer, Interface21, United Kingdom

Gathering Feedback on User Behaviour using AspectJ
Ron Bodkin, New Aspects of Software, United States
Jason Furlong, New Aspects of Software, United States

Implementation of AOP in non-academic projects
Allison Duck, Business Objects, Canada

18

31

40

49

58

68






Improving the Performance of Database Applications
with Aspect-Oriented Programming

Uwe Hohenstein
Siemens AG
CTSE2
D-81730 Muenchen

GERMANY
+49 89 636 44011

Uwe.Hohenstein@siemens.com

ABSTRACT

The performance of relational database applications often suffers.
The reason is that query optimizers require accurate statistics
about data in the database in order to provide optimal query
execution plans. Unfortunately, the computation of these statistics
must be initiated explicitly (e.g., within application code), and
computing statistics takes some time. Moreover, it is not easy to
decide when to update statistics of what tables in an application.
A well-engineered solution requires adding source code usually in
many places of an application.

The issue of updating the statistics for database optimization is a
crosscutting concern. Thus we propose to use aspect-orientation
to automate the calculation. We show how nicely the update
functionality can be modularized in an aspect and how easy it is to
specify the exact places and the time when statistics updates
should be performed to speed up complex queries. Due to the
automatic nature, computation takes place on time for complex
queries, only when necessary, and only for stale tables.

The implementation language for the automated aspect-oriented
statistics update concern is Aspect], a well known and mature
aspect-oriented programming language. The approach can
however be implemented in any other aspect-oriented language.
Unlike in traditional object-oriented pattern solutions, e.g. using
the interceptor pattern, we do not have to modify existing code.

Categories and Subject Descriptors
H3.4 [Information Storage and Retrieval]: Systems and
Software. Performance evaluation (efficiency and effectiveness).

General Terms
Management, Measurement, Performance, Languages.

Keywords
Database Optimization, Crosscutting Concerns, Aspect-Oriented
Programming.

1. INTRODUCTION

A database system is nearly almost the most important
factor for the performance of database applications.
Particularly, relational database applications often suffer
from a bad performance. Relational database management
systems (RDBMSs) land themselves in it. The query and

manipulation language SQL is designed to allow for an easy
access to databases, it provides powerful logic-oriented
query capabilities. In fact, researchers [1,2,3] and RDBMS
vendors spent a lot of effort on query optimization [8] to
find efficient execution plans. Hence, users are encouraged
to formulate complex SQL statements, mostly joining
several tables and filtering records using conditions, in

order to exploit the full power of SQL. Internally, a

DBMS’s query optimizer has to find a high-performing

execution plan for each query.

DBMS vendors recommend using cost-based query
optimization (CBO) instead of rule-based optimization
because CBO is the more recent technology and provides
better execution plans. Moreover, newer concepts such as
star queries [10,11] are only optimized with CBO. Besides
existing indexes, CBO takes into account the amount of
data in tables and indexes as well as the selectivity of
attributes, i.e., how many records match a certain attribute
value [8].

Users are often surprised that even with powerful CBO
technology the performance is sometimes insufficient.
Thereby, it is often overlooked that CBO needs precise
database statistics about the amount of data in tables, the
selectivity of attributes etc. [2]. These data statistics are not
yet managed by the DBMS automatically, but the
calculation can be requested by the user, explicitly on
demand.

Supplying up-to-date database statistics is not as easy as
it seems to be. We are faced with two problems.

e The calculation is time-consuming for larger tables,
since it uses the complete data of a table (and associated
indexes) ignoring previously calculated statistics. It is
still up to recent research to find solutions for an
incremental estimation [10]. Certainly, statistics can be
estimated [14,15] instead of computing them completely
to reduce the effort, but often this provides bad results.

e [t is not easy to decide when to perform the calculation
on which tables. If the calculation is initiated on several
tables right before an expensive access operation, this
might even slow the operation down. In general, a
periodic calculation or an update before an application

AOSD'06 - Industry Track Proceedings 1



starts is not appropriate because data is changing
heavily and frequently.

We were confronted with these problems in a project in the
telecommunication domain using an Oracle database. On
the one hand, a huge amount of complex queries took
several minutes (due to stale statistics), but could have been
reduced to milliseconds if the statistics would have been up-
to-date; thus having up-to-date database statistics was
strongly required. On the other hand it took between 15
minutes up to 60 minutes to update the statistics, thus doing
this just in time was not possible either. Using estimated
statistics, several complex queries were still badly
optimized.

The performance problems are astonishing because the
total amount of data is not really huge. Furthermore, it
should be mentioned that the database design was
appropriate.

A sophisticated approach is required to achieve good
query performance. The idea is
e to trigger the computation of the database statistics in

the application code, whenever accurate statistics are

necessary,
® but only for those tables that are used in queries and that

have changed dramatically since the last computation;

this limits the calculation time.
In this paper, we describe how to achieve this goal by
means of aspect-orientation (AO). AO aims at providing
systematic means for effective modularization of
crosscutting concerns avoiding scattering of code [6].
Concerns such as logging and tracing are often described as
classical candidates for using AO. Recent research has also
shown usefulness in several other areas: [16] uses AO to
separate concurrency control and failure handling code in a
distributed system. The book of Rashid [22] gives an
excellent overview about ongoing research in the context of
databases and discusses all facets of AO: AO to implement
DBMSs in a more modularized manner, persistence for
aspects, and ideas on a persistence framework [21].

We here take benefit from AO to extend existing code
in a non-invasive and modular manner. Before presenting
the details of our AO approach, we discuss the basic
requirements for an adequate environment in Section 2.

Section 3 is then presenting a flexible environment for
updating statistics on demand. In spite of being useful, the
approach is not easy to handle, unfortunately. The main
problems are discussed in Section 4, particularly misusage,
detection of stale tables etc.

The AO solution that solves these problems is presented
in Section 5. We use Aspect] [15], a general-purpose
aspect-oriented extension of Java, to gather statistical data
for an effective cost-based optimization. In order to
demonstrate the approach in detail, we here focus on Java
programs using JDBC, but it is no problem to transfer the
ideas to C++ and AspectC++.

2. BASIC REQUIREMENTS

The major problem is that calculating statistics on the one

hand can last several minutes, but is necessary for complex

queries on the other hand. An adequate approach must take
into account at least the following points:

1. The approach should provide up-to-date database
statistics for applications only when needed (in order
not to delay an application), and on time for complex
query execution.

2. It should check for stale tables (for which the statistics
are not up-to-date) in order to reduce the time by
computing only the statistics of relevant tables.

3. The environment should be central in the sense that an
application will benefit from database statistics that are
already updated by another application on the same
tables.

4. The environment itself must not put much additional
load on performance. This is essentially a matter of
implementing the approach efficiently, but also a matter
of using the environment correctly.

5. The mechanism should be stable against misusage. The
performance behavior should not suffer even if the
environment is not used adequately.

3. A FLEXIBLE ENVIRONMENT

We start with an intuitive environment that has been
proposed by some developers. Application programmers
can use the environment to control gathering database
statistics. Technically speaking, the proposed environment
essentially consists of the following class CBO_Mgr:

public class CBO_Mgr
{ public void Notify(List tables);
public boolean Request (List tables,
boolean blocking);
private static void Performer();
private static List RequestList;

}

The Notify method let applications indicate larger
modifications of data. An application should invoke this
method whenever a lot of data has changed, e.g., if huge
amounts of data have been inserted, modified, or deleted;
the affected tables are passed in the fables parameter.
Determining the list is left to the applications and has to be
identified statically. These tables are subject to statistics
calculation in future, but the updating of statistics does not
occur immediately. When Notify is called, the list of tables
is only dumped into the RequestList data member.
Applications can request the environment to update
database statistics. The Request method should be called by
an application whenever it performs time-consuming
SELECT, DELETE or UPDATE queries with complex
search conditions that require the database statistics to be
up-to-date for certain tables. The relevant tables are passed
in the tables parameter. The environment decides for which
tables to calculate the statistics. The method first checks

2 AOSD'06 - Industry Track Proceedings



whether the statistics for the passed tables are stale by
checking the RequestList member. If there are no stale
tables, it immediately returns “true” to the caller, because
the statistics are up-to-date.

If there are stale statistics for the passed tables, the
behavior depends on the blocking parameter. In case of a
non-blocking execution, Request calls a Performer
asynchronously, and returns false. The Performer then
calculates the statistics of stale tables while the application
is continuing in parallel. If the parameter asks for blocking
execution, Request handles the requested tables
synchronously, i.e., it waits for the termination of
Performer and then returns true to the caller. In both cases,
the tables are removed from the RequestList.

Without any explicit request, the statistics are
additionally updated periodically. That is, the Performer
method is started periodically by means of a background
job. This handles the union of all notified tables, evaluates
the database statistics for them, and then deletes the handled
tables from the RequestList. Thus, we will get correct
database statistics in certain time intervals, the frequency of
which must be fixed appropriately.

The purpose of Notify is to indicate what tables have
been changed. Unfortunately (and surprisingly), it is not
possible to obtain this information from a RDBMS. A
general possibility is to compare the real number of records
in a table (SELECT COUNT (*)) with the number of records
the DBMS has noticed (in the system views). But such a
check is too expensive for the purpose of checking staleness
(cf. Requirement 4). Since we cannot rely on an easy and
fast way to get all the stale tables, we have to take Notify as
the source for staleness.

This Notify information is then used by Request to re-
duce the amount of tables for collecting database statistics
and to avoid useless requests on already up-to-date tables.
We remember analyzing the statistics of a lot of tables takes
several minutes. When the environment is correctly used,
then it is enough to update the statistics of only those tables
that are asked for (by Request) and are also notified (by
Notify). This is a small and reasonable set of tables.

The non-blocking mode of Request is useful to update
the statistics of relevant tables as early as possible, hope-
fully being finished on time. The application is not delayed
by waiting for up-to-date statistics. Request in blocking
mode computes database statistics immediately and lets
applications wait for completion. This is useful whenever
we must be sure that database statistics are up-to-date for
certain tables.

Computing database statistics periodically by a
background job is useful to handle the tables mentioned in
Notify, but for which no explicit request was received
recently, maybe forgotten.

There should be a central process managing the
RequestList. This process will avoid repeated updates of
database statistics among applications. All applications are

then able to share the same environment and could benefit
from global statistics updates. It does not matter who
initiates the calculation.

4. PROBLEMS

The above approach seems to be intuitive and reasonable.
Unfortunately there are some problems to avoid useless
Request invocations. As a general point, we should keep in
mind any kind of misuse (see Section 2, requirements 4 and
5). There is a strong danger of using the environment
incorrectly. For example, programmers can forget Notify
and/or Request, use both in wrong places, pass wrong tables
(irrelevant ones), or miss relevant ones. These points will
endanger the performance.

If a Notify about larger table modifications is missing,
the environment gets the impression that there are no stale
tables. Hence, no calculation of statistics will take place.

If a Request is missing, then complex queries will run
longer, in case larger modifications have taken place. If
performance problems have been detected and localized,
the places where Requests are missing can at least be found.

If a Notify is wrongly called for a table, e.g., a table that
has not changed much, then the table is considered stale.
This presumably causes an unnecessary calculation of
statistics for that table. This can lead to a delay since the
computation of statistics takes place without any need. The
same happens for Requests on wrong tables.

It is not easy to insert Notify and Request into existing
code appropriately. In fact, it is a manual task for an
application developer to decide where to put them. For
sure, the analysis must be done carefully in order to avoid a
bad performance behavior.

A static analysis alone is not enough, the control flow
must be considered, too. To use the environment, we must
know what parts of the code, particularly what SQL
statements, are really executed, what loops are executed
how often, what IF and what ELSE cases are relevant. For
example, if we place Notify and Request on the same tables
within a loop, then the computation of statistics takes place
for every iteration. Then statistics calculation is not only
useless, but leads to a performance penalty.

Even if we know that an SQL statement is performed,
e.g., an UPDATE, we do not know how many records are
affected. Should Notify be called or is it not necessary
because only a few records are affected? That is, we should
take into account the amount of changed data. The SQL
statement can certainly be asked, but this information must
then be actively evaluated. Even if only one record is
updated, this could be done in a loop that is executed a
thousand times. Then it is worth to notify the environment
about the table change after the loop.

It is very difficult to find a pragmatic solution that is
easy to use, and that can be brought into existing
applications without any danger of misuse or performance
degradation.

AOSD'06 - Industry Track Proceedings 3



5. AUTOMATIC APPROACH
As we have seen, a manual approach must be handled
carefully — in spite of having an adequate environment.
Particularly, problems with robustness in the presence of
misuse must be avoided. Anyway, a deeper code analysis is
absolutely indispensable and a lot of code has to be touched
manually.

We now show another approach taking benefit from
aspect-orientation programming (AOP), more precisely the
Aspect] language, to solve these major problems.

5.1 Aspect-Orientation

The evolution of software development techniques has been
driven by the need to achieve a better separation of
crosscutting  concerns (CCCs). CCCs are those
functionalities that are typically spread across several
classes. They often lead to lower programming
productivity, poor quality and traceability, lower degree of
code reuse, and the lack of supporting evolution [17].
Patterns [7] can help to deal with such CCCs, but provide
only partial solutions and do not capture the concerns
explicitly.

AOP introduces new concepts to capture CCCs in
modules called aspects. The language Aspect] [15], as one
popular representative of an AOP language, is an aspect-
oriented extension to Java. The language extensions support
the modularization of crosscutting concerns to avoid code
tangling and code scattering. Most important for our
purpose is that Aspect] allows us to add behaviour to
existing code without touching the original code at
hundreds of places.

Programming with Aspect] is essentially done by
modularizing basic concerns in ordinary objects (as in
object-orientation) and crosscutting concerns in aspects.
Aspects are special units that crosscut the objects and
define some crosscutting functionality.

The main purpose of aspects is to change the dynamic
structure of a program by modifying the program flow. An
aspect can intercept certain points of the program flow,
called join points, and introduce aspect code there. To this
end, an aspect declares pointcuts that specify sets of join
points by means of a signature expression. Pointcuts
determine what join points should be trapped in the
program flow. Wildcards can be used to select several
methods of several classes easily. For instance,
MyClass*.get* (..) selects all methods that start with
“get” in all classes with a name starting with the string
“MyClass”. Parameter types can be fixed or left open with
(..). Pointcuts can also be combined by usual logical
operators !, && and | |.

Once join points are captured, advices specify weaving
rules involving those joint points, such as taking a certain
action before, after or instead of the join points. In addition,
pointcuts can be specified in such a way that they expose

the context at the matched join point, i.e., the caller, the
callee and parameter values are accessible by the advice.

5.2 Updating Database Statistics with Aspect]
We here assume that applications are written in Java using
the standard interface JDBC (Java Database Connectivity)
for database accesses. Then we can benefit from the aspect-
oriented language Aspect] that extends Java. However, C++
programs with database accesses in ODBC, embedded

SQL, or any Microsoft database interface can be handled

the same way by using AspectC++, which is similar to

Aspect] in concepts, but extends C++.

The general principle is as follows: Aspect] helps us to
trap any execution of relevant JDBC statements by
specifying the right pointcuts. Moreover, it allows us to
extract the SQL statements to be performed and to get the
number of modified records. Thanks to Aspect], it is
possible to detect any major changes in tables, to insert not
only a Notify after INSERT, DELETE and UPDATE
statements, but also to notify only if a certain threshold of
modified records is passed.

Similarly, Aspect] let us detect any SELECT, DELETE
and UPDATE with a complex WHERE-part; a blocking
Request can be added in front of them to enforce up-to-date
statistics. The advantages of using Aspect] are obvious:

e There is no manual activity of inserting Notify and
Request; any misusage is excluded. The number of
changes to any table is correctly recorded, and statistics
are thus only computed if reasonable: We can rely upon.

e The coding can easily be done outside the existing
application code by means of aspects: Aspects implicitly
work on all the code.

Let us now dive into the technical details. Figure 1 defines
an aspect CBO_KEEPER. This aspect specifies the JDBC
join points in the code by means of pointcuts. Each join
point causes execution of an advice, i.e., additional logic
for our CBO environment. CBO_KEEPER also introduces a
hashmap changeCounters in order to maintain a record
counter for each table.

The pointcuts define the signature of relevant invocation of
JDBC statements. jdbcExecuteQuery specifies any
immediate invocation of a query in JDBC, e.g,
stmt .executeQuery (“SELECT ...”). The SQL query
itself is passed as a string. The pointcut call (*
java.sgl.Statement+.executeQuery(String)) cat-
ches any such call of executeQuery on an object of class
Statement in package java.sgl with a String
parameter, i.e., the query to be performed. ‘Statement+’
denotes that the objects can be of class Statement itself or
of any subclass. Since we need information about the
passed query string, we have to bind a variable str to the
parameter value by means of args (str). str can be used
in advices later on.

4 AOSD'06 - Industry Track Proceedings



public aspect CBO_KEEPER

{

HashMap changeCounters new HashMap(); // <tabName,cnt> manages counter for each table

public pointcut jdbcExecuteQuery (String str)
call(* java.sqgl.Statement+.executeQuery (String))

// direct query
&& args(str);

// direct update
&& args(str);

public pointcut jdbcExecuteUpdate (String str)
call(* java.sqgl.Statement+.executeUpdate (String))

public pointcut jdbcExecutePrepare (PreparedStatement s): // execute prepared stmt

(call(*
call(*

// advices for pointcuts:

after (PreparedStatement stmt) returning
{ String theTable;
int newCnt 0;

Integer c
if (¢ !'= null)
newCnt c.intValue ()
else newCnt cnt;
changeCounter.put (theTable,
}

before(String str) :jdbcExecuteQuery (str)

+ cnt;

new Integer

ArrayList tabList new ArrayList;
for each table occurring in query
{ Integer cnt

int ¢ = 0;
if (cnt !'= null) {
c = cnt.intValue();
if (¢>=5000 && condition=COMPLEX)

tabList.insert (table);

}

ComputeStatistics (tabList); // blocking

}
Figure 1: Aspect CBO_Keeper

java.sqgl.PreparedStatement.executeUpdate())
java.sqgl.PreparedStatement.executeQuery()) )

(int cnt)

check type of SQL statement by parsing stmt.toString() and determine table => theTable
(Integer)changeCounter.get (theTable);

{ determine type and relevant tables from str;

(Integer)changeCounter.get (table);

{ // threshold passed

I
&& target (stmt);

jdbcExecutePrepare (stmt)
// cnt == number of modified records

(newCnt)) ;

| | jdbcExecuteUpdate (str)

Similarly, jdbcExecuteUpdate traps any immediate
invocation of a manipulation (UPDATE, DELETE, INSERT),
i.e., invocations of the form

cnt stmt .executeUpdate (“UPDATE ).
In order to speed up applications, so-called prepared
statements are used in JDBC:

PreparedStatement pstmt
conn.prepareStatement (“UPDATE
pstmt.setInt(1,9);
pstmt.setString (2, "abc”);
// set two parameters for 1lst execution
cnt = pstmt.executeUpdate(); // 1lst execution
// set two parameters for 2nd execution
pstmt.setInt(1l,5);
pstmt.setString (2, ”def”);
cnt = pstmt.executeUpdate(); // 2nd execution

OF

prepareStatement prepares a parameterized SQL
statement. The statement is analyzed only once by the
DBMS and executed several times for different parameter

AOSD'06 - Industry Track Proceedings

values (9, “abc”) and of
executeUpdate ().

We could define a pointcut for statements of the form
pstmt conn.prepareStatement (“UPDATE L)

in order to obtain SQL operations to be performed. But the
execution is later done by pstmt.executeQuery() or
pstmt.executeUpdate () after having set parameter
values. Hence, we would have to pass the SQL statement to
another pointcut trapping the executeUpdate. However,
it is easier to trap the execution of a prepared statement:
We track all executions of pstmt.executeQuery/
Update () by means of jdbcExecutePrepare. Here we
need access to the this object achieved by
target (stmt) binding the PreparedStatement to
stmt. Then, stmt.toString() can be used to determine
the SQL statement.

Advices in aspect CBO_KEEPER will now use these
joinpoints and parameter information to handle Notify and
Request adequately at the joinpoints.

(5,’def”) by means



The clause after ()
is used to add code after an invocation of the join points
specified by the pointcut jdbcExecutePrepare, i.e., after
having executed a statement. The returning clause binds
a variable cnt to the wvalue returned by
stmt .executeUpdate (), i.e., we can access the number
of affected records by cnt. The executed statement is
accessible by passing the PreparedStatement parameter
stmt to the pointcut and advice. The advice can obtain the
SQL string by stmt.toString() and can extract the
affected table. It then either inserts a new entry into
changeCounters (if a table is not existing) or increments
the value by cnt, the number of affected records.

Direct executions of statements can be handled by
defining an analogous advice for jdbcExecuteUpdate.

Similarly, a before advice for jdbcExecuteQuery/
Update checks for executed SQL queries (SELECT,
UPDATE, DELETE) whether they are complex. The
calculation of statistics can then be forced if necessary.

jdbcExecutePrepare (stmt)

The query to be performed is accessible as SQL string
str. The string can be parsed to determine whether the
query is considered to be complex, for instance, if several
tables are joined or if the query contains GROUP-BY-
HAVING. In addition, the advice extracts the table name(s)
from str. For each affected table, the changeCounter is
asked for the number of collected modifications. If a certain
threshold is passed (here 5000), then the computation of
statistics is done for the table, and the counter is reset for
the table. Thus, the calculation is only performed if
reasonable. Both after and before advices now implement
the Notify/Request mechanism.

Using the same principle, we can also collect other
useful information, e.g., to keep track of the current number
of records in tables without performing SELECT
COUNT (*). This information is indeed available in system
views of the DBMS, but only if the statistics are up-to-date.
The number of records in a table can be taken as another
indicator for complex queries. In principle, we can also
replace JDBC code by means of an around advice,
particularly SQL strings, e.g., adding optimizer hints to
SQL statements.

It is important to note that we have now reliable and
quantified information about staleness: The number of
modified records is determined automatically, while a
manual Notify could have been forgotten in a manual
approach. But some decisions have still to be taken: the
thresholds and the question what queries are complex.

One additional point is important here. So far, any
DELETE, UPDATE and INSERT statement is trapped, no
matter whether the surrounding transaction is committed or
rolled back. Since only committed transactions have to be
taken into account, we catch any rollback and reset the
changeCounter table to the values at the beginning of the
transaction by means of

public pointcut jdbcRollback
call(void java.sqgl.Connection.rollback());

before jdbcRollback() {
resetChangeCounter(); }

The above presentation calculates statistics in blocking
mode, immediately before complex queries are executed. It
would be nice to take benefit from an asynchronous
statistics calculation. A non-blocking Request could prepare
the calculation of statistics as early as possible, e.g., right
after a Notify, whereas the blocking Request is invoked
before complex queries are executed. The latter is just to be
sure that the statistics are really up-to-date and to wait for
completion if necessary. Unfortunately, it is not possible to
push back a non-blocking Request to the place where large
modifications take place. The power of Aspect] is not
sufficient to this end. However, we can make a workaround:
We define a second higher threshold, and if this threshold is
passed, then the statistics calculation is performed in non-
blocking mode in addition to gathering changes.

5.3 Results

We tried to assess the effectiveness of our AO approach. A
precise performance analysis is not easy to perform. We can
certainly compare our solution with the original application,
the performance of which is bad and highly non-
deterministic. This is useless.

At a first glance, it seems to be reasonable to compete
with a perfect, highly optimized system. But the effort will
be too high to achieve a perfect performance for existing
applications. e.g., by adding optimizer hints — in fact, that is
why we were looking for simpler alternatives. We can also
obtain a perfect performance for the existing system by
updating statistics permanently for any complex query
inside the applications (however, without measuring the
times for calculating statistics). This is again very difficult
to achieve. Moreover, such a test would run days.

What we did was to compare our solution with one that
calculates the database statistics only at the beginning of
each application. Well, this will not give a perfect
performance as an application is also changing data before
complex queries run — but performance comparisons are
never fair anyway.

We then used a simple definition of complex query
implemented by the parser: A query is complex if either two
large tables (> 10,000 records), more than three tables, or a
GROUP BY are involved. We tested several threshold
values in our environment to fine-tune the configuration of
parameters. Finally, the presented approach achieves a
performance improvement of 25%. This result is
remarkable because we count the times for statistics
calculation only in our proposal, but we do not for the
original application. Hence, the delay we introduced owing
to non-blocking Requests is more than compensated by an
improved performance. This underlines the necessity for
having nearly accurate statistics since queries, executed in

6 AOSD'06 - Industry Track Proceedings



loop hundreds of times, took minutes otherwise. In general,
we can state that the overhead produced by Aspect] is low,
i.e., the code inserted by Aspect] into Java for maintaining
table counters etc.

5.4 Alternatives

Since people were skeptic about using a new technology
such as Aspect], performing “strange” byte-code weaving,
we were forced to look for alternative solutions. In fact,
well-known design patterns such as Interceptor or
Decorator can be used. However, they require some manual
preparation for plugging in additional behavior. We
neglected such an approach because several hundreds lines
of code would have to be touched, selected very carefully.

A similar environment to what has been proposed could
use database triggers. Triggers are able to catch
modifications on database tables and to call other database
operations, e.g., inserting or updating information in
another table. Here, AFTER INSERT/UPDATE/DELETE
ROW triggers can be defined for each relevant table;
statement triggers cannot be used because it is not possible
to compute the number of affected records within the
trigger. Indeed, row triggers can count records in local
variables, and statement triggers then increment the
counters, however, now using a table COUNTER (tabname,
cnt) in the database.

In contrast to the Aspect] solution, the performance
degradation is much higher, since each inserted, updated,
and deleted record is accompanied by some trigger
activation. Due to our investigations, INSERT statements
are here heavily affected by performance overhead.
Furthermore, this environment cannot handle Requests
because we are unable to get the query text in order to
recognize what queries are complex. Manual work is still
necessary.

Another proposal for staleness could be based on the
number of physical blocks used for tables. This number can
be computed for tables very cheaply. But on the one hand,
the number of records must be derived from the block size
— a block might contain 10 large or 1000 small records. On
the other hand, the number of blocks is only a rough
estimation as a DBMS will usually not release blocks in
case of DELETE.

6. CONCLUSIONS
In this paper, we reported on performance problems in an
existing application in the field of telecommunications. The
application holds about 1000 tables with only few millions
of records. Unfortunately, there are very complex queries
running that join several tables and use aggregate functions.
Those queries are often badly optimized and last minutes,
but could be performed in milliseconds.

The reason for the bad query behavior is the cost-based
query optimization. More precisely, performance problems
arise when database-internal statistics are not up-to-date. In

our application, it is not enough to compute these statistics
in certain intervals because data is changing quickly and
dramatically. It is thus difficult to find an adequate strategy
for determining when to calculate database statistics, on
what tables, on time.

Our solution to overcome these problems in an elegant
way is to use the recent technology of aspect-orientation.
Aspect-oriented languages such as Aspect] help us to
provide some automatism. The main idea is to extract SQL
statements and to determine the number of changed records.
Using this information, we can decide when to compute
database statistics and on what tables. Owing to Aspect],
this logic can be brought into existing applications by just
writing an aspect without explicitly touching existing code.
This approach resulted in performance benefits.

Indeed, the benefits and the urgent need to improve
performance dissolve any fears about using a new
technology. Another important point was that only JDBC
code is intercepted. This is pretty comprehensible and does
not endanger the applications.

The presented solution provides a reusable asset that
can be applied to any JDBC-based application to improve
performance; anyway the correct configuration of
parameters has to be found. The solution has still some
drawbacks. It works for one process only, i.e., the
environment is not yet centralized; the statistical data is
collected separately for each process. It could now happen
that the modifications of one process on a table do not
exceed the threshold, but the modifications of all processes
would do. For instance, if four processes insert 4999
records each (just below the threshold), then no calculation
of statistics would take place for any process although
19996 records have been inserted in total. And if all
processes insert the missing record, then all of them would
calculate the statistics although only one overall calculation
would be enough. In case of our telecommunication
scenario, this is no real problem since the most important
processes are not working in parallel.

Having parallel processes, a central environment is
required that maintains the changes for all processes.
Unfortunately the environment must be a process of its own
in order to collect numbers from all processes. It is still
possible to use Aspect] for collecting changes as described
above, and to pass the number of changed records to a CBO
process by the presented CBO_KEEPER advices. But the
overhead would be too high due to inter-process
communication, especially if SQL statements are executed
in a loop, notifying changes or requesting up-to-date
statistics inside.

One idea to solve the loop problem is to collect the data
internally (as it is done now), and to forward the collected
numbers at the end of the loop only. But unfortunately
Aspect] does not offer the possibility to trap loops. Hence,
further elaborations are necessary in order to provide an
adequate central environment.

AOSD'06 - Industry Track Proceedings 7



7. References

(1]

(2]

(3]

(4]

(5]
(6]
(71

(8]

(9]

(10]

(11]
(12]

[13]

Aboulnaga, A., Haas, P., Kandil, M., Lightstone, S.,
Lohman, G., Markl, V., Popivanov, 1., Raman, V.:
Automated Statistics Collection in DB2 UDB. Proc. VLDB
2004

Chaudhuri, S.: An Overview of Query Optimization in
Relational Systems. Proceedings of 17th Symp. on
Principles of Database Systems, Seattle, Washington, 1998
Chaudhuri, S.; Motwani, R.; Narasayya, V.; Random, V.:
Sampling for Histogram Construction: How much is
enough? In Proc. of ACM SIGMOD, Seattle 1998
Chaudhuri, S.; Shim, K.: An Overview of Cost-Based
Optimization of Queries with Aggregates. IEEE DE Bulletin
1995 (Special Issue on Query Processing)

Clarke, S.; Walter, R.: Composition Patterns: An Approach
to Design Reusable Aspects. ICSE 2001

Elrad, T.; Filman, R.; Bader, A. (eds.): Theme Section on
Aspect-Oriented Programming. CACM 44(10), 2001
Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design
Patterns — Elements of Reusable Object-Oriented Software.
Addison-Wesley 1995

Gassner, P.; Lohman, G.; Schiefer, K.: Query Optimization
in the IBM DB2 Family. IEEE Data Engineering Bulletin,
1993

Gupta, A.; Harinarayan, V.; Quass, D.: Aggregate Query
Processing in Data Warehousing Environments. In Proc. of
21st Int. Conf. on VLDB, Zurich 1995

Gibbons, P.; Matias, Y.; Poosala, V.. Fast Incremental
Maintenance of Approximate Histograms. In Proc. of
VLDB, Athens 1997

Graefe, G.: Query Evaluation Techniques for Large
Databases. In ACM Computing Surveys 25(2), 1993

Haas, L.; Carey, M.; Livny, M.; Shukla, A.: Seeking the
Truth About ad-hoc Join Costs. VLDB Journal 6(3), 1997
Haas, L.; Naughton, J.; Seshadri, S.; Stokes, L.: Sampling-
Based Estimation of the Number of Distinct Values of an
Attribute. In Proc. of 21st VLDB, Zurich 1995

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

Toannidis, Y.; Ng, R.; Shim, K.; Sellis, T.: Parametric Query
Optimization. Proc. of 19th Int. VLDB, Vancouver
(Canada), 1992

Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm,
J.; Griswold, W.: An Overview of Aspect]. ECOOP 2001,
Springer LNCS 2072

Kienzle, J.; Guerraoui, R.: AOP: Does it Make Sense? The
Case of Concurrency and Failures. ECOOP 2002, Springer
LNCS 2374

Laddad, R.: Aspect] in Action. Manning Publications
Greenwich 2003

Levy, A.; Mumick. L.; Sagiv, Y.: Query Optimization by
Predicate Move-Around. In: Proc. of 20th VLDB, Santiago
(Chile) 1994

Ono, K.; Lohman, G.: Managing the Complexity of Join
Enumeration in Query Optimization. In Proc. of VLDB,
Brisbane 1990

Poosala, V.; loannidis, Y.: Estimation without the Attribute
Value Independence Assumption. In Proc. of VLDB,
Athens 1997

Rashid, A.; Chitchyan, R.: Persistence as an Aspect. In M.
Aksit (ed.): 2nd Int. Conf. Aspect-Oriented Software
Development Boston, ACM 2003

Rashid, A.: Aspect-Oriented Database Systems. Springer
Berlin Heidelberg 2004

Seshadri, P. et al: Cost-Based Optimization for Magic
Algebra and Implementation. In Proc. of ACM SIGMOD
Montreal 1996

Soares, S.; Laureano, E.; Borba, P.:
Distribution and Persistence Aspects
OOPSLA 2002, ACM Press

Tsois, A.; Karayannidis, N.; Sellis, T.; Theodoratos, D.:
Cost-Based Optimization of Aggregation Star Queries on
Hierarchically Clustered Data Warehouses. Proceedings of
the 4th Intl. Workshop on Design and Management of Data
Warehouses DMDW 2002, Toronto, Canada

Viglas, S.; Naughton, J.: Rate-Based Query Optimization
for Streaming Information Sources. ACM SIGMOD,
Madison (Wisconsin) 2002

Implementing
with  Aspect].

AOSD'06 - Industry Track Proceedings



Using Aspects with Object-Oriented Frameworks

Michael Mortensen
Hewlett-Packard

3404 E. Harmony Road, MS 88

Fort Collins, CO 80528
and
Computer Science Department
Colorado State University

Fort Collins, CO 80523

mmo@fc.hp.com

ABSTRACT

We investigate potential uses of aspect-oriented program-
ming in the context of object-oriented C++ frameworks
used in the development of VLSI CAD applications. We use
existing applications to explore the use of different kinds of
aspects. We differentiate between framework-based aspects
and application-specific aspects. Framework-based aspects
modularize cross-cutting code based on how an application
uses or extends an object-oriented framework. We propose
the use of a library of framework-based aspects that can be
developed for and leveraged across a family of framework-
based applications. Application-specific aspects allow mod-
ularizing existing cross-cutting code in VLSI CAD applica-
tions. Preliminary results for each type of aspect are pre-
sented, along with challenges in identifying and using as-
pects.

Categories and Subject Descriptors

D.2.2 [Software Engineering|: Design Tools and Tech-
niques; D.2.3 [Software Engineering]: Coding tools and
techniques; D.2.13 [Software Engineering]: Reusable Soft-
ware—Domain engineering, Reusable libraries

Keywords

Aspect-oriented programming, AspectC++, Object-oriented
frameworks

1. INTRODUCTION

Object-oriented frameworks are important for the devel-
opment of large-scale industrial applications because they
provide a common library of functionality (by defining an
application programming interface or API) and an object-
oriented model of the domain (as a set of class hierarchies
that can be extended) [30]. Object-oriented frameworks typ-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

Sudipto Ghosh
Computer Science Department
Colorado State University
Fort Collins, CO 80523

ghosh@cs.colostate.edu

ically provide classes that application developers can use di-
rectly, or reuse through object-oriented mechanisms such as
composition, inheritance, and polymorphism [27]. Aspect-
oriented programming can complement object-oriented pro-
gramming by modularizing cross-cutting concerns that do
not fit into inheritance hierarchies or procedural program-
ming. As Kiczales et al. [17] state, “the central idea of
AOP is that while the hierarchical modularly mechanisms
of object-oriented languages are extremely useful, they are
inherently unable to modularize all concerns of interest in
complex systems”.

We are investigating potential uses of aspect-oriented pro-
gramming in the context of object-oriented C++ frame-
works. The framework being studied is an object-oriented
C++ framework used in the development of VL.SI CAD ap-
plications at Hewlett-Packard. Existing framework-based
C++ applications are of interest for two reasons. First,
using existing applications can help understand the types
of cross-cutting concerns that exist in legacy C++ software,
which is often a mix of object-oriented and procedural styles.
Second, maintenance of existing application software is a key
part of the lifecycle of industrial applications, with practi-
tioners reporting that it consumes more time and more re-
sources than any other part of the software lifecycle [31].
We are studying multiple framework-based applications to
identify common aspects used by many frameworks.

This paper reports on the results of identifying aspects in
two framework-based applications. We have identified two
types of aspects: framework-based aspects and application-
specific aspects. Framework-based aspects modularize cross-
cutting concerns that are based on not only the applica-
tion structure, but also how an application uses the frame-
work classes and API. Application-specific aspects represent
cross-cutting concerns that exist in these C++ applications
but do not use classes or methods of the object-oriented
framework. For the aspects identified, we report on the ben-
efits (code reduction, increased modularity, improved defect
detection) as well as some potential drawbacks of refactor-
ing applications to use aspects. Aspects that use framework
calls or framework-based pointcuts can be grouped together
as an aspect library that is associated with the framework.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the process used for identifying aspects for

republish, to post on servers or to redistribute to lists, requires prior specific use in object-oriented frameworks. Section 3 describes the

permission and/or a fee.
AOSD Industry TracR006 Bonn, Germany
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

applications that were studied and the framework they are
based upon. Section 4 details an aspect created for de-

AOSD'06 - Industry Track Proceedings 9



bugging a framework-based application. In Section 5, we
describe an extra-functional Timing aspect. Section 6 dis-
cusses refactoring a large application to use a policy en-
forcement aspect. A discussion of aspects and frameworks
is provided in Section 7. Related work is reviewed in Section
8, followed by our conclusions in Section 9.

2. |IDENTIFICATION OF ASPECTS

Aspects are typically associated with duplicated (or very
similar) code that is scattered throughout an application
and tangled with its local context [18]. These duplicates are
often a good starting point for identifying framework-based
aspects and application-specific aspects.

Framework-based aspects may also be based on framework
extension points. These extension points include framework
classes that applications commonly extend to form class hi-
erarchies, callbacks that applications can use to register code
to be called when certain events occur, and functors (func-
tion objects) that can be overridden to provide application-
specific behavior in framework code. Framework documen-
tation typically identifies expected extension points for ap-
plication developers. Coady and Kiczales [6] reported im-
proved modularity and maintainability when aspects were
used to implement extension points in operating systems
code. Since extension points are used in many applications
and may be tangled with application-specific code, they may
be good candidates for searching for framework-based as-
pects.

The design documents and source code of an application
can be inspected for classes that are infrastructure-related
(e.g., logging, memory management, performance monitor-
ing), rather than directly related to the main functionality
(VLSI CAD) of the application [14]. Since infrastructure-
related classes typically affect many parts of an applica-
tion, they are candidates for aspectualizing. Infrastructure-
related aspects could be application-specific, or they could
be framework-based if they modularize cross-cutting con-
cerns related to how an application uses the framework.

Once we identify a concern that might be better modu-
larized as an aspect, simple tools such as code browsers and
Unix utilities like grep can be used to quickly find other oc-
currences of similar or related code to see if it is really cross-
cutting. For example, if a logging class is used, we can grep
all files for its type name (e.g. “grep CadLogger *.cc”). This
has limitations, since grep considers one line at a time. For
example, we cannot use grep to find occurrences of two class
names within 3 lines of one another without using a complex
script. In addition, grep is purely text based, while many
code editors (e.g. Eclipse', SlickEdit?) can display syntactic
relationships for an entire project, such as class diagrams,
function calls, and method calls. Visualizing more complex
relationships can help identify methods that are called in
many places or span hierarchies, and can also help deter-
mine if a concern is scattered enough to warrant creating an
aspect.

Because of the large size and long weave-times associated
with the framework-based applications we are studying, we
have adopted a test-driven process that uses mock systems
to prototype aspects before applying them to an application
[25]. After prototyping an aspect with a small mock system,

Lwww.eclipse.org

*http://www.slickedit.com/

we refactor the application itself and run existing application
tests to ensure the change has the desired effect.

The refactoring process can be summarized with the fol-
lowing steps:

1. Review framework documentation for extension points.
2. Inspect application code for duplicate, tangled code.

3. Identify any infrastructure-related code that may cross-
cut many applications.

4. For each aspect, use a small mock system to develop
and test a prototype.

Refactor the application to use the aspect.
Run application regression tests.

To enable reuse, create abstract and concrete aspect.

® N o o

Add framework-based aspects to aspect library.

Application-specific aspects also use the above steps, except
for the first one. Since all of our applications are in the
VLSI CAD domain, even application-specific aspects could
be considered for library inclusion, since they may be usable
by other applications in this domain.

Like traditional refactoring, the aspects are intended to
preserve the behavior or intent of the program constructs
[11]. The aspects will become part of a framework-based
aspect library that we are developing. In order for aspects to
be usable by other applications, an abstract aspect is created
for the library. An abstract aspect has a virtual, abstract
pointcut, and may have virtual methods that are called by
the advice. The application uses a concrete extension of this
aspect.

We have identified both production aspects and develop-
mental aspects [19]. Developmental aspects are used for
testing, profiling, tracing, or debugging an application, but
are not part of the production system. Production aspects
are required for the application to function properly and are
delivered as part of the system.

3. APPLICATIONS AND FRAMEWORK

We have studied two applications: PowerAnalyzer and
ErcChecker. We describe each briefly, since all aspects in
this paper were created refactoring these applications. Both
use an object-oriented VLSI CAD framework developed at
Hewlett-Packard. The framework provides a class hierarchy
for the domain of electric circuits, as well as parsers for com-
mon file formats, collection classes and iterators, and utility
classes for performing common operations. The framework
uses inheritance, including mixin classes, to provide many
concrete classes and allow developers to create their own
extension classes.

The PowerAnalyzer tool is used for estimating power dis-
sipation of electrical circuits. It consists of about 12,000
lines of C++ code. Power dissipation results from switching
power (signals changing from 0 to 1 or vice-versa) and from
static leakage power (current that leaks away even when
signals are not changing). The PowerAnalyzer tool is com-
posed of 3 related executables: PowerSrc, PowerCap, and
PowerEst. PowerSrc checks the structure of the circuit and
ensures that all needed connectivity and electrical data is
available. PowerCap is used to calculate capacitance since

10 AOSD'06 - Industry Track Proceedings



power switching power is proportional to capacitance. Pow-
erEst reads data generated by the PowerSrc and PowerCap
programs and generates a power estimate for each signal of a
block. All three programs use an application-specific library
of common functions and classes (1ibPower) in addition to
using the HP VLSI framework. Because they are not vari-
ants of the same program, they are not a product line, but
instead constitute a product family [4]. The use of several
small, focused programs is a common design style for Unix
programs [13].

Electrical Rules Checking (ERC) systems automate a num-
ber of electrical circuit checks. Example checks include
checking for proper transistor ratios between the pull-up
and pull-down transistors of an inverter, checking for fan-
out limits, or checking for drive strength problems [26]. An
ERC checking tool typically performs many types of checks
on a circuit, reporting violations to the circuit designer. In
order to understand (and ultimately correct) the violation,
the user (a circuit designer) needs access to contextual cir-
cuit data, which the tool displays and writes to a log file.
The ErcChecker tool consists of approximately 80,000 lines
C++ code.

4. A DEBUGGING ASPECT

The first aspect identified is a development aspect used
in debugging the applicaton’s use of the framework. Vali-
dation and defect removal have been identified as challenges
of using frameworks, since it can be difficult to determine
if a fault is due to a defect in the application, unexpected
interactions between framework code and application code,
or a defect in the framework [27].

The PowerAnalyzer tool, like many VLSI CAD applica-
tions, invokes framework methods to create a large graph
(based on framework classes) that represents circuit ele-
ments (transistors, capacitors), circuit connectivity between
these elements (called nets or nodes), and other properties.
It then populates the graph with additional data and manip-
ulates it. Framework-provided iterators are used to traverse
and explore the electrical circuit (also called a design).

During development of the Power Analyzer, the framework
indicated there was an unrecoverable error due to incor-
rect internal framework state. The framework code printed
the name of the framework method being called and exited.
Calling exit () in a C++ library makes debugging difficult
since program state information is not captured before ex-
iting. Although the framework error message included the
name of the method that exited, the application had many
places where iterators were used. Further complicating this
was the fact that the framework provides many types of it-
erators (e.g. iterate over all nets in a component, iterate
over all instances in a component, iterate over all ports of a
net) that share a common base class, and the error message
was generated from the base class.

Initially, we used the brute force approach of adding print
statements to record the last call before exit () was called.
This required modifying 18 locations in 4 files, finding the
defect and fixing it, and removing the 18 modifications from
the 4 files. By contrast, the same effect is achieved by a
single aspect in AspectC++. The CadTrace aspect, shown
below, utilizes the fact that all the framework iterators pro-
vide a Reset () method that is called to start the iteration
of elements when tracing all framework iterator uses by the
application:

#include <iostream>
using namespace std;
aspect CadTrace {
advice call("} %Iter::Reset(...)\")
: before() {
cerr << "about to call Iter::Reset for "
<< JoinPoint::signature() << endl;
}
};

Because AspectC++ is a source-to-source translator, we
created a separate libPower library that has the tracing
enabled. Rather than having to unplug and plug in the
aspect, we can link against the original code or the woven
code to enable and disable tracing. Thus, if a similar bug is
found later, we can simply switch to the traceable version
of the library.

The CadTrace aspect depends only the framework: its
pointcut and advice are not related to the application at all.
Thus, it can be reused as is in any application that calls a
framework Iterator. In addition, we can create an abstract
tracing aspect that uses an abstract pointcut. Applications
could then extend the abstract aspect and define the point-
cut to match any framework methods.

5. AN EXTRA-FUNCTIONAL TIMING AS-
PECT

Aspects have been proposed for modularizing extra-func-
tional concerns: functionality that, while important, is not
part of the central task of an application [24]. Because
run-times for VLSI CAD software can be long (hours or
even days), a common extra-functional concern is to write
time stamps to a log file before certain steps or to write the
elapsed time after certain steps. The PowerAnalyzer does
this by implementing a class, Timer, that has a method to
reset the elapsed time and another method to return the
elapsed time as a string suitable for writing to a log file.
Before and after various steps for which the designers want
timestamp information, instances of Timer are created and
used.

Even though similar code to instantiate and use Timer ob-
jects exists at many locations, there was no common struc-
ture or naming convention for use by pointcuts in selecting
where an aspect should be woven. To refactor the Power-
Analyzer, functions that used the Timer class had the Timer
instance and calls removed, and were renamed from Func-
tionName to tmrFunctionName for pointcut selectability. An-
other challenge was that some of the application code was
written as large, procedural functions. One of the programs,
PowerEst, contained a 500 line function with 15 separate
uses of the Timer module. These separate uses were either
loop statements or conceptually separate code blocks. For
this function, the Extract Method refactoring was first used
(“Turn the fragment into a method whose name explains
the purpose of the method”)[11]. Creating a function with
name that begins with tmr allowed capturing the join point
in AspectC++, and using a meaningful name allowed the
join point signature to replace a manually generated text
description of what was being timed. For consistency, the
same aspect was applied across all three programs (Power-
Src, PowerCap, and PowerEst).

The Timer functionality is encapsulated in an aspect, Time-
Event, in which we use around advice to create a Timer

AOSD'06 - Industry Track Proceedings 11



instance, call Reset, and then we proceed with the orig-
inal call. After the original function invocation, we call
CheckTime to get the current time as a string, and write this
through a PowerEstimator-specific logging function (PrintI).
We also call PowerMessage: :WriteBuffers() to ensure that
all files and logs are written out immediately and are not
buffered by the operating system. The AspectC++ imple-
mentation is shown below:

aspect TimeEvent {

pointcut outer_tmr() =
call("y, tmr)(...)") && 'within("% tmr%(...)");
advice outer_tmr() : around() {
//set up the timer
Timer timer;
timer.Reset();
//proceed with the original call
tjp->proceed();
//write out the time used
PrintI(911, "Time around %s: (%s)\n",
JoinPoint: :signature(),
timer.CheckTime());
PowerMessage: :WriteBuffers();
}
I

This aspect represents a reduction in code of the following
4 lines of code that were normally duplicated:

Timer timer;

timer.Reset();

PrintI(911, "Time around %s: (%s)\n",
JoinPoint: :signature(),
timer.CheckTime());

PowerMessage: :WriteBuffers();

In the PowerEst program, long functions would reuse the
same Timer object. The aspect-oriented solution used one
Timer per Reset call. Since 15 occurrences were factored
out, the reduction was 15*3+42 = 47 lines of code. In place
of manually using the Timer module, functions were created
as pointcut targets. If creating a new function is thought
of as adding 2 lines of code (one for the header or interface
of the function, and one for the call), then 30 lines of code
were added, for a total savings of 17 lines of code. In addi-
tion, one could argue that the resulting structure was also
improved by using smaller, clearly named functions rather
than a single monolithic function.

The PowerCap program, like PowerEst, contained a single
monolithic function that used the Timer module seven times.
It was also refactored into smaller functions. It had five lo-
cally defined Timer instances instead of only two, so the code
savings when using the aspect was 7*3+5=26. Seven new
functions were created, for an addition of 14 lines, resulting
in an overall savings of 12 lines.

The PowerSrc program had only one function (main) that
was timed, so it was refactored as:

int

tmrMain(int argc, char *xargv, PowerMessage *pMsg);

int
main(int argc, char **argv)

{

PowerMessage *plMsg = PowerMessage: :GetMessage();

return tmrMain(argc,argv, pMsg);

}

This change represents adding an extra layer of function
call (3 lines) in PowerSrc (main calls tmrMain) and four lines
of code are removed. Although the aspect only reduces one
line of code in PowerSrc, using it ensures that all applica-
tions in the PowerAnalyzer product family use the Timer in
a consistent manner.

For all three PowerAnalyzer programs the code savings
was 30 lines. More importantly, all code for capturing and
recording timer information is modularized into a single as-
pect. If the Timer were to be modified, or if a new timing
module were substituted, the entire change could be made
in the aspect and the underlying code would not be changed.

The style of name-based pointcuts results in tight coupling
that could be inadvertently broken during maintenance due
to name changes in functions [29]. Here, we have tight cou-
pling between the TimeEvent aspect and the naming con-
vention of methods. If a new function is added that should
use the timer, it must begin with tmr or it will not have
the Timer functionality woven in. In addition, if someone
changes one of the names of the functions to no longer begin
with tmr, time logging will no longer occur for that function.
If a function that does not need timing information is cre-
ated with a name that begins with tmr, that function will
match the pointcut and have TimeEvent advice associated
with it. Unfortunately, such problems would not be imme-
diately detected since the regression tests for the PowerEs-
timator focus on functionality and not the non-functional,
orthogonal concern of time logging [10].

One maintenance problem that we can avoid is a future
direct use of the Timer module. Although AspectC++ does
not provide a declare error construct like AspectJ’s, C++
templates can be used to provide compile-time assertions by
defining a template that has a boolean argument and only
providing a definition for a true value. Code that instanti-
ates the template with a false value will trigger a compile-
time error [1].

Lohmann [21] suggested using a C++ template approach
that can be combined with static join point information so
that any calls to a function matching a pointcut will trigger
an error. For the TimeEvent aspect, we can add the following
advice so that any direct calls to the Reset method of the
Timer class result in a compile-time error.

// create a template that has no definition
// when the second type value is ’false’
template <typename JP, bool>
struct DirectCallOf__StartTimer;
template <typename JP>
struct DirectCallOf__StartTimer<JP, true> {};

aspect TimeEvent {
advice call("}, Timer::Reset()") : before() {
DirectCallOf__StartTimer< JoinPoint, false >();
}

};

6. A POLICY ENFORCEMENT ASPECT

12 AOSD'06 - Industry Track Proceedings



The ErcChecker implements 58 different electrical checks.
Each one is a subclass of an abstract class ErcQuery, and
must implement a set of common virtual methods, includ-
ing createQueries() and executeQuery(). The create-
Queries() method is a static method similar to the Tem-
plate Method design pattern [12], that is called on a partic-
ular circuit element, such as a transistor or electrical node.
Since it is static, it is not associated with any single object;
in this application, it is responsible for creating and eval-
uating objects of it’s class type. The ErcChecker iterates
over various circuit elements, repeatedly calling create-
Queries (), which creates query instances and evaluates them
by callingexecuteQuery ().

For each query, createQuery() performs the same se-
quence of conceptual steps.

1. Use framework iterators and framework traversal meth-
ods to identify circuit data needed by the query.

2. For each part of the circuit where the necessary cir-
cuit data is found, create an instance of the specific
electrical query class associated with the check.

3. Call the executeQuery() method to on the query ob-
ject from the step above. This method will indicate if
the electrical check found an electrical failure or warn-
ing, or if the circuit element passed the electrical check.

4. Add queries that result in a failure or warning to a con-
tainer class, the LevelManager, which generates elec-
trical reports and can be used by a graphical user in-
terface.

5. Write the results of executeQuery() to a log file.

6. Delete queries that did not result in a failure or warn-
ing.

Several of these steps can vary according to the particular
query class. In step 2 for example, some queries create and
evaluate multiple query objects for a single circuit element
while others create only one query object. Step 4 can be
modified with a command-line argument to the program so
that all query results are reported instead of only warnings
and failures.

Although conceptually similar to the Template method,
no code is shared between classes, and there are significant
variations between each class because of differences in the
types of data being gathered. Thus, each of the 58 query
classes has a single large method for createQuery(). In ad-
dition, for Query classes where many query objects are cre-
ated, the six steps are repeated, one at a time, for each indi-
vidual object, and some local context information is shared
between the steps and accessed.

We created a QueryPolicy aspect to refactor steps 4 through
6. The aspect is implemented as after advice for the call to
executeQuery (). Steps 1-3 are very query-specific, and are
not refactored to an aspect. The AspectC++ implementa-
tion for the QueryPolicy aspect is shown below:

aspect QueryPolicy {
pointcut exec_query(ErcQuery *query)
execution("Y, %::executeQuery(...)"

&& that(query);

")

advice exec_query(query) : after(ErcQuery *query)

if (gReportAll || query->errorGenerated()) {

LevelManager: :addQuery (query) ;
glog->log() << "Query error: "

<< " type: "

<< query->getName ()

<< " start element: "

<< query->getStartName ()

<< query->getSummary ()

<< endmsg;
query->logQueryDetails () ;

}
else {
glog->log() << "Query ok: "
<< query->getName ()
<< endmsg;
query->logQueryDetails () ;
delete query;
}

}
};

6.1 Specific Refactorings

While refactoring the ErcChecker to use the QueryPolicy
aspect, several types of changes were made to adapt to the
aspectual behavior. Many involved simple removal of code
being handled by the aspect. We describe those that were
not simple deletions of code below, followed by a summary of
how many classes were associated with each type of change.

6.1.1 Error-only queries

Before refactoring scattered code to an aspect, some classes
had a much simpler createQueries() structure than oth-
ers. For example, most queries could pass or fail, so the
query had to call the errorGenerated() method after call-
ing executeQuery().

query->executeQuery() ;

if (gReportAll || query->errorGenerated()) {
LevellManager: :addQuery(query) ;
glog->log() << "Query error "

}

else {
glog->log() << "Query ok: "
delete query;

}

For some query classes, if a particular circuit structure was
found at all, it always indicated the presence of an electri-
cal error. The query code was simpler, since it did need to
check the result of query->errorGenerated() and can im-
mediately add the query object to the LevelManager class,
as shown by these 3 lines:

query->executeQuery() ;
LevelManager: :addQuery(query) ;
glog->log() << "Query error "

The simpler structure has the potential for a defect in the
refactored system. The query->errorGenerated() method
uses an object attribute that should be set by execute-
Query(). If the executeQuery() method fails to set that
attribute, the original code (which did not check it) would
function properly, but the new, aspect-based code, which
uses advice that always checks the attribute value would

AOSD'06 - Industry Track Proceedings 13



not function properly. These classes were inspected to en-
sure that their respective executeQuery() methods set the
required attribute. Thus, although refactoring to an aspect
did not introduce a defect, it does illustrate a case where us-
ing an aspect’s advice with many core concern classes could
introduce a defect if methods in a class heirarchy do not
consistently use state variables.

6.1.2 Multiple queries in createQueries()

For most queries, createQueries() creates and evaluates
a single query object. For others, exactly two objects are
created (one for the high voltage case, and one for low volt-
age). In addition, some query classes have the potential to
find many possible violations from a single starting point
and iterate over a variable number of cases. For example, a
wire in a circuit may have many neighbor nets with which
it shares an unacceptable amount of coupling capacitance.
When refactoring a class to use the QueryPolicy aspect,
we must ensure that all of the calls to executeQuery() are
removed and handled instead by the aspect.

6.1.3 Query-specific logging

In addition to the standard query logging, some queries
contain additional class-specific code that calls methods not
inherited from the base class to record query-specific details
used for validating and debugging the electrical checks being
performed. Because this is class-specific code, it cannot be
called from an aspect advice that uses only the base class
interface.

This code was refactored into a new method, logQuery-
Details(), and directly called by the policy aspect. The
base class for the queries was modfied to provide an empty
default implementation for queries that do not need this
functionality. For classes that did need the functionality,
the class had to define the logQueryDetails() method.

In the original code for classes that had query-specific
logging, the code was structured like this:

query->executeQuery();
if (gReportAll || query->errorGenerated()) {
LevelManager: :addQuery (query) ;
glog->log() << "Query error "

}

else {
glog->log() << "Query ok: "
delete query;

}

/* QUERY-SPECIFIC CODE HERE,
USING ’query’ VARIABLE */
if (! (gReportAll| |query->errorGenerated()))
delete query;

The call to logQueryDetails() must be performed in the
aspect, because if we leave the query-specific code in (rep-
resented by the comments in all caps), and then use the
aspect, we end up with this structure:

query->executeQuery() ;

/* Aspect will be called here */

/* QUERY-SPECIFIC CODE HERE,
USING ’query’ VARIABLE */

At first glance, we see the reduction in code that the as-
pect provides, but we may not realize that we could have a
problem. If the query does not indicate an error, then the

aspect’s advice will delete the query object. In that case,
when control returns to the method, the query-specific log-
ging code will make method calls with the query variable.
Invoking a method call on a deleted object in C++ will re-
sult in erroneous program termination. By having the advice
call logQueryDetails() before the object may be deleted,
we will not have method calls on deleted objects.

Since adding an empty method to the base class is a
one line change, we added the method directly to the C++
header file rather than using an AspectC++ introduction.
Creating logQueryDetails() required copying and pasting
the query-specific code into the method body and changing
method invocations to intra-class calls. Thus, method calls
on an object like this:

glog->log() << " Coupling net: "
<< query->getCouplingNet ()
<< " capacitance: "
<< query->getCouplingCap() << endmsg;

are now part of the logQueryDetails () method that has an
implicit query object:

void HighCouplingCap: :logQueryDetails()
{
glog->log() << " Coupling net: "
<< getCouplingNet ()
<< " capacitance: "
<< getCouplingCap() << endmsg;
}

6.1.4 Missing log information

The QueryPolicy aspect is woven into all calls to execute-
Query (), consistently applying the policy through advice.
During refactoring, we found that one query failed to provide
any information to the log file, but was otherwise correct.
Changing to the aspect fixed this oversight, eliminating an
existing subtle defect.

6.1.5 Unchanged queries

There were a number of queries that were not electrical
rules queries, but instead were used to flag non-electrical
failures, such as problems in the system itself (e.g., failure
to open a log file and unexpected data structure value in the
framework). Warning a circuit designer of these problems
was accomplished by implementing them as sub-classes of
the ErcQuery base class. Doing this allowed the system er-
ror queries to be written to error files and displayed in the
graphical interface consistently with the electrical checks,
leveraging existing functionality. The non-electrical error
classes did not actually call the executeQuery method, but
directly added objects to the system when system-related
issues were found during a tool run.

Because these system error classes differed from the elec-
trical query classes, the non-electrical classes were not mod-
ified to use the QueryPolicy aspect. Since the aspect uses
the executeQuery method, which is never called for these,
the aspect did not affect them at all. The presence of
these classes reflects a sub-optimal design decision that for-
tunately was easy to work around. A better long-term change
might be to extract a subclass that distinguishes between
family of electrical queries and the various non-electrical
system queries [11]. Legacy systems often have methods
or classes that could be refactored for a cleaner design, as

14 AOSD'06 - Industry Track Proceedings



demonstrated by the large number of documented refactor-
ings. In general, sub-optimal design decisions could affect
aspect design and pointcut selection.

6.2 Summary of changes

The types of changes made (as well as the simple case
of only deleting code) are shown in Table 1. Because some
of the 58 queries involved more than one change type, the
numbers in this table add up to more than the number of
query classes when the number of unchanged queries (13)
from section 6.1.5 are taken into account.

Type of change | # Queries
Simple deletion of code 15
6.1.1 Error-only queries 8
6.1.2 Multiple queries in createQueries() 6
6.1.3 Query-specific logging 18
6.1.4 Missing log information 1

Table 1: Changes made for QueryPolicy aspect

6.3 System-wide challenges

In addition to specific query-related challenges encoun-
tered during refactoring, we also found three system-wide
issues that affected correctness, testability, and the change
process.

proper pointcut matches, and testing advice code a tedious
process. In fact, the desire for a faster, iterative prototyp-
ing approach to be able to experiment with and validate as-
pects was part of the motivation for our use of mock systems
and test-driven development [25]. By creating a small mock
system that had the same basic query structure and nam-
ing conventions, we could experiment with different pointcut
statements and advice.

6.4 Benefits

Using the QueryPolicy aspect represents a line reduction
of about 8 lines per class. However, as discussed in Section
6.1, not all classes had the same number of lines removed. In
addition, factoring out logQueryDetails() added one line
to the base class. Each class that used it needed to define
the method in its C++ header file, and then the method
name, opening curly brace ({) and closing curly brace (})
added 3 more lines. Thus, this change added 1 + 4 * 18 = 73
lines of simple boilerplate code. The total difference in lines
for the changes was a reduction of 262 lines. Taking into
account the additional lines added for logQueryDetails(),
335 lines were removed from 45 classes. The aspect code
that replaces this code is only 21 lines long.

More important than the lines of code reduced, the aspect
enforces a policy of what must always occur after execute-
Query() is called. During development, there were cases
where the policy was accidentally missed for a class, since
it cannot be automatically statically enforced when scat-

6.3.1 Accidental code duplication between aspectStered through the many createQuery() methods for the

and the core concern

The QueryPolicy aspect deletes query objects that do
not find electrical errors. In refactoring the code, the origi-
nal calls to delete must be factored out, or both the advice
code and query code will try to delete the same object. This
would introduce a defect that results in program termina-
tion. The underlying issue here is that aspect-oriented refac-
toring is asymmetric, since the duplicate scattered (such as
delete) must be manually removed, but the corresponding
call to delete in the advice will be automatically woven in.

Debugging the root cause for multiple deletions of the
same object requires understanding the interaction between
the aspect and core concern. If traditional tools such as
debuggers are used, code comprehension may be more diffi-
cult, since the developer will be examining the woven code,
which contains core concern code, aspect code, and low-
level constructs used by the AspectC++ implementation of
an aspect.

6.3.2 Standardizing output and regression testing

The QueryPolicy aspect standardizes the log file messages
that indicate pass or fail for each query. We consider this
a benefit for long-term maintenance, but it does cause any
regression tests that look at output logs to fail due to the
(now standardized) output. For this application, only a few
more than 100 regression tests look at the log files; most look
at report files that were not changed. In general, this kind
of one-time maintenance change can present a significant
adoption cost for AOP on large projects with extensive test
suites.

6.3.3 Compile times

For the ErcChecker, weaving and compiling the code takes
25 minutes. This makes developing aspects, checking for

subclasses.

7. DISCUSSION

Using the two framework-based applications, three as-
pects were identified. The first, a developmental aspect, was
used to trace calls into the underlying framework. We are
also investigating the identification of production framework-
based aspects.

The other two aspects are production aspects, but there
were still some important differences. The Timer module in
the PowerAnalyzer can malfunction (or fail to run) without
invalidating the results of the tool. By contrast, the policy
enforcement aspect for the ErcChecker is required for proper
functioning of the tool,

Other developers who use the same CAD framework have
been enthusiastic about using development aspects, but have
expressed concern about migrating to a new paradigm and
a dependency on an aspect weaver for production aspects.
Evaluating the use of aspects on these large C++ applica-
tions is beneficial for understanding the possible costs, ben-
efits, and risks of adopting a new technology. Migrating to
new technologies is not without risk and needs to be done
carefully. In fact, VLSI CAD software saw an early unsuc-
cessful attempt at large-scale object-oriented programming
in the mid-1980s which adversely impacted the schedule and
performance of a market leader’s products [20]. In addition
to demonstrating benefits and costs of using aspects, study-
ing AOP in the context of large-scale applications can help
provide a smooth transition in industrial use.

8. RELATED WORK
8.1 AOP-based Refactoring

AOSD'06 - Industry Track Proceedings 15



Advocates of aspect-oriented programming have begun
enumerating AOP-based refactorings and evaluating the as-
sociated benefits and costs [18]. Coady and Kiczales [6]
demonstrated the benefits of using aspects in operating sys-
tem code by implementing four modules as aspects in an
early version of FreeBSD and then observing the changes
to those modules as they introduced the changes from two
subsequent versions. Our work focuses on framework-based
applications, and has the long-term goal of studying a set of
applications for common aspects among them.

8.2 Product Lines

Batory et al. [2] propose replacing large framework hi-
erarchies with a set of components that can be combined
in a layered approach to build “product lines” — families
of related applications. Mixin classes (multiple inheritance)
and templates based on custom-designed flexible component
classes are combined using a grammar-based approach that
specifies compositions [3]. Their product line approach relies
on completely replacing (or reimplementing) the framework
with small components that can be composed in pre-defined,
grammar-based ways across many layers. Our approach uses
an existing object-oriented framework without modifying it.
Instead, the framework-based applications are modified to
use aspects.

Lohmann et al. [24] propose the use of domain analysis,
which produces feature diagrams, which are then used to
guide in the designing an ‘architecture-neutral’ system that
will allow aspects to be woven in across multiple modules so
that the non-functional properties can be configured across
a set of product lines. Although we may use domain analysis
to identify non-functional aspects, our approach deals with
a set of applications that share a common framework. Some
of the applications we are refactoring are implemented as
product families; however, the overall set of applications are
not a product line since they are not variations of the same
functionality.

8.3 Long-term studies of aspect-oriented refac-

toring

Coady [6, 7, 8, 9] has studied how aspect-oriented pro-
gramming can be used to refactor complex code for operat-
ing systems. Included in her work was a retroactive study
where aspects were added to an early version of the operat-
ing system code, and then the changes were applied to the
refactored version to see how well-suited aspects were for
system evolution. We plan on carrying out a similar longi-
tudinal study, but will do so for a set of framework-based
applications that use an aspect library.

8.4 C++ Templates and Obliviousness

C++ provides a powerful template mechanism that can be
used to generate classes for types at compile time. Alexan-
drescu [1] shows how policy classes in C++ can use tem-
plates to provide structures that, like aspects, have an inter-
face but still allow users a means to extend the internal code
structure. Lohmann, Gal, and Spinczyk [23] demonstrate
that these mechanisms can be used to develop code with
an aspect-oriented style, but without the obliviousness of
aspects: everything must be explicitly instantiated through
templates, which have to have the extension points designed
in.

The main limitation of implementing aspects as templates

and of policy classes is that the extension points of an as-
pect or the actual policy location of a policy class must be
designed into the template [23]. By contrast, obliviousness
in aspect-oriented programming can be used to extend and
customize classes and frameworks in ways they were not ex-
plicitly designed for. The use of AspectC++ with templates
has been explored by Lohmann, Blaschke, and Spinczyk [22].

Burke [5] points out that obliviousness allows needed or-
thogonal behavior to be layered in above or below the func-
tiionality that the behavior crosscuts so that the layered
functionality can easily be enabled or disabled as needed.
In our approach, we only weave aspects into the applica-
tions and not the framework code. The layers used by our
aspect library would be around the framework and inside
the applications but not below the framework interface.

Recently, obliviousness has been criticized as inadequate
when designing and implementing new systems, since it re-
quires sequentialization of the process; that is, first the base
code is developed, and then the aspects are written based
on syntactical properties and structure of the base code.
Sullivan et al. [28] propose instead to define an interface
between the base code and aspects, so that both can be
evolved without accidental changes in dependencies. When
using aspects with existing frameworks, however, we believe
that sequentialization is fine: the framework is already im-
plemented and available, and applications are developed to
utilize the existing framework.

9. CONCLUSIONS AND FUTURE WORK

This paper has presented initial work at identifying and
using aspects in framework-based VLSI CAD software writ-
ten in C++. Both development and production aspects have
been identified and used. The initial results in terms of re-
duction of code and modularity (grouping together related
code) show improvement with an aspect-oriented approach.

Future work will continue investigating identifying aspects
and performing refactoring of framework-based applications.
We have begun investigating clone detection tools such as
CCFinder® [16] for finding concerns, and are also interested
in aspect-mining tools. Unfortunately, many current aspect
mining tools are based on Java rather than C++ [15].

In addition, we are interested in identifying development
and production aspects that are based on the framework so
that a library of framework-based aspects can be created
and used with many framework-based applications. We be-
lieve this approach, which we refer to as aspectualizing a
framework, allows aspects to enhance framework function-
ality. In addition, it will ease integration with and use of
frameworks without modifying the framework itself.

10. ACKNOWLEDGMENTS

The authors wish to acknowledge the use of the open
source tool AspectC++ (www.aspectc.org). They also ac-
knowledge helpful feedback on the AspectC++ user group
from Olaf Spinczyk and Daniel Lohmann.

11. REFERENCES

[1] A. Alexandrescu. Modern C++ Design: Generic
Programming and Design Patterns Applied. AW C++
in Depth Series. Addison Wesley, January 2001.

3CCFinder v10.1.2

16 AOSD'06 - Industry Track Proceedings



2]

3]

[5]

[15]

D. Batory, R. Cardone, and Y. Smaragdakis.
Object-oriented frameworks and product lines. In Ist
Software Product-Lines Conference (SPLC1), 2000.
D. Batory and B. J. Geraci. Composition validation
and subjectivity in GenVoca generators. [EEE
Transactions on Software Engineering, 23(2):67-82,
Feb. 1997.

D. Batory, R. E. Lopez-Herrejon, and J.-P. Martin.
Generating product-lines of product-families. In ASE
’02: Proceedings of the 17 th IEEE International
Conference on Automated Software Engineering
(ASE’02), page 81, Washington, DC, USA, 2002.
IEEE Computer Society.

B. Burke. It’s the aspects. Java Developer’s Journal,
2003.

Y. Coady and G. Kiczales. Back to the future: A
retroactive study of aspect evolution in operating
system code. In M. Aksit, editor, Proc. 2nd Int’ Conf.
on Aspect-Oriented Software Development
(AOSD-2003), pages 50-59. ACM Press, Mar. 2003.
Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, and
J. S. Ong. Structuring operating system aspects: using
AQOP to improve OS structure modularity. Commun.
ACM, 44(10):79-82, Oct. 2001.

Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn.
Using AspectC to improve the modularity of
path-specific customization in operating system code.
ACM SIGSOFT Software Engineering Notes,
26(5):88-98, Sept. 2001. Proceedings of the 8th
European software engineering conference held jointly
with 9th ACM SIGSOFT symposium on Foundations
of software engineering, Vienna, Austria.

Y. Coady, G. Kiczales, J. S. Ong, A. Warfield, and
M. Feeley. Brittle Systems will Break - Not Bend: Can
AOP Help? . In Proceedings of the 10th ACM
SIGOPS FEuropean Workshop on Operating Systems.
ACM Press, September 2002.

A. Colyer, A. Rashid, and G. Blair. On the separation
of concerns in program families. Technical report,
Lancaster, COMP-001-2004, 2004.

M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Aug. 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading,
MA, 1995.

M. Gancarz. The UNIX Philosophy. Digital Press,
December 1994.

S. Ghosh, R. B. France, D. M. Simmonds, A. Bare,
B. Kamalakar, R. P. Shankar, G. Tandon, P. Vile, and
S. Yin. A middleware transparent approach to
developing distributed applications. Software Practice
and Experience, 35(12):1131-1154, October 2005.

J. Hannemann and G. Kiczales. Overcoming the
prevalent decomposition in legacy code. In P. Tarr and
H. Ossher, editors, Workshop on Advanced Separation
of Concerns in Software Engineering (ICSE 2001),
May 2001.

T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw.
Eng., 28(7):654-670, 2002.

(17]

(19]
20]

(21]

(22]

(25]

[26]

27]

(28]

29]

30]

(31]

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, Proc. ECOOP
2001, LNCS 2072, pages 327-353, Berlin, June 2001.
Springer-Verlag.

R. Laddad. Aspect-oriented refactoring part 1:
Overview and process. Technical report,
TheServerSide.com, 2003.

R. Laddad. AspectJ in Action: Practical
Aspect-Oriented Programming. Manning, 2003.

J. Lakos. Large-Scale C++ Software Design,

chapter 0, pages 1-18. Addison Wesley, July 1996.

D. Lohmann. 2006. AspectC++ user’s mail list:
http://www.aspectc.org/pipermail/aspectc-user/2006-
January/000872.html.

D. Lohmann, G. Blaschke, and O. Spinczyk. Generic
advice: On the combination of AOP with generative
programming in AspectC++. In Third International
Conference on Generative Programming and
Component Engineering (GPCE’04). ACM, 2004.

D. Lohmann, A. Gal, and O. Spinczyk.
Aspect-Oriented Programming with C++ and
AspectC++ (Tutorial). In K. Lieberherr, editor, Proc.
8rd Int’ Conf. on Aspect-Oriented Software
Development (AOSD-2004). ACM Press, Mar. 2004.
D. Lohmann, O. Spinczyk, and W. Schrder-Preikschat.
On the configuration of non-functional properties in
operating system product lines,. In D. H. Lorenz and
Y. Coady, editors, ACP4IS: Aspects, Components, and
Patterns for Infrastructure Software, Mar. 2005.

M. Mortensen, S. Ghosh, and J. Bieman. A test driven
approach for aspectualizing legacy systems. 2006.
Submitted to Aspect-Oriented Software Development
(edited by Sami Beydeda and Volker Gruhn).

S. M. Rubin. Computer Aids for VLSI Design.
Addison-Wesley VLSI Systems Series.
Addison-Wesley, 1987.

D. Schmidt and M. Fayad. Object-oriented application
frameworks. Communications of the ACM,
10(40):32-38, 1997.

K. Sulivan, W. G. Griswold, Y. Song, Y. Cali,

M. Shonle, N. Tewan, and H. Rajan. On the criteria
to be used in decomposing systems into aspects. In In
FEuropean Software Engineering Conference and
International Symposium on the Foundations of
Software Engineering, 2005.

T. Tourwé, J. Brichau, and K. Gybels. On the
existence of the AOSD-evolution paradox. In

L. Bergmans, J. Brichau, P. Tarr, and E. Ernst,
editors, SPLAT: Software engineering Properties of
Languages for Aspect Technologies, Mar. 2003.

J. van Gurp and J. Bosch. Design, implementation
and evolution of object oriented frameworks: concepts
and guidelines. Software Practice € Experience,
10(31):277-300, October 2001.

J. P. Zagal, R. S. Ahus, and M. N. Voehl.
Maintenance-oriented design and development: A case
study. IEEE Software, 19(4):100-106, 2002.

AOSD'06 - Industry Track Proceedings 17



18

On using AOP for Application

Performance Management

Kamal Govindrgj, Srinivasa Narayanan, Binil
Thomas, Prashant Nair, Subin P

Tavant Techonologies

3101 Jay Street, Suite 101, Santa Clara, CA 95054, USA

kamal.govindraj @tavant.com,
srinivas.narayanan@tavant.com,

binil.thomas@tavant.com, prashant.nair @tavant.com,

subin.p@tavant.com

Abstract. We discuss our experiences in
using AOP in the field of application
performance management that were gained
during our development of an open-source
J2EE performance management tool called
InfraRED. Monitoring the performance of
enterprise applications lends itself well as a
crosscutting concern. Basic monitoring
features can be implemented through call
and execution pointcuts, and interesting
features such as dicing statistics by caller
context, identifying top-level APIs and
computing call-trees can be e egantly solved
through the use of cflows. Summarizing
statistics by layer, gathering statistics based
on parameter values and controlling the
parts of the application that need to be
monitored are problems that can be solved
in a simpler and more declarative way
through AOP compared to other techniques.
AOP tools can help further by providing
features in the areas of pointcut definitions
based on monitor entry/exit events such as
synchronized blocks and waits, offering
better runtime weaving support and offering
in-built support for reasoning about advices
such as the time spent in executing them.
Overdl, we believe tha bringing the full
richness of an AOP language to application
performance management adlows us to
implement a rich feature set, and offers a
level of flexibility and customization that is
harder to achieve with other approaches.

1 Introduction

Managing the performance of JEE
applications is a non-trivial task. There are
usually several layers of software to deal with
such as Servlets, JSPs, EJBs [1], JDBC [2],
third-party persistence tools (such as Hibernate
[3], TopLink [4], iBatis [5]), independent
frameworks (such as Struts [6], Spring [7])
etc., and dealing with such a wide variety of
software components makes it difficult to
detect and analyze performance problems.

We discuss our approach to application
performance management (APM) of J2EE
applications tha involves the use of AOP
techniques to address these problems. Our
experiences are based on our work in
developing an APM tool called InfraRED [8]
that employs popular AOP tools such as
Aspectd ([9], [10]) and AspectWerkz [11] as
the basis for solving severa interesting
challenges. InfraRED has been used in severa
projects a Fortune 500 customers and is
available through an open-source license. It is
fully non-intrusive and lightweight [12] (i.e.
adds very little overhead) that makesit easy to
use in production systems. Interesting features
of the tool include capturing statistics at
various level of aggregation (by verticd
components as well as horizontal layers) and
granularity (at method level or based on
method parameter  values), correlating
gtatistics from various layers, capturing call
trees, and dynamically changing the level of
information gathered. We highlight and re-
iterate the advantages of using a full-fledged
AOP tool to implement these features
throughout the paper.

1.1 Outline

In Section 2, we present an overview of the
traditiona  approaches to  application
performance management. In Section 3, we
motivate several requirements of a good APM
system such as basc timing and usage
information, dlicing statistics by layers or by
caller context or by APl parameter values,
gathering persstence tier statistics and tracing
remote cals. We show how we implemented
them, how AOP helps in solving these
problems elegantly in a simpler way compared
to other approaches. We also mention where
AOP may fal short and motivate our design
decisons when there were multiple viable
choices. In Section 4, we discuss the AOP
tools we used and mativate why we support
multiple tools. In Section 5, we highlight the
benefits that a full-fledged AOP tool can bring
to APM that would be harder to implement
through other techniques. We then discuss
other related work, provide ideas for what
more AOP tools can do in future for APM,
provide some insights into acceptance of AOP
technology in our user community, and
concludein Section 7.

AOSD'06 - Industry Track Proceedings



2 State of the Art

Application devel opers have traditionally used
a few different techniques to dea with
performance management.

The use of profiler tools (such as Optimizelt
[13], JProbe [14]) is a common technique.
While such tools are useful to debug problems
at a detailed level, they add a lot of overhead
that make them unsuitable for use in
production environments. Since many
performance problems are difficult to
reproduce on non-production environments,
these tools are thus limited in their utility.
Also, such tools do not typicaly provide
statistics aggregated or sliced in different ways
and do not correlate information from different
tiers that are both necessary for a holigic
approach to APM.

Another traditional approach has been to
explicitly insert cdls to gather timing and
usage information at specific points in the
code. However, this approach is intrusive and
relies on programmer discipling, and is also
tedious and difficult to maintain. Clearly,
performance monitoring is a crosscutting
concern that is elegantly solved by the use of
AOP techniques.

Recent commercial APM tools [15, 16, 17, 18,
19, 20] have addressed this issue by using
bytecode instrumentation techniques (typically
at class loading time) or usng interceptors
provided by application server frameworks to
add their own proprietary performance
monitoring code. InfraRED takes a dightly
different approach. While the underlying
mechanism may eventually involve some form
of bytecode instrumentation, instead of writing
a lot of custom code to decide what code
instrument and how, or adding a lot of
interceptors and wiring them together to add
the performance management logic, InfraRED
uses higher-level AOP tools that weave the
performance management logic into the
application. Apart from InfraRED and
Glassbox Inspector [21, 22], we are unaware
of any other products that use full-fledged
AOP tools for APM. As explained throughout
the paper and highlighted specifically in
Section 5, by making full use of AOP, we
achieve a level of simplicity, flexibility and
customization that is not available in the tools
following other approaches.

3 AOP in Application
Performance Management

3.1 The Basics

Application
Catalog Order
Management Management
Aspecis Aspects
JOBC Spring Hibemate
Aspects Aspecis Aspects
\ Facade
Agent
(Core perfarmance monitaring library)

InfraRED D Collector &
midules Statistics reposiiory

Web GUI

Figure 1: High-level Architecture

The agent consists of a core monitoring
library which is a set of plain Java
classes that calculates timing and usage
dtatistics such as min, max, average,
first, last execution times, creates call
trees if necessary, and correlates these
metrics with those collected from other

parts of the sysem. The agent is
bundled along with every application
that is to be monitored. The agent
periodically transfers the metrics it has
collected to a central collector, which
makes it available for a GUI to display
to the user.

AOSD'06 - Industry Track Proceedings

19



20

The agent exposes a facade [23] to
which the application needs to make
cadls a dgnificant points in its
execution. These calls to the agent fit
neatly into crosscutting concerns that
can be weaved into the application
code.

The main part of this mechaniam is to
define the aspects that capture the calls
to the fagade. We define an abstract
base aspect as follows:

publ i c abstract aspect
I nf raREDBaseAspect {
/**

* The conditi on based on
which nonitoring is
per f or ned.

*/

publ i c abstract pointcut
oper at i onToBeMoni t or ed() ;

/**
* CGets the |ayer
(Sessi on Bean/ Entity
Bean/ JDBC etc.) of
* the operation
*/
public abstract String
get Layer Nane() ;

/**

* Calls the agent facade
before and after the
execution of the

* nonitored operation

*/

Obj ect around() :
oper at i onToBeMoni tored () {
final dass clazz =
t hi sJoi nPoi nt Stati cPart. getSi
gnat ur e()

. get Decl ari ngType();

final String nmethod =
t hi sJoi nPoi nt Stati cPart. getSi
gnat ur e()

. get Name() ;
final String |layer =
get Layer Nane() ;

long startTinme =
Facade.start (cl azz, nethod,
| ayer);
try {
return proceed();
} finally {

Facade. end(startTi ne, clazz,
met hod, | ayer);

}

}

Concrete implementations of the absract
aspect provides pointcuts for specific
operations that need to be monitored — for
€.g., session bean calls struts executions,
entity bean calls etc. They aso have to
provide a “layer name” (such as “Session
Bean”, “Struts’ etc.) that gets associated
with the statigtics that is collected. This
allows us to provide interesting satistics
such as the overall time spent in alayer that
is useful for performance and scalability
analysis. A concrete SessionBeanAspect is
illugtrated bel ow:

publ i c aspect
Sessi onBeanAspect extends
I nf raREDBaseAspect {

/**

* Execution of a
Sessi onBean net hod

*/

publ i c poi nt cut
oper at i onToBeMoni t or ed()

execution(public *

j avax. ej b. Sessi onBean+. *(..))

/**

* CGets the |ayer name
(Sessi on Bean/ Entity
Bean/ JDBC etc.)

* of the operation

*/
public String
get Layer Nane() {
return “Session
Bean”;

}
}

We also provide such pre-defined aspects
for other common areas such as Struts
executions, EntityBean executions etc., to
make it easy for developers to integrate the
tool into their system. Also, exposing the
pointcut definitions to users allows them to
easily customize the parts of the application
that need to be monitored if they desireto do
0.

AOSD'06 - Industry Track Proceedings



The advice executed at these pointcuts
includes gathering basic timing and
execution dtatistics, layer-based statistics
such as time spent in various layers (such as
Web Layer, Struts Layer, Hibernate Layer
etc.) that is explained in Sections 3.2 and
3.4. Detailed datistics such as call trees can
also be captured optionally.

Overhead of Performance Monitoring
Tools

A common concern among performance
monitoring tools and AOP-based tools in
particular is the performance overhead of

such tools. Fgure 2 illustrates basic
performance characteristics of a sample
typicd Web application that involves
servlets which invoke business logic through
session beans. The application was
instrumented with performance monitoring
advice from InfraRED (advice capturing call
trees was not included in these experiments).
The number of methods indicates the
number of executed methods that have been
instrumented in a single request. See
Appendix A for a description of the
experimental setup.

3500

Overhead of Performance Monitoring

3000 -
2500 -
2000 -
1500 -
1000

—e— Base Application (without
performance monitoring)

—a— With InfraRED AspectJ 5
v1.5.0 LTW

With InfraRED AspectJ5
v1.5.0 CTW

Response Time (ms

500
O T T T T T

—x— With InfraRED
AspectWerkz 2.0 LTW

Number of Methods

100 500 1000 1500 2000 2500 coded performance

—e— Base Application + Hand-

monitoring logic

Figure 2: Overhead of Performance Monitoring

As we can see, the overhead of monitoring
is minimal - less than 2% of the
application’s response time. And there is
practicaly no difference when we compare
the overhead of AOP-based performance
monitoring to that of the hand-coded
solution. From our experience with a wide
variety of enterprise web applications, the
overhead of performance monitoring in such
applications using our tool has usually been
about 1-5% of the application’s response
time, which is acceptable in most situations.
From our experience, when we gather more
detailed satistics such as call trees (see
Section 3.4), the overhead ranges from to
approximately 2-10%.

3.2 Slicing statistics by using
cflow

The advice we described above alows us to
view timing and call statistics for individual
APIs as well as overall summaries for
various typical layers An important
extension to this is the ability to view
summary statistics for alayer further broken
down by the type of the caller.

For example, consider a shopping cart
application that uses Hibernate to access the
relational store. Furthermore, suppose that
CatalogMgmtService and

AOSD'06 - Industry Track Proceedings

21



22

OrderMgmtService are services that handle
the catallog management and order
management portions of the application. A
user might want to identify how much time
the application spendsin Hibernate just from
the catalog management service to analyze
any inefficiencies in how  the
CatalogMgmtService accesses the database.
Using cflow pointcuts is a natural way to do
this:

publ i c aspect
Hi ber nat el nCat al ogMgnt
ext ends | nfraREDBaseAspect {

/**
* captures all hibernate
executions in the application
*/
publ i c poi nt cut
hi bernat e():
execution (public *
or g. hi bernat e. Sessi on+. *(..))
|| (public *
org. hi bernate. Query+.*(..)));

publ i c poi ntcut catal ogMgmt

execution (public *
com nyconpany. Cat al ogMgmnt . * (.
));
/**
* captures only the
hi bernat e executions used in
cat al og managenent
*/
publ i c poi nt cut
oper ati onToBeMoni t or ed() :
hi bernate() &&
cf | owbel ow( cat al ogvgnt ) ;

public String
get Layer Name() {
return “H bernate In
Catal og Mynt”;

}

A user integrating InfraRED with the
shopping cart application can write such
custom aspects and weave it into the
application along with the other standard
pre-defined aspects. As seen above, the logic
is expressed in a smple and declarative way
using a pointcut definition language.
Achieving the same without AOP tools
would involve writing a lot of cumbersome
procedura code. The performance overhead
of using cflow for this use case will also be

minimal. We explain the performance
considerations of using cflow more in
Section 3.4.

3.3 Capturing statistics at a
finer granularity
While recording timing and usage
information at an APl level isvery common,
some applications want to gather this
information at a finer granularity based on
the values of the parameters that were
passed to the API. In our experience, we
have encountered this need in cases such as
monitoring performance of workflow tools
and business rules engines. Many such tools
have a generic APl such as
WorkflowEngine.execute(String
workflowName) or
RulesEngine.execute(String
rulesPackageName) where there is a
common API| that takes the input of a
workflow name or a package of rules and
executes it. Applications typicaly want to
see the timing and usage information broken
down by the name of the workflow or the
name of the business rules package. The
core monitoring library in InfraRED
supports gathering and displaying statistics
for APIs based on the values of the
parameters that were passed to them. An
application just has to write a custom
pointcut that describes the APIs in their
system that need this feature, and invoke the
core monitoring library from the advice for
that pointcut. While this feature can aso be
built with other mechanisms, the AOP
language provides a ssimpler and much more
declarative way of using the parameters and
types of APIs to express the necessary logic
in the aspect definition.

3.4 More possibilities for using
cflow

Layer time

InfraRED also supports capturing the total
time spent in different layers of an
application. A method is tagged with alayer
name to which it belongs. Time spent in
executing the top-level method of a layer is
added to the overall time spent in that layer.

This is another feature that can be e egantly
implemented with cflows. However, since
the overhead of the cflow implementation
was not acceptable in AspectJ version 1.2,

AOSD'06 - Industry Track Proceedings



we originally implemented this feature
through custom monitoring code. This
implementation used a Threadl ocal map of
layer names to “layer depth counts’ that
shows how many methods deep in that layer
an execution stack is at any point. When the
layer depth count reaches zero (i.e. when a
top-level method of that layer finishes
execution), the time spent in that layer is
incremented.

Interestingly, Aspectd 1.2.1 introduced
several  cflow optimizations such as
ThreadL ocal counter  based cflow
implementations when there is no state with
the pointcut, which is very similar to our
custom implementation described above (but
instead of a Map of layer names to counters,
there is one ThreadLocal counter for each
pointcut representing a layer). We measured
these results on a sample application with 5
different layers (see Appendix A for a
description of the experimental setup). With

these optimizations, the performance of
cflow based pointcut to compute layer
timings is comparable to the hand-coded
solution. Figure 3 shows the results of
performance experiments of computing
layer time through custom code and through
use of cflows. Cflows in AspectJ 1.2 had an
average overhead of 5% of the total
application time over the cflow
implementation in Aspect 5 v1.5.0. The
cflow implementation in Aspect v1.5.0
itself turned out to be slightly better (about
1% of the total application time) than the
custom implementation. We wish to note
that this experiment is not a genera
statement about the efficiency of cflow
implementations — it is merely the result of
studying the use of the cflow technique to
solve a specific problem in performance
monitoring. This is also the reason why we
compare the relative performance of these
implementations against the response time
of the base application with no monitoring.

1800

1000

1600 -
1400 - /
1200

800 1
600 1
400 -
200 1

0%

Response Time (ms).

—e— Layer times with

Method Factor

100 500 1000 1500 2000 2500

Layer times with
custom code
(Aspectd 5 v1.5.0)

Layer times with
CFLOW (Aspect 5
v1.5.0)

CFLOW (AspectJ 1.2
Compile time
w eaving)

Figure 3: Overhead of cflow for computing layer times

Top-level APIs

We need to identify “top-level” APIs that
are entry and exit points for a request into
the syssem so that we can gather
performance statistics for each request
independently. Execution of the Servlet.do*
methods or the execution of SessionBean
methods are common top-level APls. The
following aspect can be used to gather the
relevant statistics for top-level methods.

publ i c aspect
Request Br acket i ngAspect {

poi nt cut
potenti al TopLevel Met hods()
execution(public *

Servl et +.do*(...))
|| execution(public *

Sessi onBean+. *(..));
poi nt cut topLevel Met hods()

pot ent i al TopLevel Met hod
&&
I cfl owbel ow pot enti al TopLevel
Met hod) ;

Obj ect around() :
topLevel Met hods() {
/] Setup sone data
//structure to start
//collecting data for
//this request
Facade. st art Request () ;

try {

AOSD'06 - Industry Track Proceedings

23



proceed();

finally {
/'l Aggregate the data
collected for this request
Facade. endRequest () ;
}
}

}

An adternate implementation for identifying
top-level Servlet methods isto use a Servlet
filter [24] to do the bracketing and use a
thread loca counter to ignore calls to a top-
level method that happens in the context of
another top-level method. We used Servlet
filters to implement this feature due to a few
logistical issues with ingrumenting Struts
libraries, but we are currently working on
providing an alternate implementation using
cflows.

Call trees

InfraRED provides support for capturing the
cal sequence of an execution. We
implement this by writing custom code as
part of the advice to create the tree structure
and storing it in a ThreadLocal. However,
this can aso be achieved in a smpler
manner by using a cflow congruct as
demonstrated in [22]. Use of cflow would
reduce the complexity of the core module
implementation.

To summarize, we have had to write a lot of
custom code to implement some of the
features described in this section that would
have been simpler to implement using the
cflow construct. When we started, cflow
implementations were not optimized and our
custom code was optimized for performance
for the specific use cases that they
represented. However, with the performance
improvements in cflows, especialy the
availability of ThreadLocal counter based
implementations for statedess  cflow
pointcuts, the difference in performance
using cflows and custom code is negligible.
However, for more advanced uses requiring
cflow based pointcuts with state, we are yet
to determine if the cflow implementation
will have any significant overhead over
handcrafted custom implementations.

3.5 Using call and execution
pointcuts to track remote
calls

A big issue with tracking remote calls across
JVMs is the need to tag extra info with the
remote call. JSR149 [25], Work Area
Service for J2EE, is being developed by the
JCP to address this need, but popular app
serversare just starting to support it [26, 27].
Instead of attaching extra information with
the remote cdl, which is difficult to
implement without support from RMI/app
servers, we instrument both the caler and
callee — the caller is insrumented using a
call pointcut and the callee is instrumented
with an execution pointcut. We relate the
two via just the method name and alow the
user to drill down from the caller to the
remote callee using the method name as a
key, and thus be able to seamlesdy analyze
the performance of a system involving
multiple remote calls and servers as asingle
unit. The pointcuts for the caller and callee
areillustrated below:

publ i c poi nt cut
renot eCal | er ()

call (public *
java.rm . Renpte+. *(..))&&
t arget (Renot €) ;

public pointcut

renot eCal | ee()

execution(public *

j avax. ej b. Sessi onBean+. *(..))
|| execution(public *

j avax. ej b. MessageDri venBean+.

*(-))s

3.6 Issues with instrumenting
third party libraries

Most J2EE applications involve significant
amount of database access and applications
are plagued by problems such as poorly
performing queries, firing too many queries
from the application for a request, and
infrequent use of prepared statements.

P6Spy [28] is a popular library the uses the
decorator pattern [23] to collect information
about JDBC usage. We used a similar
pattern using a combination of p6spy and
custom written classes to monitor the JDBC
usage and collect information such as time
consuming  queries,  prepare-to-execute
ratios, and correlate the JDBC calls to

AOSD'06 - Industry Track Proceedings



relevant APIs in the application to make it
easy to pin-point the source of problems
within the application.

Since load time weaving (LTW) was not
mature when we first release the tool, we
tried to ingrument the JDBC database driver
and ship instrumented versions of the driver
for our users, but this had a couple of issues.
First, the JDBC driver jar file we used was
signed and instrumenting it no longer makes
the jar verifiable. We could get over this
issue by just removing the manifest entry
from the instrumented jar file. More
importantly, we encountered a logistica
problem where we found it very hard to
enforce the usage of our instrumented JDBC
driver because it interfered with the standard
build and deployment procedures, policies
and scripts of many applications. Since the
péspy driver was already available, we
found that it provided an easy mechanism to
implement our needs. However, this still
required adding all the new decorator class
implementations and it also requires setting
up connection pools differently to use the
p6spy driver at deployment time.

When LTW having become mature in
AspectJ5, we wrote an aspect to instrument
the getConnection() JDBC API to return a
decorated connection. The decorated
connection also decorates other relevant
objects obtaned from it (such as
PreparedStatement) to gather JDBC
dtatistics. This is an easy and effective way
of obtaining JDBC statigtics.

Some JDBC datistics that we gather
requires us to maintan an association
between a PreparedStatement and the SQL
string used when creating it, and in some
cases, aso the association between the
PreparedStatement and the values of the
parameters used to execute that statement.
Such information is not part of the regular
JDBC APIs, and one possibility is to keep
such associations separately in maps. But a
more el egant object-oriented approach might
be to keep the extra state along with the
object where it belongs — such as adding
extra fields to the PreparedStatement object
to keep the origina SQL statement that
created it. We were able to do this using
AOP "mixins’ in AspectWerkz 2.0 [11], but
AspectJ5 1.5.0 doesn’t seem to fully support
any analogous “mixin” construct.

3.7 A closer look at the advice:
measuring overhead and
exception handling

Measuring the overhead of monitoring
performance in a production system is an
important need. It would be nice if the
performance management tool provided a
means to report the overhead incurred by it.
The aspect advice always invokes the core
monitoring  library  (responsible  for
collecting and aggregating statistics) via a
clearly defined facade interface.  The
overhead involved in performing this task
can be measured by timing the calls to the
facade. We have used a wrapper class based
on the decorator pattern that intercepts calls
to the Facade for capturing this metric. The
wrapper also ensures that any exceptions
that result due to errors in the core module
will be suppressed and not be alowed to
affect the actual working of the monitored
application. The overhead of performance
monitoring could have also been computed
by adding an around advice to methods of
the InfraRED facade.

We are currently working on using the
statistics gathered about the overhead of the
tool to dynamicaly tune the level of
information gathered based possibly on
specified tolerance limits (for e.g., a user
might want to limit the monitoring overhead
to a most 2% of the time spent by the
application).

The decorator based approach is also used to
avoid calls to the facade from within the
core monitoring library to prevent infinite
recurson. This would occur if the classes
on which the core monitoring library
depends on (for e.g., log4j [29]) were
themselves aspected. Cals to logdj from
with the application need to be monitored,
but callsto the log4j from the InfraRED core
monitoring module should be ignored. This
can aso be achieved by adding a !cflow
(Fagade.*(...)) to the pointcut definition.

public abstract aspect
I nf raREDBaseAspect {
/**
* The conditi on based on
which nonitoring is
per f or ned.
*/
publ i c abstract pointcut
oper ati onToBeMbni t or ed() ;

AOSD'06 - Industry Track Proceedings

25



26

/**

* CGets the layer (Session
Bean/Entity Bean/JDBC etc.)
of the operation

*/

public abstract String
get Layer Name() ;

/**

* Calls the agent facade
before and after the
execution of the
noni t ored operation

*/

Obj ect around() :
oper at i onToBeMbni t or ed()
&&

Icfl ow(execution (public *
Facade.*(...))) {

final dass clazz =
t hi sJoi nPoi nt Stati cPart. getSi
gnat ur e()

. get Decl ari ngType();

final String nmethod =
t hi sJoi nPoi nt Stati cPart. getSi
gnat ur e()

. get Name() ;
final String |layer =
get Layer Name() ;

long startTine =
Facade.start (cl azz, nethod,

| ayer);
try {
return proceed();
} finally {

Facade. end(start Ti ne,
clazz, nethod, |ayer);

}
}
}

However, our current implementation uses
the decorator approach instead of using
cflowsfor legacy reasons.

4 AOP Tools Used

When we darted InfraRED, we used
Aspectd 1.1 and its compile time weaving
mechanism since that was the only mature
AOP framework available. However,
compile time weaving also introduced an
additional step to the build process, often a
troublesome one. For applications with a
large code base, the instrumentation process
was time consuming and memory intensive.
The compile time weaving also made it

harder to switch between the “aspected”
version of the code and the original version.

With the AspectWerkz 2.0 release that
provided good support for LTW, we
extended InfraRED to work with
AspectWerkz. LTW weaving helps us avoid
most of these issues. Aspecting can be
turned on or off easily by having
parameterized startup scripts to launch the
application with LTW turned on or off. The
extra step in the build is not required, which
enables shorter fix-build-test cycles. Since
the pointcut / aspect definition isin an XML
file, it can be modified easily which helpsin
easy experimentation.

We recently moved to Aspectd 5 (v1.5.0)
that offers the flexibility of Aspectd and the
LTW  capabilities of  AspectWerkz.
However, unlike AspectWerkz, in  AspectJ
5, we have lost some flexibility in defining
new aspects through a XML file — for
example, we are unable to define parameters
and values when defining concrete aspects
in the XML file. This feature provides the
ability for a user of our tool to customize the
performance monitoring of an application by
adding csustom aspects with specific
parameter values through a XML descriptor.
Thisis a feature that is missing in AspectJ5
v1.5.0.

5 Better flexibility and
customization through
AOP

We now summarize and re-iterate how using
the full power of a AOP tool allows for
much higher level of customization, provide
greater flexibility and makes it easy to add
new features.

» Ability to capture dtatistics at the
higher level of granularity: For e.g.,
it is easy to gather data about how
much time was spent in the servlet
layer, struts layer, persistence layer,
JDBC layer etc. — AOP makes it
easy to define these layers through
a declarative pointcut definition
language.

» Ability to capture datistics & a
finer granularity (see Section 3.3).

* Flexibility in capturing more
detailed dtatigtics: With tools that
do not expose the power of AOP,

AOSD'06 - Industry Track Proceedings



users are stuck with the feature set
that the tool provides. This makes
gathering new dtatistics almost
impossible. For example, some
datistics that are very useful to
have for APIs are frequency
distribution, confidence intervals,
first and last execution time, avg.
time taken excluding the first
execution (this is useful because
some APIs do alot of work on the
first request such asreading alot of
data and caching it, and including
the first execution time in the
average frequently does not show a
true picture of the time taken for an
incremental  request).  InfraRED
provides some of this statistics, but
not al. Even if these features are
not available in the core product,
the use of an AOP tool gives users
the power to add such custom
advices on their own.

» Ability to dlice dtatistics for a layer
based on who cdled it (see Section
3.2).

e Ability to monitor only selected
parts of the application beyond
limiting them by just package or
APl names. The power of the
pointcut definition language can be
leveraged to do things such as
monitor APIs only in certain
execution contexts (using features
such as cflow), monitor APIs based
on parameters and their types etc.

e Ability to implement simple
alternate mechanisms to drill
through remote calls (see Section
3.5).

e Extenshbility: An AOP language
provides powerful  declarative
mechanism to add new featuresto a
performance management system
in a smpler and faster way than
most other approaches.

It is also useful to point out the important
areas in APM that an AOP tool does not
directly address. AOP does not directly help
in gathering data about hardware such as
CPU and memory utilization, VM runtime
characteristics such as garbage collection
statistics (frequency and eapsed time of
GCs), thread info etc. — these are addressed
very well in JDK 15 Monitoring and
Management Platform [30]. It is also useful

to point out that JDK 1.5 provides better
infrastructure support for implementation of
load time weaving and hot swapping.

6 How can AOP tools help
further?

In this section, we provide thoughts for how
AOP tools can evolve to address the specific
needs of APM.

One common area for performance
problems is resource contention and
entry/exit from monitors. One typical source
of thisisthe use of “synchronized” blocksto
control access to common resources when
accessed by concurrent users. A very useful
statistic is to calculate the total time that an
application spent just waiting for locks in
synchronized blocks (probably broken down
by the type of resource that it was waiting
on), time spent executing synchronized
blocks (this will give an idea for whether
these monitors are too long-running which
could revead design issues in the
application). In JDK1.5, VMTI generates
events on entry and exit to monitors that
could be used to gather such datistics.
However, the raw level of information from
JVMTI may not be detailed enough for it to
be put to full use by an APM tool — for e.g.,
we would like to have the wait time broken
by class name or ingance, or by caler
context (e.g., how much waits happened
with Hibernate or Struts code, or in my
Shopping Cart module or in my Hibernate
code within my Shopping Cart module etc.)

One possible way to implement these
features would be to provide a pointcut
definition language that allows for creating
joinpoints based on entry/exit from
synchronized blocks or other monitors —
joinpoints before entering the block/monitor,
just after entering the block/monitor and
after exiting the block/monitor.

Another useful feature that an AOP tool can
provide is to automaticaly report the
amount of time spent in just executing the
advice excluding any time spent in calling
the origina method that was weaved (for
e.g., if we had an around advice on a
method, we don’t want to include the time
spent in calling proceed(...)). When
crosscutting concerns are implemented as
advices, such statistics can be very useful to
break down the performance of the system

AOSD'06 - Industry Track Proceedings

27



28

into various layers and show the time spent
in each crosscutting concern. Aspect]
currently provides a total advice execution
joinpoint and timing this joinpoint will also
include the time spent in executing the
original  methods (i.e, including the
proceed(...) cal that executes the origina
method). Excluding such information and
reporting these statistics would be a great
value addition for APM toals.

Another area where AOP tools can improve
is in offering better support for runtime
weaving — i.e. weaving classes that have
already been loaded. This would be very
helpful  for making the performance
monitoring more adaptive and tuning the
level of monitoring on the fly based on
statistics gathered from the live system.
While it is possible to incorporate such logic
for adaptive monitoring within the Java code
that is invoked from the advice, such a
design limits the level of adpativeness that
the system can offer. It makesit impossible
to change the pointcut definitions based on
rea-time data — for example, we may want
to start by just monitoring overall summaries
for the JDBC layer and if we perceive a
problem based on real data, we may want to
break-down the statistics by the context in
which the JDBC APIs are called which is
easier to do by adding an extra pointcut
definition based using cflow (see Section
3.2). There has been some work [31] in this
area, but it needs to mature more and
address the concerns mentioned therein.

Finally, we would like to see AOP help in
easier performance management of systems
consisting of multiple servers and JVMs,
which is very common in enterprise
applications. We would like to define
pointcuts based on the patterns of execution
across multiple VMs — for example, a
session bean API called remotely may need
to be monitored only if called from a
specific caller (i.e, the ability to have
“remote cflows’). We may also want to
dynamically change the level of monitoring
and the aspects that need to be applied at a
remote callee based on data from the caller.

7 AOP Acceptance

Our customers aways redlized the
attractiveness of AOP as a way to address
crosscutting concerns and to avoid code
duplication in their applications. Severa of

our customers have projects with large
development teams (sometimes more than a
hundred), and hence they are very eager to
look for solutions that don't rely on the
discipline of a large number of developers.
While they agreed on the benefits of AOP
conceptualy, in the initial stages when we
started the project about a year and a half
ago, some of the users were wary of
adopting a technology that was consdered
to be not mature — while they played with it
in a development environment, they were
reluctant to deploy it on production systems.
They were also worried about deploying
code that has been “dtered”, were
concerned about performance, and worried
about whether AOP will make bugs harder
to reproduce and make debugging more
difficult. Several of these concerns were
addressed by training, doing performance
studies of our tool [12] and educating people
on AOP technology, how it works under the
covers and their performance characteristics
[32]. Also, in our opinion, the growing
popularity in the industry of related
technologies such as bytecode
instrumentation (which is used in many
performance management tools), dynamic
code generation libraries (which is used in
popular Java projects such as Hibernate),
and some level of AOP support in popular
application servers such as JBoss [33] have
all led to an acceptance of AOP as a sable
technology within our customer base.

8 Conclusion

Application performance management is a
classic crosscutting concern that is well
suited to the use of AOP. There are several
requirements for an APM tool such as basic
timing and usage information, separating
statistics by layers, and tracing remote calls,
and gathering statistics about the persistence
tier, where AOP can be used as an effective
implementation technique. The use of AOP
aso alows us to implement important
features related such as datistics dicing
(Section 3.2), gathering statistics for APls
based on their parameter vaues, and
controlling what parts of the application to
monitor in a smpler and much more
declarative way than other techniques. There
are aso a few areas where we originally
avoided the use of AOP mainly for
performance concerns even when the use of
AOP would have the solution much simpler
and more elegant, and are currently re-

AOSD'06 - Industry Track Proceedings



evduating some of these decisions.
Performance improvements in such areas,
providing support for pointcut definitions
based on entry/exit of monitors, runtime
weaving, in-built support for reasoning
about advices such as the time taken just by
the advice execution, and cross VM AOP
support are areas where the AOP community
can help APM tools further. We believe that
bringing the full richness of an AOP
language to APM offers a leve of
simplicity, flexibility and customization that
is harder to achieve with other approaches.

Appendix A

Thetest applicationis atypica servlet based
web application. Servlets invoke some
business code through a session bean and
forward the results to a JSP page. By
varying a few loop counter limits, we
controlled the number of methods that were
executed for asingle request. The time taken
to execute the requedts varied from hundred
milliseconds to a few seconds, which is
typical of many web applications. When the
application was instrumented  with
InfraRED, we configured the tool to gather
performance datistics such as cal and
execution dtatigics and layer times. The
overhead of capturing detailed statistics such
as cal trees was not measured in this
experiment. The tests were run on a standard
Windows 2000 desktop machine running a
2.8Mhz P4 processor with 1GB RAM. The
application ran on Weblogic Server 8.1 on
Sun JDK 1.4.

Acknowledgements

We thank all our colleagues at Tavant who
participated in the development of
InfraRED. We would also like to thank the
AOSD conference reviewers for their useful
comments on the paper.

References
[1] J2EE. http://java.sun.com/j2ee/

[2] IDBC Technology.
http://java.sun.com/products/jdbc/

[3] JBoss Hibernate. http://hibernate.org/

[4] Oracle TOPLink.

http://www.oracl e.com/technol ogy/products/ias/t
oplink/

[5] ApacheiBatis. http:/ibatis.apache.org/

[6] Apache Struts. http:/struts.apache.org/

[7] Spring Framework.
http://springframework.org/

[8] InfraRED. http://infrared.sf .net/

[9] AspectJ. http://eclipse.org/aspect;

[10] Laddad R. AspectJin Action: Practica
Aspect-Oriented Programming. Manning
Publications Company. 2003.

[11] AspectWerkz.
http://aspectwerkz.codehaus.org/

[12] InfraRED Performance Study.
http://infrared.sourceforge.net/common/xlg/Infara
RED-PerformanceResults.xls

[13] Borland Optimizelt Profiler.
http://www.borland.com/us/products/optimi zeit/

[14] Quest JProbe. http://www.quest.com/jprobe/

[15] Wily Introscope.
http://www.wil ytech.com/sol utions/products/Intr
oscope.html

[16] Quest PerformaSure.
http://www.guest.com/perf ormasure/

[17] Veitasi® for Java.
http://www.veritas.com/Products'www?c=produc
t&refld=315

[18] x.Link.
http://www.abcseo.com/xlink/index.htm

[19] Trifork P4. http://trif ork.com/products/P4/

[20] Jdinpired JXInsight.
http://www.jinspired.com/products/jdbins ght/

[21] Glassbox Inspector. https://glassbox-
inspector.dev.java net/

[22] Bodkin R. Performance monitoring with
AspectJ. In IBM Devel operWorks. Sep 2005.

128.ibm.com/devel operworks/javallibrary/j-

aopwork10/

[23] GammaE. et d. Design Patterns, Elements
of Reusable Object-Oriented Software. Addison
Wedey Longman Inc. 1995

AOSD'06 - Industry Track Proceedings 29



30

[24] Java Servlet Technology.
http://java.sun.com/products/servl et/

[25] JSR-149: Work Area Service for J2EE.
http://jcp.org/en/jsr/detail Ad=149

[26] Websphere WorkArea Service.
http://publib.boul der.ibm.com/infocenter/wasinfo
/v5r1//index.jsp?topi c=/com.ibm.wasee.doc/info/
ee/workarea/concepts'cwa_overview.html

[27] Weblogic Context Propagation. http://e-
docs.bea.com/wls/docs90/programming/context.h
tml

[28] P6Spy. http://p6spy.com/

[29] Log4j. http://logging.apache.org/logdj/docs/

[30] Monitoring and Management for the
JavaTM Platform,
http://java.sun.com/j2se/1.5.0/docs/gui de/manage
ment/index.html

[31] Vasseur A. Dynamic AOP and Runtime
Weaving for Java - How does AspectWerkz
Address 1t? In Proc. AOSD.2004.

[32] HilsddeE., Hugunin J. Advice Weaving in
AspectJ. In Proc of AOSD 2004.

[33] JBoss http://www.jboss.org

AOSD'06 - Industry Track Proceedings



The Challenges of Writing Reusable and Portable Aspects

in AspectJ: Lessons from Contract4J

Dean Wampler
Aspect Research Associates and New
Aspects of Software
33 W. Ontario St., #29F
Chicago, IL 60610
dean@aspectprogramming.com

ABSTRACT

Contract4J is a developer tool written in Aspect] and Java that
supports Design by Contract programming in these two
languages. It is designed to be general purpose and to require
minimal effort for adoption by users. For example, adoption
requires little customization and prior experience with Aspect].
Writing Contract4) demonstrated several issues that exist when
writing truly generic and reusable aspects using today's
technologies. This paper discusses those experiences and
comments on ways our understanding and tooling could improve
to make it easier to write such aspects. In particular, I discuss the
importance of migrating from syntax-based pointcut definitions to
semantically-rich metaphors, similar to design patterns.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]:
Programming. Aspect-oriented Programming

Object-oriented

General Terms
Design, Standardization, Languages, Theory.

Keywords

Aspect-oriented software development, object-oriented software
development, design, Aspect], Java, Contract4], Design by
Contract.

1. Introduction

Writing generic, reusable library software is difficult. This is no
less true for aspect libraries, partly because of the relative
immaturity of aspect design and programming techniques, but it
also reflects the inherent nature of aspects themselves.

This paper discusses the lessons learned and challenges
encountered while implementing Contract4J [3], a generic,
reusable framework for Design by Contract (DbC) [6] in Java and
Aspect], which is written in AspectJ.

1.1 Design by Contract

All components have a “contract” for use, whether it is stated
explicitly or not, DbC is an explicit formalism for describing the
contract of a component and for automating contract enforcement
during the test process. It is a tool for locating logic errors (as
opposed to runtime errors like heap exhaustion). To remove the
testing overhead, tests are turned off for production deployments.

A component’s contract includes the input requirements that must
be satistied by clients who use the component, called the
preconditions, and the constraints on the component’s behavior
(assuming the preconditions are satisfied), including invariant

conditions and postconditions on the work done by the component
(e.g., method return values).

DbC also prescribes the rules for contract inheritance, based on
the Liskov Substitution Principle (LSP [9]), which says that a
class B is considered a subclass of class A if objects of B can be
substituted for objects of A without program-breaking side
effects. For DbC, this means that subclasses can only change the
contract for their parents in particular ways. Invariants cannot be
changed. Overridden preconditions can relax the constraints,
because the client program will always meet a stricter subset of
input constraints, namely the subset specified by the parent class.
This is contravariant behavior, because while subclassing is a
“narrowing” of sorts, the preconditions are “widened”. In
contrast, the postconditions can be narrowed, a covariant change,
because the reduced subset of results will always satisfy the wider
set of results expected by the client program, as stipulated by the
parent class contract.

DbC was invented by Bertrand Meyer for the Eiffel language [6],
which supports it natively. In addition to Contract4], various
toolkits have been invented that provide Java support through
libraries or external tools. These include the XDoclet-based
Barter package [2] and jContract [4].

Design by Contract complements Test Driven Development
(TDD). Even if a developer relies exclusively on TDD,
understanding the contractual nature of interfaces helps clarify
design decisions.

2. Overview of Contract4J
2.1 Design Goals for Contract4J

Contract4] provides support for DbC in Java in an intuitive way
and with minimal adoption effort. /ntuitive means that users can
specify component contracts using familiar Java features and they
can do this efficiently and conveniently without obscuring the
component’s abstractions. Contract4] allows developers to embed
contract information in the classes, aspects, and interfaces
adjacent to the points where the contracts apply. This is a
practical convenience for the developer and also keeps the
contract portion of the component together with the component’s
methods and attributes, so clients have access to the full interface
specification, of which the contract is an important part. The
developer specifies the contract details in an intuitive format
using familiar Java syntax, annotations or a JavaBeans-like
convention that I call “ContractBeans”.

Adoption includes  straightforward build or load-time
modifications and writing contracts as part of the usual
development process. Hence, even developers without prior
Aspect] experience can adopt Contract4] quickly.

AOSD'06 - Industry Track Proceedings 31



2.2 How Contract4J Is Used
I illustrate using Contract4] with a simplistic bank account
example. Figure 1 shows the basic interface.

interface BankAccount {
float getBalance();

float deposit (float amount);

float withdraw (float amount);

Figure 1: Simplified BankAccount Interface

There are methods for retrieving the current balance, depositing
funds, and withdrawing funds. The balance-changing methods
return the new balance. The interface is simple enough, but it
leaves unanswered questions. What if the user tries to withdraw
more money than the account currently has? What happens if the
amount parameter in either the deposit or withdraw
method is negative. Specifying answers to questions like these
makes the full contract explicit. Consider Figure 2.

@Contract

interface BankAccount {
@Post (“$return >= 07);
float getBalance();

@Pre (amount >= 0”)

@Post (“$this.balance ==
$old($this.balance) +amount
&& Sreturn == $this.balance”)

float deposit (float amount);

@Pre (“amount >= 0 &&
$this.balance - amount >= 0”)
@Post (“$this.balance ==
$old($this.balance)-amount
&& Sresult == $this.balance”)
float withdraw (float amount);

Figure 2: BankAccount with Contract Details

The @Contract annotation signals that this class has a contract
specification defined. The @Pre annotation indicates a
precondition test, such as a requirement on the withdraw
method that the input amount must be greater than or equal to
zero and it must be less than or equal to the balance, so that no
overdrafts occur. Note that we can refer to the attribute balance
that is implied by the JavaBean’s accessor method
getBalance, where the $this keyword tells Contract4] that
balance refers to a field in the BankAccount instance being
tested. The @Post annotation indicates a postcondition test, for
example that the deposit or withdraw method must return
the correct new balance and the new balance must be equal to the
“old” balance (captured with the $Sold(..) expression) plus or
minus the amount, respectively. Not shown is an example
@Invar annotation for invariant conditions, which can be
applied to fields, methods, or classes. The field and class
invariants are tested before and after every non-private method,
except for field accessor methods and constructors, where the
invariants are evaluated after execution (to permit lazy evaluation,
etc.). Method invariants are tested before and after the method
executes.

The original interface plus annotations specifies the behavior
more fully by explicitly stating the expected behavior.

This example shows the syntax supported by the latest version of
Contract4]. In this version, Contract4] uses Jakarta Jexl (Java
Expression Language) [5], a runtime expression evaluator, to
evaluate the test strings in the annotations. This happens in the
context of aspects that advice locations where the annotations are
used. Typically, before advice is used for preconditions, after
advice is used for postconditions, and around advice is used for
invariants'. If a test fails, an error is reported and program
execution halts.

A second experimental syntax uses a JavaBeans-style naming
convention, which I call “ContractBeans”. Using this format, the
BankAccount interface is shown in Figure 3.

abstract class BankAccount {
abstract public float getBalance();

boolean postGetBalance (float result) ({
return result >= 0;

}

abstract public
float deposit (float amount);

public boolean preDeposit (float amount) {
return amount >= 0;
}
public boolean postDeposit (float result,
float amount) {
return result >= 0 &&
result == getBalance();

}

abstract public
float withdraw (float amount);

public boolean preWithdraw (
float amount) {
return amount >= 0 &&
getBalance () - amount >= 0;
}
public boolean postWithdraw (
float result,
float amount) {
return result >= 0 &&
result == getBalance();

Figure 3: “ContractBeans” Format

This version does not support the “old” construct for
remembering a previous data value, so the contract tests shown
are slightly less precise than in the previous example (e.g.,
result >= 0, instead of the more accurate result =
$old(result) + amount). Also, I have switched to
declaring an abstract class so that the tests, which are now defined
as instance methods, can be defined “inline”. An alternative
would be to use an aspect and intertype declarations to supply

! Sometimes different types of advice are used in certain cases,
for technical implementation reasons, as discussed later.

32 AOSD'06 - Industry Track Proceedings



default implementations of the test methods for the original
interface.

Following a JavaBeans-like convention, the postcondition test for
the withdraw method is named postWithdraw. (Compare
with the JavaBeans convention for defining a getBalance
method for a balance instance field.) This method has the
same argument list as withdraw, except for a special argument
at the beginning of the list that holds the return value from
withdraw. The preWithdraw method is similar, except that
its argument list is identical to the withdraw argument list. All
the test methods return boolean, indicating pass or fail.

This version of Contract4] uses runtime reflection to discover and
invoke the tests. It was implemented as a way of eliminating
issues with the original version of the annotation-based approach.
However, the extensive reflection imposes significant runtime
overhead and writing the tests is a more verbose process with a
less “obvious” association between the tests and the elements they
are testing.

The original version of the annotation-based approach did not use
a runtime expression interpreter. Instead, it used a precompilation
step to generate very specific aspects for each test with the test
string converted to Java code. A custom plug-in for Sun’s
Annotation Processing Tool (APT) was used to find the
annotations in the source code and to generate AspectJ aspects for
each one, before compilation. This implementation is the simplest
of the three versions, with excellent performance, but the
precompilation step is a barrier to adoption. The expression
interpreter version eliminates this issue, but the implementation is
more complex internally, in part because it uses reflection, as I
will discuss in detail below. Hence, it has a higher runtime
overhead than the APT version. However, because Contract4]J is a
development/test tool, the performance is acceptable.

The following summary compares the strengths and weaknesses
of the implementations. More details are provided in the
subsequent sections. For completeness, 1 also include pros and
cons for two alternative ways of doing DbC, simple Java assert
statements and ad hoc aspects, such as those used as examples in
some of the Aspect] literature.

“ContractBeans” Version

Pros

e Could be used with Java 1.4 and earlier code, since it
doesn’t use annotations.

e Tests are written as regular Java methods, which can be
reused outside of Contract4].

e  Because tests are normal methods, they are checked by
the compiler and IDE for typos and other bugs.

e If the tests are declared public, they are a visible part of
the interface for clients and subclasses to see.

e The JavaBeans-like convention follows a metaphor
familiar to developers.

Cons
e  Significant runtime overhead for extensive reflection
calls.
e  Tests are somewhat verbose, because of the method
“boilerplate”, compared to annotations.
e [fthe tests are not declared public, they are not a visible
part of the interface for clients.

e The JavaBeans-like convention has a few idiosyncrasies
that can result in the tests being ignored. There is no
mechanism to warn the user when this happens.

Annotations, Version 1 (APT Preprocessor)

Pros

e Most intuitive and succinct way of specifying contracts.

e  Most flexible use of annotations, including tests on
method parameters.

e  Test inheritance follows correct behavior for Design by
Contract, not the rules for Java 5 annotation inheritance,
i.e., method tests are inherited, even though method
annotations are not.

e  Contracts are properly part of the public interface for
clients, including Javadocs.

e  Fastest performance.

e Although tests are defined as strings, because they are
converted to compiled Aspect] code, test syntax errors
are caught by the compiler.

e  Preprocessor step requires nontrivial build changes,
which may not work well with IDEs and other tools.

e Since tests are defined in annotations, they are not
easily reused in other ways.

e Although test syntax errors are caught by the compiler,
the error messages point to the generated aspects, not
the original annotations. The user must manually “map”
the errors back to the original annotations.

Annotations, Version 2 (Jexl Interpreter)

Pros
e Most intuitive and succinct way of specifying contracts.
e  Contracts are properly part of the public interface for
clients, including Javadocs.
e FEasiest adoption process;
modifications required.
e Good performance.

only minor build

e (Can’t use annotations on method parameters (not
supported by AspectJ; but there are workarounds).

e  Because test annotations are evaluated at runtime, tests
defined on methods are not inherited automatically,
following the inheritance and runtime-visibility rules
for Java annotations. Subclass method overrides must
include the same annotations manually. Class invariant
annotations are inherited, although putting them on
subclasses, for consistency, is harmless.

e Idiosyncrasies of Jexl expression interpreter complicate
test writing slightly. (Read the examples and Contract4]J
unit tests!)

e A minor build change still required, i.e., compiling or at
least weaving with Aspect].

e Since tests are defined in annotations, they are not
easily reused in other ways.

e  Since tests are defined as strings, they are not checked
by the compiler or IDE for obvious test bugs. Buggy
tests show up at runtime as Jexl expression failures with
unintuitive error messages.

Ad Hoc Aspects (Aspects hand written to test specific cases)

AOSD'06 - Industry Track Proceedings 33



Pros

e  Straightforward with no need to adopt a third-party
toolkit, like Contract4], if you are already using
Aspect].

e  Complete flexibility to define arbitrarily complex tests
and to define them in separate files, if desired.

e  Tests are checked by the compiler and IDE.

e  Optimal performance.

e  Extensive, repetitive boilerplate code required that is
handled automatically by Contract4).

e  Harder to present the complete interface specification to
clients.

e (Can clutter code being advised. Putting test aspects in
separate files is possible, but that approach decouples
the test “specifications” from the code, making the full
interface specification obscure.

e  Requires active use of and expertise in Aspect].

Java Asserts

Pros
e Simplest way of specifying contracts.
e No Aspect] or other 3™-party toolkits required.

e  Slightly more invasive in the code.

e No coherent view of the contract.

e Not part of the client-visible interface.
e  Not visible to other tools.

All three implementations of Contract4] share a common
limitation; they only partially enforce the rules for contract
inheritance discussed previously. Both the ContractBeans and
APT annotation versions will invoke parent-class tests, unless
overridden in subclasses. Because Java annotations on methods
are not inherited, the Jexl annotation version cannot apply the
tests for a parent-class method to a subclass override unless the
override has the same annotations®. (However, the override can
omit the test string; Contract4J will locate the parent’s test string.)
In contrast the Jexl/Annotation form does better at ensuring that
invariant tests are not changed by subclasses. None of the three
versions ensures that subclass preconditions are contravariant and
postconditions are covariant.

Overall, the Jex] annotation version offers the best compromise of
features and ease of use.

Aspect] is used in all three versions, but the aspects, while
conceptually similar, are very different in the two versions. In the
annotation-based version, since a precompilation step is used, all
the aspects involved are generated during that step. They have
very specific pointcuts, with no wildcards, that pick out just the
join points for which a particular test is defined. These aspects are
simple, although there can be a lot of them in a system with many

% This is a possible future extension. It could be implemented
using reflection, but with significant overhead.

DbC tests defined. However, because they are so specific and
because they use no reflection, they have low runtime overhead®.

For example, here is a simplified version of the generated
precondition test aspect for the withdraw method.

public aspect BankAccount_pre_withdraw {
before (BankAccount ba, float amount) :
execution (float BankAccount (float))
&& this(ba) && args (amount) {
if (amount >= 0 &&
ba.getBalance () - amount >= 0) {
handleFailure (“..”);

Figure 4: Example Aspect 1

In contrast, because the ContractBeans version eliminates the
precompilation step, all logic has to be embedded in the runtime
engine. This means that more complicated and comprehensive
aspects are required to advise all possible join points for which a
test might exist. The corresponding advice then uses runtime
reflection to discover the tests, if any, and to invoke those that are
found. Even if no tests are present for a particular join point, the
overhead still exists.

All the pointcut definitions (PCDs) in this version are scoped by a
marker interface (no annotations are used to permit use with pre-
Java 5 source code). No class will be advised unless it implements
this interface. Rather than explicitly adding this interface to all
class and interface declarations, it is usually easier to write a
custom aspect that uses intertype declaration (ITD) to add this
interface into the classes of interest, as shown in the example in
Figure 5.
public aspect EnableContracts {
declare parents: com.foo.bar..*
implements ContractMarker;

Figure 5: Aspect ITD of a Marker Interface

I discuss the two Annotation implementations and the
ContractBeans implementation because each exposes different
challenges for writing generic, reusable aspects that involve non-
trivial interactions with the advised classes. However, for
practical use, the ContractBeans implementation is considered
experimental and is not recommended for normal use. I will
explore the details and issues of these implementations in greater
detail below.

3. Challenges in Aspect-Oriented Software
Development with AspectJ

Most example Aspect] aspects you see are either very specific,
using pointcuts that reference particular classes, methods, and
fields (e.g., Figure 4), or they are very general, using pointcuts
that reference package hierarchies and/or class and method names
with wildcards. Examples of the former tend to be tightly coupled
to the advised classes, such as policy enforcement aspects to
ensure proper usage of libraries, etc. The latter aspects usually
implement orthogonal concerns, which means they have loose or

* Because DbC is primarily a development tool and the tests are
(usually) removed from production builds, performance is not a
serious concern anyway, as long as it is “reasonable”.

34 AOSD'06 - Industry Track Proceedings



no coupling to the classes they advise. Examples include tracing
and authentication wrappers.

The main issue this paper addresses is the difficulty of writing
closely-coupled aspects in a generic and portable way, e.g.,
without embedding target-specific details in the pointcuts.

Let us delve into the issues in more detail, starting with a
discussion of some general issues with Aspect-Oriented Software
Development itself, which is still a young discipline, where many
details of good design and coding practice need further
development.

3.1 Conceptual Issues with Aspects

One of the interesting differences between aspects and objects is
the scope of a “component” in each approach. Well-designed
objects have a limited scope with minimal coupling to objects
outside of their “namespace” or package. They also have high
cohesion, a well defined and focused purpose and conformance to
appropriate global and local conventions that contribute to
system-wide “coherence” and consistency.

Well defined aspects should also have these properties internally,
but because they are explicitly designed to support cross-cutting
behavior, their coupling to other components is more complicated.
Aspects that cause nontrivial changes of state and behavior to
these components require new thinking about the nature of
“interfaces” between the aspects and the components they advise.

When attempting to design generic, reusable aspects, this issue
leads to a conundrum. For an aspect to offer fine-grained and
powerful functionality, it needs some detailed information about
the components it will advise. However, these details increase
coupling to those components and reduce general applicability
and reusability. Typical pointcut definitions written today rely on
naming conventions and other syntax constructs used in the
advised components, rather than relying on higher-level
abstractions.

This leads to what 1 call a concern semantics mismatch.
Component field, method, and class names reflect the primary
concern of the component, the dominant decomposition [7], and
they are likely to change as the problem domain understanding
and/or the scope of the solution evolve. Pointcuts are part of a
different domain, that of the cross-cutting concern, yet they are
relying on the unrelated names and conventions in the
components they advise, whose evolution will be “unexpected”,
from the concern’s perspective, leading to fragile
interdependencies.

The long-term solution is the development of higher-level design
abstractions. The aspect-component relationship should be more
of a “peer” relationship like the one that exists between objects
today, rather than the approach commonly used where the aspect
is “doing something” to another component. The noun “advice”
and the concept of obliviousness reflect this bias, unfortunately.

Much of the research on aspect-oriented design (AOD) occurring
now is moving away from this emphasis on oblivious insertion of
advice and moving towards interface-based design approaches,
e.g., Aspect-Aware Interfaces [7] and Crosscutting Programming
Interfaces (XPI) [8]. A compromise design strategy is emerging,
where components will need to be “aspect aware”, in the sense
that they will need to expose state and behavior of potential
interest to “clients”, aspects as well as objects, without actually

assuming particular details about those clients. The art of aspect-
aware interface design will be to expose abstractions that are
easily adapted by concerns that are different from the
component’s primary domain. I expect that most aspects will
implement the Bridge pattern [10], connecting exposed interfaces
with concern libraries. In fact, most aspects today follow this
model, just in a more ad hoc fashion and with coupling to the
fragile details of the advised classes, rather than coupling to more
abstract and therefore stable interfaces. In other words, AOD is
now expanding the established principles of object interfaces to
support the new and unique needs of aspects.

3.1.1 Contract4J as a “Design Pattern”

You can view the annotation and the ContractBeans forms of
Contract4] as syntactically different, yet semantically equivalent
forms of an ad hoc “protocol”, essentially a design pattern, which
is used by a class to provide a design-pattern protocol for
specifying the module’s contract in a way that makes minimal
assumptions about interested “clients” [6]. While invented for
Contract4], this protocol could be supported by a variety of other
compile-time and run-time tools, including documentation tools
and testing tools that generate unit tests from the annotations. The
protocol is a mini domain-specific language (DSL) for DbC and it
is conceptually consistent with the work on interface-based design
in aspect systems [7-8]. In fact, a fruitful exercise would be to
recast Contract4]J in XPI formalism, for example.

3.2 Practical Challenges with AspectJ

Returning to Aspectl, its pointcut language is very powerful, but
until recently, it has relied exclusively on concrete naming
conventions, leading to the concern semantics mismatch.
However, Java 5 annotations are a useful first step towards
defining “interfaces” that support other concerns. Well-chosen
annotations provide meaningful metadata about the element that
tends to be more stable than naming idiosyncrasies of the element
itself. Also, useful metadata will express information of interest to
other concerns, implemented as aspects, in a more decoupled
fashion. Aspect] 5 supports PCDs that match on annotations.
Using annotations in Contract4] makes it unnecessary for it to
know specific details about the classes it advises.

Put another way, most reusable aspects that have been
documented to date are really reusable aspect patterns. They
require customization of the PCDs to match on specific naming
conventions for the project in question. The advices may also
require modification. Truly generic PCDs that consist of almost
all wildcards are often too broad, needlessly affecting far more
join points than are really required.

However, having just made the argument that we need higher-
level abstractions, it must be said that the lower-level join-point
matching constructs currently available are still essential.
Contract4] would not be possible without them. While
annotations are used as “markers” for tests and for defining the
test expressions, all the PCDs used in Contract4j still do matching
on method and constructor calls or executions and field “gets” and
“sets”. This is in part an idiosyncrasy of Contract4], since it
supports detailed assertions about the component logic and those
assertions have to be evaluated at very specific join points. Many
other aspect-based tools and components will continue to require
the lower-level constructs.

AOSD'06 - Industry Track Proceedings 35



Let us consider the specific issues encountered in the three
versions of Contract4].

3.2.1 Contract4J Using Annotations, Version 1
Ironically, the original annotation-based version of Contract4] did
not use any annotation-based PCDs. The precompilation step used
a plug-in for Sun’s Annotation Processing Tool (APT) to extract
the annotation information and generate Aspect] code with PCDs
that match on the specific classes, fields and methods with tests.
The actual annotations are ignored in the PCDs, as they are no
longer needed.

Figure 4 showed a simplified version of a typical aspect generated
by this implementation. It uses the lower-level join point
matching constructs, based on specific and explicit element
names, because one aspect is generated for every annotation
found (potentially creating a lot of aspects). This implementation
proved to be the most straightforward to develop, because it did
not require the more sophisticated PCDs needed in the subsequent
Jex] aannotation version of Contract4J nor the more sophisticated
introspection required in both the Jexl version and the
ContractBeans version.

In fact, using a preprocessor tool (APT) avoided all the problems
of the subsequent two versions of Contract4]J, because using APT,
a tool specific to the “annotation domain”, if you will, handled all
the dirty work of finding annotations and their context
information.

3.2.2 Contract4J Using Annotations, Version 2

This is the most recent version of Contract4] and it is the one that
will be maintained going forward. It uses annotation-based
pointcuts to find the contracts and then uses the Jakarta Jexl
expression interpreter [5] within advice to evaluate the test
expressions at runtime.

Of the three implementations, this one has the most sophisticated
aspects, combining nontrivial PCDs and construction of test
context data that is passed to Jexl. The latter process uses Java’s
and Aspect]’s reflection libraries to fill in information that can’t
be “bound” by the PCDs. In fact, the bulk of the code exists to
support collecting context data and passing it to Jexl. The static
typing of Java and the lack of “native” support for scripting
(dynamic generation and evaluation of expressions) greatly
complicated the implementation.

Consider two example aspects from this version. The first aspect
implements method precondition tests and the second implements
field invariants for field reads and writes.

3.2.2.1 Aspect for Method Precondition Tests
The PCD for this aspect is shown in Figure 6

pointcut preMethod ( // 1
Pre pre, ContractMarker obij) : // 2
if (isPreEnabled()) && // 3
'within_c43 () && // 4
execution (@Pre !static // 5

* ContractMarker+.*(..)) && // 6
@annotation (pre) && this (obij); // 7

Figure 6: PCD for Method Preconditions

* Some details have been altered for clarity and simplicity.

Line 2 declares that two parameters will be bound, the annotation
object, pre, which contains the test expression, and an object that
implements the marker interface ContractMarker. This
binding actually happens in line 7. The marker interface is
injected into all types with the @Contract annotation (using a
separate aspect), to make inheritance of tests easier to support;
note the use of ContractMarker+ in lines #4 and #7, to make
sure that the join points in subclasses are matched. The
ContractMarker object is the object under test.

Line 3 checks that preconditions tests are actually enabled, which
can be configured globally through API calls and properties.
(Postcondition and invariant tests can also be controlled this way.)
Note that the preferred alternative for production deployments is
to exclude the Contract4] aspects from the build, so that no DbC
overhead is incurred at all. The referenced PCD in line 4 (not
shown) is a typical PCD for excluding advising of the Contract4]J
code itself, to prevent infinite recursions, efc.

The key section of the PCD is in lines 5 and 6, highlighted in
bold, where matching is done on execution join points of methods
in ContractMarker and its subclasses. This PCD excludes
constructors (handled separately) and only matches on nonstatic
methods that have the @Pre annotation. Static methods are
excluded because contracts focus on tests of instance state’. Note
that since method annotations are not inherited in Java, we must
require that the annotation appear on all method overrides®. If a
subclass override does not have the same annotation, but the
superclass implementation is invoked using super..(), the
superclass method with the annotation will still be tested.
However, even in this case Contract4] can’t detect possible
violations of the contract in the subclass method without the
annotation and Contract4] can not currently detect that the
annotation is missing.

Requiring the user to annotate all method overrides consistently is
a design constraint reflecting a Java annotation limitation.
However, even if method annotations where inherited, there is no
way to write a pointcut that says “match a method in the class
hierarchy if one of its ancestor methods has annotation A”.
Reflection could be used to handle this case (a possible
enhancement), but it would be somewhat expensive to do.

An alternative would be to inject the missing annotation, if
Aspect])’s declare parents facility were generalized to
support declare method annotations, for example,
which could add an annotation to a method’, assuming this is
technically feasible. For this to be useful in the particular case
discussed here, it would also be necessary for the declare
statements to support a wider range of predicates, such as the
pseudocode example suggested in Figure 7:
declare annotations:

@Pre * ContractMarker+.method // 1

’ However, you could argue that global (static) state could also be
subject to testing. This may be supported in a future release.

 This was not a requirement for the original APT-based
implementation, because the generated aspects no longer
needed the annotations and would match on subclass overrides.

7 Class annotations are already supported. Field annotation
support is not needed in this case.

36 AOSD'06 - Industry Track Proceedings



if (!@Pre * ContractMarker+.method // 2
&& @Pre *ContractMarker.method) // 3
Figure 7: “declare annotations” Extension

Here, the @Pre annotation is added to method in any subclass
of ContractMarker (line 1) if it isn’t already present (line 2),
but it is present on the method in the top-level class or interface
that defines the contract (line 3). How method is determined is
intentionally left vague, but it would be the same method in all
three lines. Note that Contract4] will locate the parent’s test
expression or generate a default expression, if no test expression
is defined in a particular annotation.

At the very least, if this automatic mechanism can’t be
implemented (or the effort isn’t otherwise justified), it would be
useful if a mechanism exists to catch the user error of not
annotating method overrides in subclasses.

In general, Contract4)’s reliance on annotations points out some
of the idiosyncrasies of Java 5 annotations, especially when used
to represent a concept like DbC where expectations for
inheritance behavior are different than for annotations.

3.2.2.2 Aspect for Field Invariant Tests When Fields

Are Read or Written

Only invariant tests are supported for field reads and writes®. The
lack of annotation inheritance that plagues method contract tests
is not an issue here, since the field only “exists” in the class in
which it is defined. Hence, if a field is annotated, all direct
accesses will be correctly advised. However, field advice does
have its own nuances.

3.2.2.2.1 Field “Gets”
Figure 8 shows the PCD for field “gets”.

pointcut invarFieldGet ( // 1
Invar invar, ContractMarker obj): // 2
if (isInvarEnabled()) && // 3
lwithin_c4j() && // 4
'cflowbelow (execution // 5
(ContractMarker+.new(..))) && // 6

get (@Invar * ContractMarker+.*) && // 7
@annotation (invar) && target (obj); // 8

Figure 8: PCD for Field Get Invariants

The first four lines are very similar to those for the method
precondition PCD in Figure 6, with Invar substituted for Pre.
In lines 5 and 6, 1 exclude field accesses that occur inside
constructors, since we shouldn’t expect the field to be initialized
properly until the end of constructor execution. A separate aspect
handles this special case. It uses the percflow instantiation
model and matches on the initialization join points. Another
aspect records accesses of any annotated fields and then after
advice on the constructor evaluates the corresponding field tests
after construction completes.

Because the field invariant test is evaluated at the end of
construction, such a contract specification is not appropriate for a
field that will be initialized on demand. In this case, a @Post test
on the corresponding get method should be used.

8 In principle, field pre- and postconditions could also be
supported, but these tests are best added to bean property get
and set methods, instead.

Back to Figure 8; note that the pointcut does not declare an Object
argument for the returned field value, which could then be bound
in an after returning advice, as shown in Figure 9.

after ( // 1
Invar invar, ContractMarker ob7j) // 2
returning (Object result): // 3

invarFieldGet (invar, obj, result){ // 4

Figure 9: Possible After Returning Advice

In fact, around advice is used for this and most other @Post
test cases because of a special test feature supported by
Contract4], namely the ability to capture “old” values of context
data, such as the value of the field before it is changed, so that the
old and new values can be compared in some way’. I used this
feature in the Figure 2 example to check that a withdrawal or
deposit changed the account balance appropriately.

If the test expression specifies any “old” data, it is captured first
in the around advice. Then, proceed is called to execute the join
point and the value it returns is saved as the new field value.

3.2.2.2.2 Field “Sets”
Figure 10 shows the PCD for field “sets”.

pointcut invarFieldSet ( // 1
Invar invar, ContractMarker obj,

Object arg): // 2

if (isInvarEnabled()) && // 3

lwithin_c4j() && // 4

cflowbelow (execution // 5

(ContractMarker+.new(..))) && // 6

set (@Invar * ContractMarker+.*) && // 7

@annotation (invar) && target (obj) // 8

&& args(arqg); // 9

Figure 10: PCD for Field Get Invariants

The structure is very similar to the PCD in Figure 8 for field
“gets”, but now there is an extra Ob ject parameter for the value
being assigned to the field and of course set (..) join points
replace get (...) join points.

Note that there is no way to actually bind an object to the field
itself! Only the object being assigned to the field can be bound.
Since Java variables are either references to objects or primitive
values, this distinction is not important for Contract4j purposes,
but it is possible that other applications using generic aspects may
need to make this distinction. Perhaps Aspect] should support
explicit binding to the field itself.

3.2.2.3 Advice

The advices used with these PCDs are all very similar. They use
Java and Aspect] reflection APIs to fill in missing context
information needed by the test expressions. They call support
classes to create “default” test expressions when none is specified
in the annotation. For invariant tests, they examine corresponding
parent-class tests, if any, to ensure that the invariant tests are the
same'’. Finally, the advices call other support classes to package

? Only supported for primitives, Strings, and a few other classes.

' Only simple string comparison, ignoring white space, is
currently supported, not true “semantic” equivalence. Hence
“a==Db” appears different from “b==a”.

AOSD'06 - Industry Track Proceedings 37



the information into the context structures required by Jexl and
finally Jexl is invoked to execute the test. On failure, an error
message is reported and program execution is stopped abruptly.

3.2.3 Contract4J “ContractBeans” Version

For completeness, 1 discuss the experimental ContractBeans
(JavaBeans-like) version of Contract4]. The (PCDs) for this
version are relatively simple, because most of the work must be
done using reflection. Suppose I am testing the following class
that uses the ContractBeans test approach.

class Foo (
public int method(int 1) {..}

public boolean preMethod (int i) {..}

public boolean
postMethod (int result, int i) {..}

Figure 11: Foo Class Using ContractBeans Tests

Consider the precondition test case, where I could write a pointcut
like the following.
pointcut pre(Foo foo, int i):
call (int Foo.method (int)) &&
hasMethod (boolean Foo.preMethod (int))
&& target (foo) && args(i);
Figure 12: Desired Pointcut for Precondition

The hasMethod pointcut specifier is a new undocumented
experimental feature in Aspect]5 which tests for the existence of a
method.

However, it is not possible to generalize this pointcut to arbitrary
target classes and method signatures. It would require extending
Aspect] to support a regular-expression syntax for matching
strings, e.g.:
pointcut<T> pre(T t, Object[] args):

call(* \N(\T\)+.\N(AM\) (N (\AN))) &&

hasMethod (boolean $1.pre(cap($2) ($3))

&& target (t) && args($3.values());

Figure 12: Possible Pointcut Regular Expression Syntax

In this contrived example, “\(...\)” indicates a capturing group,
“\T” matches a type, “\M” matches a method name, “\A” matches
the argument list, “$N” substitutes the value of the N™ capturing
group, and “$3.values()” returns the list of values corresponding
to the argument list captured by “$3”''. The made-up method
“cap” handles capitalization of the method name, i.e., conversion
of the the first letter in the method name to upper case.

However, this syntax is hard to read and would therefore be error
prone to use. Also, the merits of implementing regular expression
support may not outweigh the effort required to implement it.

Instead, the ContractBeans version of Contract4] uses relatively
simple, wide-reaching pointcuts and extensive runtime reflection
to locate the test methods. First, end user is required to declare a
“scoping” aspect that uses ITD to insert a marker interface into all
classes where tests exist (or might exist), e.g.,

' said this was contrived!

aspect scope (
declare parents: (com.foo.bar..¥*)
implements ContractMarker;

Figure 13: “Scoping” Aspect

Straightforward pointcuts are used to locate all possible join
points where tests might be evaluated, within the defined scope.
For example, the method precondition pointcut is shown in Figure
14.

pointcut preMethod (ContractMarker obij):

if (isPreEnabled()) && // 3
'within_c43() s&s& // 4
execution (!static // 5

* ContractMarker+.*(..)) && // 6
this (ob7j); Y

Figure 13: ContractBeans Pointcut for Method Preconditions

The key section of the PCD is lines 5 and 6, shown in bold. The
rest of the PCD is similar to the boilerplate seen before. In fact,
the whole PCD looks very similar to the annotation-based PCD
for method preconditions shown in Figure 6, except that there are
no annotations involved here. The annotation-based PCD will
match only those join points where tests are actually defined,
whereas the PCD in Figure 13 will match on every non-static
method in the com.foo.bar hierarchy, adding significant
overhead.

The corresponding advice uses reflection to determine if there is a
preMethod test method to go with every method method
found. The logic must look for methods with the appropriate
name, that return boolean and that have a matching argument list,
as discussed previously. The reflection adds a significant amount
of overhead. Found methods are cached, but there is a non-trivial
amount of setup effort required to determine the “key” for such a
cache, so only modest performance gains are realized. In this
case, it would help if Aspect] had a way of programmatically
removing advice at the current join point, when a test method is
not found by reflection, so all futile searches are never repeated.

3.2.4 User Adoption Issues
Because aspects can potentially affect the entire system, almost
all aspect libraries include some mechanism for scoping the PCDs
to only those packages and classes of interest. The following
approaches are the most common.

e Define an abstract scoping pointcut in the library aspect and
require the user to implement a concrete version of it that
defines the packages and specific classes of interest. This
minimizes, but does not eliminate the knowledge of Aspect]
required by the user and the customization required to adopt
a library.

e Define a marker interface that all library pointcuts use as a
scoping construct, then require the user to “implement” or
“extend” this interface in all classes or interfaces,
respectively, where the user wants the aspect to apply. This
is invasive if done manually. Instead, the user can write an
aspect that uses intertype declaration to apply the interface
where desired. (See, e.g., Figure 13) This approach imposes
about the same adoption effort and skill on the user as the
scoping aspect option.

e Define an annotation that can be used instead of a marker
interface (for Java 5 projects). Annotations can also be

38 AOSD'06 - Industry Track Proceedings



introduced with ITD. Contract4] defines a @Contract
annotation for this purpose. The curious thing about
Contract4] usage is that the user will typically add this
annotation manually, because the user will also need to add
the other test annotations anyway in order to define tests.
Hence, in practice, the user of Contract4] never needs to
write any Aspect] code, although it will be necessary to
introduce AspectlJ into the build process.

e Define abstract base aspects and require the user to
implement a derived aspect that implements abstract
methods, supplies required callbacks, etc. A variation of this
approach is to have concrete aspects use regular Java
interfaces that the user must implement and “wire” to the
aspect. This approach requires some user effort, but uses
only familiar Java techniques.

The annotation form of Contract4] uses all these techniques
internally. For example, classes with class-level “@Invar” tests
get the marker interface ContractMarker through ITD, even
though the annotations themselves are inherited. This apparent
redundancy makes it easier to write PCDs that pick out the same
join points on subclasses, even when they don’t have the same
“@]Invar” annotation.

4. Conclusions

Aspect]’s pointcut language enables succinct, yet powerful
aspects when advice is needed at specific join points in known
packages and classes. However, it is hard to write generic aspects
that don’t assume specific signature conventions, yet need details
of the join points where they match in order to interact with the
join points in non-trivial ways. Such aspects must use reflection to
determine the additional information that they need.

Contract4J demonstrates the 1issues encountered when
implementing a generic, reusable aspect library. In fact, it uses
many of the “types” of PCDs you might expect to write, at least
those focused on a single class, including field accesses, method
calls, and instantiation, where specific coupling and computations
are required for each case. Hence, developers of other generic
library aspects are likely to encounter one or more of the same
issues encountered in Contract4]. These issues will be a barrier to
widespread development of rich Aspect] libraries unless some
enhancements are made that simplify the issues involved.

Note that Aspect] 5 configuration files can be used to define some
explicit name dependencies, thereby removing them from aspect
code. However, this mechanism is insufficient for the needs of
tools like Contract4l.

One possible solution is to extend the join point model with
regular expression-like constructs, so that more sophisticated join
point matching can be done on signature conventions without
requiring explicit knowledge of “irrelevant” naming details. The
aspect developer would then be able to bind more information
through the PCD arguments for use in the advice bodies, thereby
reducing the amount of reflection code required'?.

12 For most users, the relative runtime efficiencies of reflection vs.
PCD binding, which may be similar, will be less important than
the ease of development using either approach.

However, focusing on low-level constructs is probably the wrong
enhancement strategy. Efforts to develop the theory and practice
of aspect interfaces [7-8] are more important for the long-term
evolution of Aspect] and AOSD in general. Components and
aspects should be joined through interfaces that use the semantics
of the concern, rather than being expressed through lower-level
points of code execution, leading to the concern semantics
mismatch.

Annotations that express meta-information about components are
a first practical step in this direction. The Contract4] annotations
form a design pattern that exposes key usage information about
the component, in this case constraints on usage. Clients,
including Contract4] aspects, IDEs, test generators, efc. interested
in the “usage constaints concern” can work with the components
in nontrivial ways through this “interface”. However, even when
matching on annotated join points in the Contract4] PCDs, the
advice bodies still contain lots of low-level “plumbing”, including
calls to reflection APIs. Hence, annotations alone are not
generally sufficient as an “aspect interface” to easily write
powerful, yet generic aspects.

5. REFERENCES

[1] http://www.aspectj.org/

[2] http://barter.sourceforge.net/

[3] http://www.contract4j.org

[4] http://www.jcontract.org/

[5] http://jakarta.apache.org/commons/jexl/

[6] B.Meyer, Object-Oriented Software Construction, 2™
edition. Prentice Hall, Saddle River, NJ, 1997.

[7] G. Kiczales and M. Mezini, “Aspect-Oriented Programming
and Modular Reasoning,” Proc. 27" Int’l Conf. Software
Eng. (ICSE 05), ACM Press, 2005, pp. 49-58.

[8] W.G. Griswold, et al., “Modular Software Design with
Crosscutting Interfaces”, IEEE Software, vol. 23, no. 1,
2006, 51-60.

[9] Barbara Liskov, “Data Abstraction and Hierarchy,”
SIGPLAN Notices, vol. 23, no. 5, May, 1988.

[10] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns; Elements of Reusable Object-Oriented Sofiware.
Addison-Wesley, Reading, MA, 1995.

AOSD'06 - Industry Track Proceedings 39



Java Virtual Machine support
for Aspect-Oriented Programming

Alexandre Vasseur, Joakim Dahlstedt, BEA Systems
avasseur@bea.com, jda@bea.com
in affiliation with Jonas Bonér, Terracotta Inc.
jonas@terracottatech.com

BEA Systems, Java Runtime Product Group
Folkungagatan 122, S-102 65 Stockholm, Sweden

ABSTRACT

The majority of the frameworks for Aspect-Oriented
Programming (AOP) use bytecode weaving, in addition to that,
bytecode instrumentation is becoming more and more popular in
enterprise software in general, as a way of adding services to
applications, more or less transparently.

Unfortunately, there are many problems with bytecode
instrumentation, problems that these frameworks and products
will inherit. The key questions are: up to which point can
bytecode instrumentation based weaving techniques scale and
achieve manageability, transparency and efficiency? Is there a
risk that products that are relying on these techniques will reach
an end-point that limits further innovation towards more
efficiency, ease of use and dynamicity?

We believe Java Virtual Machine (JVM) level support for AOP
will address these issues and provide a solid ground for further
innovations in the field of Aspect-Oriented Software
Development (AOSD) in Java.

This report will first discuss the different implementation
techniques for weaving, followed by a discussion of the problems
with bytecode instrumentation based weaving that we have today,
as well as potential future problems. This includes problems like,
inefficient instrumentation, double bookkeeping, increasing
complexity, multiple agents, reflective join points, etc.

We will then propose a novel technology for supporting AOP
directly in the JVM that we have implemented in the JRockit
JVM. A technology that we believe will address the problems
outlined above.

Keywords
Aspect-Oriented Programming, AOP, AOSD, weaving, Java
Virtual Machine, JVM

1. INTRODUCTION

Aspect-Oriented Programming [1] (AOP) is gaining momentum
in the software community and the enterprise space at large.
Introduced by Parc back in the 90's, it has been getting more and

more mature through several initiatives and innovations in the
research community, the open source community and the
enterprise in the last two years. There has been a lot of traction in
the Java community that recently lead to the merger of
AspectWerkz [3] and Aspect] [4] now housed at the Eclipse under
the name Aspect] 5 [5]. Aspect] is sponsored by BEA Systems
and IBM and can be considered as the de-facto standard for AOP
in Java.

As the popularity of AOP is growing and the research community
is moving things forward, vocabulary, concepts, and
implementations have gained in consistency, allowing for better
tool support and developer experience - such as with Aspect]
Eclipse plug-in Aspect] Development Tools (AJDT) [6].

AOP has gone through several implementations techniques,
ranging from source code weaving to bytecode instrumentation
based weaving. Bytecode instrumentation is the technique that has
been most widely adopted in Java, in particular after the advent of
Java 5 JVMTI [7]. Bytecode instrumentation is now used by
several enterprise products in the area of application management
and monitoring and more recently Plain Old Java Object (POJO)
based middleware [13] and transparent clustering [14].

Unfortunately, there are many problems with bytecode
instrumentation, problems that these frameworks and products
will inherit. The key questions are: up to which point can
bytecode instrumentation based weaving techniques scale and
achieve manageability, transparency and efficiency? Is there a
risk that products that are relying on these techniques will reach
an end-point that limits further innovation towards more
efficiency, ease of use and dynamicity?

Up to which point can bytecode instrumentation based weaving
techniques scale and achieve manageability, transparency and
efficiency? Is there a risk that AOP implementations that are
relying on these techniques will reach an end-point that limits
further innovation towards more efficiency, ease of use and
dynamicity?

We believe Java Virtual Machine (JVM) level support for AOP
will address these issues and provide a solid ground for further

40 AOSD'06 - Industry Track Proceedings



innovations in the field of Aspect-Oriented Software
Development (AOSD) in Java.

This report will first discuss the different implementation
techniques for weaving, followed by a discussion of the problems
with bytecode instrumentation based weaving that we have today,
as well as potential future problems. This includes problems like,
inefficient instrumentation, double bookkeeping, increasing
complexity, multiple agents, reflective join points, etc.

We will then propose a novel technology for supporting AOP
directly in the JVM that we have implemented in the JRockit
JVM [8]. A technology that we believe will address to the
problems outlined above.

2. CURRENT STATE OF WEAVING

Weaving is the process of taking cross-cutting code and the
regular "base" application and "weave" them into one single unit,
one single application.

Weaving can happen at different periods in time:

e  Compile time weaving: post processing the code, e.g.
ahead of deployment time (thus ahead of runtime) (as in
Aspect] 1.x).

e [oad time weaving: weaving is done as the classes are
loaded i.e. at deployment time (as in AspectWerkz 2.0).

e Runtime weaving: weaving can occur at any time
during the lifetime of the application (as in JRockit and
the SteamLoom Project [12]).

This process can also be done in many different ways:

e Source code weaving: input is the developed source
code and output is modified source code that invokes
the aspects (as in AspectJ 1.0).

e Bytecode weaving: input is the compiled application
classes’ bytecode and output is modified bytecode of
the woven application (as in AspectWerkz 2.0 and
Aspect] 1.1 and beyond).

Source code weaving is limited in the sense that all source code
must be available and presented to the weaver so that aspects can
be applied. This makes it impossible for example to implement
generic monitoring services - with or without use of explicit AOP
constructs. Compile time weaving suffers from the same problem.
All bytecode that will be deployed needs to be prepared before
deployment in a post compile time.

Bytecode weaving vs. JVM weaving is the subject of this report
and will be discussed in the following sections.

A side note is that a limited form of weaving has been available in
the JVM for some time: dynamic proxies [15]. This API has been
part of the JDK since 1.3 and it allows to create a dynamic proxy
of an interface (or a set of interfaces) which gives the possibility
of intercepting each invocation to the interface(s) declared
methods and redirect it to an invocation handler implementing
arbitrary logic. This is not really weaving by definition, but it
resembles it, in the way that it gives a simple way of doing
method interception. This technique is wused by various
frameworks to do simple form of AOP, for example, the Spring
Framework [16].

3. PROBLEMS WITH BYTECODE
INSTRUMENTATION BASED WEAVING

It is worth emphasizing that the problems described below are tied
to bytecode instrumentation and as a consequence affects
different AOP implementations (such as Aspect]). These
problems have impact on all bytecode instrumentation based
products in general, such as application monitoring solutions,
profiling tools or other AOP-applied solutions as their use is
getting more and more popular.

3.1 Instrumentation is inefficient

The actual instrumentation part of the weaving is usually very
CPU intensive, and sometimes also consumes significant amounts
of memory. This can affect startup time. For example, to intercept
all calls to the tostring () : String method or all accesses to a
certain field, one needs to parse almost every single bytecode
instruction in all classes, one by one. This also means that a lot of
intermediate representation structures will be created by the
bytecode instrumentation framework to expose the bytecode
instructions in a usable way. This could potentially mean that the
weaver needs to parse all bytecode instructions in all classes in
the whole application (including third-party libraries etc.), e.g. in
the worst case more than 10,000 classes.

If more than one weaver is use, the overhead will be multiplied.

For some pointcut expressions, the underlying weaver can be
optimized by first looking at the class’ bytecode constant pool
section to determine if there might be a match. Unfortunately this
approach can not be used for most of the pointcut for which the
complete class hierarchy and member database must be known in
order to perform the matching — as discussed below.

3.2 Double bookkeeping: Building a class

database for the weaver is expensive

In order to know whether a class/method/field should be weaved
or not, the weaver needs to do matching on metadata for this class
or member. Most AOP frameworks and AOP-applied products
have some sort of high level expression language (pointcut
expressions) to define where (at which join points) a code block
(advice) should be weaved in. These expression languages can for
example let you pick out all methods that have a return type
which implements an interface of type T. This information is not
available in the bytecode instructions representing the call to a
specific method M. The only way of knowing if this specific
method M should be weaved or not is to look it up in some sort of
class database, query its return type and check if its return type
implements the given interface T.

You might be thinking: why not just wuse the
java.lang.reflect API? The problem with using reflection
here is that there is no way of querying a Java type reflectively
without triggering the class loading of this particular class, which
will trigger the weaving of this class before we know enough
about it in order to do the weaving (in load time weaving
infrastructures). Simply put: we end up with the classic chicken
and egg problem.

The weaver therefore needs a class database (usually built up in
memory from the raw bytecode read from the disk) to do the
required queries on if needed for the actual join points to be

AOSD'06 - Industry Track Proceedings 41



found. This problem can sometimes be avoided by limiting the
expression language expressiveness, but that usually limits the
usability of the product.

This in memory class database is also redundant once the weaving
is done. The JVM already has all this information in its own
database, well optimized, (that for example serves the
java.lang.reflect API). So we end up doing double
bookkeeping of the whole class structure (object model) which
consumes significant and unnecessary memory, as well as adds a
startup cost in creating this class database, and maintaining it
when a change occurs.

If more than one weaver is use, the overhead will be multiplied —
as in most cases each weaver maintains its own class database.

3.3 Changing bytecode at runtime adds more

complexity

Java 5 brought the HotSwap API [9] as part of the JVMTI
specification. Before Java 5, this APl was only available when
running in debug mode, and only for native C/C++ JVM
extensions. It allows changing the bytecode, i.e. to redefine a
class, at runtime. It is used by some AOP frameworks, and AOP-
applied products to emulate runtime weaving capabilities.

Despite being very powerful, this API limits usability, scalability
and is inefficient. Since bytecode is being changed at runtime,
instrumentation costs (CPU overhead and memory overhead) are
also happening at runtime. Also, if there is a need to do a change
in many places, this means redefining many classes as well. The
JVM will then have to redo all the optimization and inlinings that
it may have done.

It is also very limited. The API does not specify where the current
running bytecode can be retrieved. A weaver thus needs to make
the assumption that this bytecode is on disk, or it needs to keep
track of it. This is a major issue when multiple weavers are used
as explained in the next section.

Further, none of the current implementations of the HotSwap API
supports schema change which the specification states as being
optional. This means that it is not possible to change the schema
of a class at runtime, e.g. add methods/fields/interfaces etc that
might be needed for the underlying instrumentation model. This
makes it impossible to implement certain types of runtime
weaving and thus requires the user to "prepare" the classes in
advance. Such a technique is for example wused in
AspectWerkz[3] to provide hot-deployment of around advice.

3.4 Multiple agents is a problem

When multiple products are using bytecode instrumentation,
unexpected problems may happen. Problems related to
precedence, notification of changes, undoing of changes etc. This
perhaps is not so much a problem today, but this will be a
significant problem in the future. A weaver can be seen as an
agent (as referred to in the JVMTI specification) that performs
instrumentation at load time or runtime. When there are multiple
agents, it is a high risk that the agents will get in each others way,
changing the bytecode in a way that was not expected by the next
agent, making the assumption that it is the sole configured agent.

Here is an example of a problem that can happen when two agents
are unaware of each other. If for example an application uses two

agents, one AOP weaver and one application performance product
(that are both doing bytecode instrumentation at load time), there
is a risk that the woven code may not be part of the performance
measurement as illustrated below:

// Say this is the original user code
void businessMethod () {

userCode.do () ;

// -— Case 1
// Say the AOP weaver was applied BEFORE the
// performance management weaver
// The weaved code will behave like:
void businessMethod () {
try {
performanceEnter () ;
// hypothetical advice
aopBeforeExecuting () ;
userCode.do () ;
} finally {

performanceExit ();

}
// i.e. the AOP code will affect the measure

// —-—- Case 2
// Say the AOP weaver was applied AFTER the
// performance management weaver
// The weaved code will behave like:
void businessMethod () {
//hypothetical advice
aopBeforeExecuting () ;
try {
performanceEnter () ;
userCode.do () ;
} finally {

performanceExit () ;

}
// i.e. the AOP code will NOT affect the measure

This illustrates a problem with precedence between the agent:
there is no fine grained configuration to control the ordering at a
join point (or pointcut) level. The ordering is not well-defined.

Some other situations might lead to more unpredictable results.
For example when a field access is intercepted, it usually means
that the field get bytecode instructions are moved to a newly
added method and replaced by a call to this new method. The next
weaver will thus see a field access from another place in the code
(from this newly added method) that then might not be matched
by its own matching mechanism and configuration.

To summarize, the main problems are:

42 AOSD'06 - Industry Track Proceedings



Which bytecode does the agent see? The problem is that normally
the bytecode to be weaved is obtained from the class loading
pipeline but the dependent bytecode to build up the class database
from is read from disk. When multiple agents are involved
bytecode on disk is not anymore the one being executed, since
some agent might have already changed the bytecode. This means
that the second agent has an incorrect view of the bytecode. This
also happens when the HotSwap API is used.

3.5 Intercepting reflective calls is tedious
Current weaving approaches can only instrument execution flows
that can be (at least partially) statically determined. Consider the
following code sample that invokes the method void doa () on
the given instance foo:

public void invokeA (Object foo) throws Throwable {
Method mA = foo.getClass () .getDeclaredMethod (
"doA", new Class[0]
)i
mA.invoke (foo, new Object[0]);

}

This kind of reflective access is often used in modern libraries, to
create instances, to invoke methods, or to access fields.

From a bytecode perspective, the call to the method void doa ()
is not seen. The weaver will only see calls to java.lang.reflect
API. There is no simple and performant way of weaving calls that
are made reflectively. This is an important limitation in how
weaving can be done and how AOP is implemented today. Best
practices recommend the developer to use execution side
pointcuts instead. Obviously, from a JVM perspective, there will
be a method dispatch to the doa () method, even if it does not
appear in the source code or bytecode. JVM weaving has proven
to be to be the only weaving mechanism that addresses this issue
in an efficient way.

3.6 Other problems

Bytecode instrumentation, especially when done on-the-fly (load
time or runtime), is seen with skepticism by some people. There is
an emotional angle to changing code on-the-fly that should not be
underestimated, especially when it is paired up with a mind-
bending revolutionary new technology such as AOP or
transparent injection of services. Clashes that may happen when
multiple agents are involved will increase this skepticism.

Another potential problem is the 64K boundary for class files
stated in the Java specification. Method bodies are limited to a
64K total bytecode instruction size. This might be a problem
when weaving already large class files, like for example the
resulting class file when compiling a JavaServer Pages (JSP) [17]
file to a Servlet [18]. When instrumenting this class, it might
break the 64K limit and then cause a runtime error.

4. PROPOSED SOLUTION
4.1 JVM support for weaving

JVM weaving is the natural answer to most of the issues
discussed above. The following examples show that the JVM is
already doing most of the work involved to do weaving: When a
class gets loaded, the JVM does read the bytecode to build up the
data needed to serve the java.lang.reflect.* API purpose.
Another example is method dispatching. Modern JVMs compile

the bytecode of methods or code blocks to more advanced and
efficient constructs and execution flows (doing code inlining
where applicable). Due to the HotSwap API requirements, the
JRockit JVM (and probably other JVMs too) also bookkeeps
which method calls which other method, so that a method body
can still be hotswapped in all expected places - inlined or not - if
its defining class is redefined at runtime.

As a consequence, instead of changing the bytecode to weave in
an advice invocation - say before a specific method call - the JVM
could actually have knowledge about it and simply do a dispatch
to the advice at any matching join point prior dispatching to the
actual method.

As bytecode would be untouched, immediate advantages can be
expected such as

e no startup cost due to bytecode instrumentation

e full runtime support to add and remove advices at any
place, any time, at linear cost

e implicit support to advise reflective invocations

e no extra memory consumption to replicate the class
model to some framework specific structures

This is very different from the C level events that have been
defined in the JVMDI specification [10], such as
JVMDI EVENT METHOD ENTRY or
JVMDI _EVENT FIELD ACCESS. In the JVMDI case, first one
would have to deal with C level API, which makes it complex for
most developers and fragile or complex to distribute, and second
the specification does not provide a fine grained join point
matching mechanism but actually requires ones to subscribe to all
such events, thus still happening with an undeniable overhead -
hence the D(ebug) in "JVMDI".

The following code sample introduces the JRockit weaving API
that will be detailed in the next section.. The program below
dispatches to the static method advice() just before the
sayHello () method gets called :

public class Hello {
// —-- The sample method to intercept
public void sayHello () {
System.out.println("Hello World!");

// —-- Using the JRockit JVM support for AOP
static void weave () throws Throwable {
// match on method name
StringFilter methodName =
new StringFilter(
"sayHello",
StringFilter.Type.EXACT
)i

// match on callee type
ClassFilter klass = new ClassFilter (
Hello.class,

false,

AOSD'06 - Industry Track Proceedings 43



null
)i
// advice is a regular method dispatch
Method advice =
Aspect.class.getDeclaredMethod (
"advice",
new Class[0]

)

// Get a JRockit weaver and subscribe
// the advice to the join point picked
// out by the filter

Weaver w = WeaverFactory.createWeaver();

w.addSubscription (new MethodSubscription(

new MethodFilter (

0,

null,

klass,

methodName,

null,

null
)
MethodSubscription.InsertionType.BEFORE,
advice

)) i

// —— Sample code
static void test () {
new Hello () .sayHello();

public static void main(String afl]
throws Throwable ({
weave () ;

test ();

// —— Sample aspect
public static class Aspect {
public static void advice() {

System.out.println ("About to say: ");

4.2 Subscription and action based model

The JRockit JVM AOP support exposes a Java API that is deeply
integrated in the JVM method dispatching and object model
components. In order to not tie the JVM to any current or future

AOP specific technology direction we have decided to implement
an action dispatch and subscription model.

The API allows defining well defined subscriptions at specified
pointcuts, for which it is possible to register one action to which
the JVM will dispatch. An action is composed of

e a regular java method - that we will reference as the
action method - that will be invoked for each join point
that matches the subscription

e an optional action instance on which to invoke the
action method

e an optional set of parameter-level annotations that
dictate the JVM which arguments the action method is
expecting from the invocation stack.

The action can be flagged as a before action, an after returning
action, an after throwing action or an instead-of action (similar to
AOP around concept).

In order to invoke the API, one has to get a handle to a
jrockit.ext.weaving.Weaver instance. The weaver instance
will control which operations are allowed according to its caller
context. For example you might not want a deployed application
in an application server to create a weaver to subscribe action
methods to some container level or JDK specific join points,
while a container level weaver may actually subscribe to
application specific join points. This weaver visibility concept
mirrors the visibility rules from the underlying class loaders
delegation model.

A very simple comparison of how these constructs are mapped to
the regular AOP constructs might shed some light on this model:

e the subscription can be seen as a kinded pointcut, or
actually a kinded pointcut (field get(),set(), method
call(), etc) composed with a within()/withincode()
pointcut.

e the action instance can be seen as the aspect instance
e  the action method can be seen as the advice

Readers familiar with AOP may already understand that to
implement a complete AOP framework on top this JVM level
API, some more development will be required. An intermediate
layer which will manage the aspect instantiation models (per
clause), implement the cflow() pointcuts, and implement full
pointcut composition and orthogonality is required.

4.3 The action method

An action method (similar to the AOP advice concept) is as a
regular Java method of a regular class (that will act as the aspect).
It can either be static method or member method. Its return type
has to follow some implicit conventions. Its return type should be
void for a before action, and should be of the type that will be
placed on the stack as the result of the action invocation for an
instead-of action (similar to AOP around advice semantics).

The action method can have parameters, whose annotations
further control context exposure as illustrated in the following
code sample:

public class SimpleAction {
public static void simpleStaticAction() {

print ("hello static action!");

44 AOSD'06 - Industry Track Proceedings



}
public void simpleAction() {
print ("hello action!");
}
public void simpleAction (
@CalleeMethod WMethod calleeM,
@CallerMethod WMethod callerM) {
print (callerM.getMethod () .getName());
print (" calling ");
print (calleeM.getMethod () .getName());

}

This code sample introduces the
jrockit.ext.weaving.WMethod. This method acts as a
wrapper for java.lang.reflect.Method,

java.lang.reflect.Constructor and the class' static
initializer which is not represented in java.lang.reflect.*. This is
similar to the Aspect]
JoinPoint.StaticPart.getSignature () abstraction.

In order to support instead-of and the ability to decide whether to
proceed the interception chain or not (as implemented in AOP
through the concept of JoinPoint.proceed()) we also
introduced the jrockit.ext.weaving.InvocationContext
construct as illustrated below.

public class InsteadOfAction {
public Object instead(
InvocationContext jp,
@CalleeMethod WMethod calleeM) {

return jp.proceed();

}

4.4 The action instance and the action kind

As illustrated in the previous code samples, an action method can
be either static or not. If the action method is not static, ones need
to pass in an action instance on which the JVM will invoke the
action method.

This follows the syntax style with which a Java developer would

invoke a method reflectively using
java.lang.reflect.Method.invoke (null/*static

method*/, .../*args*/). Although, as opposed to this
example, with JVM AOP support, the underlying action
invocation will not involve any reflection at all.

Giving the user control over the action instance opens up many
interesting use cases. For example, one could implement a simple
delegation pattern to swap a whole action instance with a different
implementation at runtime, without having to involve the JVM
internals.

For addition, this will be useful to implement AOP aspect
instantiation models (per clause) such as issingleton(), pertarget(),
perthis(), percflow() etc, while not locking the JVM API to some
predefined semantics.

Before registering the subscription to the weaver instance, it is
given a kind that acts as the advice kind: before, instead-of, after-
returning or after-throwing.

The code to create a subscription is as follow:

// Get a Weaver instance that will acts a
// container for the subscription(s) we create

Weaver w = WeaverFactory.getWeaver();

// Regular java.lang.reflect is used to refer
// to the action method "simpleStaticAction()"
Method staticActionMethod =
SimpleAction.class.getDeclaredMethod (
"simpleStaticAction",
new Class[0]//no arguments

)i

MethodSubscription ms = new MethodSubscription (
.../* where to match*/,
InsertionType.BEFORE,
staticActionMethod

)i

w.addSubscription (ms) ;

// Use of an action instance to refer to the
// non static action method "simpleAction ()"
Method actionMethod =
SimpleAction.class.getDeclaredMethod (
"simpleAction",
new Class[0]// no arguments

)i

// Instantiate the action instance
SimpleAction action = new SimpleAction();
MethodSubscription ms2 = new MethodSubscription (
.,// where to match, explained below
InsertionType.BEFORE,
actionMethod,
actionInstance
)i
w.addSubscription (ms2);

AOP semantics such as within() and withincode() type patterns are
also implemented through variations around this API.

4.5 Subscription on events

As shown in the previous code sample, the subscription API is
relying on the java.lang.reflect.* object model and some
simple abstraction like jrockit.ext.weaving.WMethod to
unify Method, Constructor and class' static initializer handling.

Subscriptions can be made on events triggered by: field access
and modification, method and constructor calls, exception
throwing and catching as well as static initialization of a class.

AOSD'06 - Industry Track Proceedings 45



If we, for example, look at a method subscription construct, the
first parameter in the call to new
jrockit.ext.weaving.MethodSubscription(...), must be
a jrockit.ext.weaving.Filter instance, which has several
concrete implementations, to match on methods, fields etc.

A jrockit.ext.weaving.MethodFilter instance will act as
the definition on which the JVM weaver implementation will do
the join point shadow matching for method and constructor call
pointcuts. A MethodFilter allows filtering on modifiers,
annotations, declaring type, name, return type (it also exposes
extra structures to support within()/withincode() semantics):
The user can also pass in a
jrockit.ext .weaving.UserDefinedFilter instance to
implement a finer matching logic. The UserDefinedFilter
callback mechanism is used to implement more advanced
matching schemes (a concept that is similar to Spring AOP’s
MethodMatcher and ClassFilter).
All of these structures are optional, and if null is encountered, it
means "match any".
The following will thus match all method calls whose name starts
with "bar". Note that we pass in several null values in this very
simple case:
StringFilter sf = new StringFilter(

"bar", STARTSWITH

)

MethodFilter mf = new MethodFilter (
0, null, null, sf, null, null
)i

MethodSubscription ms = new MethodSubscription (
mf,
InsertionType.BEFORE,
staticActionMethod

)i

w.addSubscription (ms);

5. DISCUSSION
5.1 Benefits

There are several benefits in using JVM weaving instead of
bytecode instrumentation. From an high level perspective, the
weaving appears as a natural extension to the JVM capabilities. It
is less intrusive in many ways with performance, scalability and
usability benefits.

5.1.1 No more bytecode instrumentation increases
scalability

The bytecode is not modified. The regular compilation pipeline
from bytecode to executable code is followed in the JVM
internals. There is no more need to parse the bytecode instructions
and represent them in some intermediate structures.

The weaver becomes ubiquitous. Even though ones may want to
register subscriptions at startup time, it is no longer a requirement.
This greatly reduces the startup time of an application since there
is no need at all to analyze bytecode instructions in order to find

the interesting join points. This also gives the opportunity to
develop truly dynamic systems, allowing deployment and
undeployment of aspects at any point in time without any extra
overhead or complexity.

5.1.2 No more redundant bookkeeping of types

decreases memory usage and improves scalability

As bytecode instrumentation does not occur anymore, there is no
longer a problem with double bookkeeping the object model. The
subscription API relies on the java.lang.reflect.* model
that already provides this information in a familiar way to the
Java developer.

5.1.3 Multiple agents are kept consistent

As the bytecode of the woven classes does not get modified, there
is no more risk of conflicts between two different agents changing
the bytecode in two different ways that might be incompatible -
hiding properties of the original program from another. The
registration order of the subscription acts as the precedence rule.
If a class is marked as being serializable, it means that no
hidden structures needed to support the runtime execution of the
woven advice is added, which means that regular serialization
will be fully supported. Usually bytecode instrumentation
techniques need to ensure that serialization is preserved (for
example dealing with the serialversionulD field).

5.1.4 Support for intercepting reflective invocations
By using JVM level method dispatching, all reflective calls
(method invocation or field get or set) can be matched as if they
were regular calls and all registered actions will then get
triggered. This occurs without any extra cost or implementation
specific details and complexity.

5.2 Limitations

Some fine-grained semantics that Aspect] defines are not easily
addressed at the JVM level. Aspect] for example supports the
concept of preinitialization, initialization and constructor
execution pointcuts. A constructor execution pointcut will pick
out the constructor as it appears in the source code, while the
initialization pointcut will pick out all constructor execution(s)
that lead to having an initialized instance, thus including this(...)
constructor delegations. Such a difference is not easily handled by
the JVM. It may actually also be compiler dependant where more
aggressive inlining strategies may occur. Consider for example:

public class Timeout {

int delay;

String cause;

Timeout (int aDelay, String aCause) {
this.delay = aDelay;
this.aCause = aCause;

}

Timeout (int aDelay) {
this (aDelay, "unknown");
// A compiler could produce
// inlined equivalent:
// —— no call to this(..,..) but instead:
// this.delay = aDelay;

46 AOSD'06 - Industry Track Proceedings



// this.aCause = "unknown";

}

Since we currently do not have a grammar (AST etc.) for defining
pointcut expressions, but a Java API, supporting a very expressive
and fine-grained pointcut language like for example the one in
Aspect], will require an additional abstraction layer on top of the
existing API. Part of it is already available as the pointcut parsing
and matching logic based on java.lang.reflect.* structures
has been introduced in recent Aspect] 5 releases and is now
accessible in the org.aspect j.weaver.tools package.

6. CONCLUSIONS

Bytecode instrumentation techniques are now widely used in the
Java platform in several different areas, ranging from Aspect-
Oriented Software Development to more specific applied
solutions such as application monitoring, persistence, or
distributed computing. In an attempt to become more usable and
transparent, the techniques of load time weaving and
instrumentation at deployment time is becoming popular.

Unfortunately, such techniques do not provide the proper
properties to match scalability and usability requirements,
especially as it becomes more and more used, and mixed through
the use of several different instrumenting agents from different
products. JVM weaving and JVM support for AOP as
implemented in JRockit happen to be a natural way approach to
the problem and drive the innovation and the technology further.
The proposed Java API that bridges JVM method dispatching
internals to user defined action and subscription depending solely
on the java.lang.reflect API fills the gap elegantly, as well
as addressing major scalability and usability issues.

Nevertheless, widespread adoption requires a good assessment of
this new API towards real use cases - such as AOP or runtime
adaptability of large applications.

7. FUTURE WORK

Despite that JVM weaving brings huge value and addresses
scalability —and wusability problems tied to bytecode
instrumentation techniques, there are still some interesting
drawbacks that will need to be solved so that some use cases can
be addressed completely - possibly with complimentary
approaches.

Some bytecode instrumentation based products are using very
fine grained change that may not be possible to mirror in the
(current) JVM AOP API. There are for example some use cases
that deal with the synchronized blocks, so that different locking
strategies - for example distributed - can be transparently injected
into a regular application. Such a fine grained manipulation
usually requires conditional execution of the synchronized block,
or even complete removal of it so that it is replaced by some
proprietary locking API call. Such a specific need can be
addressed within the JVM but it is actually impossible to come
with a solution that works for each use-case and that is efficient. It
is also interesting to note that leading AOP frameworks are not
(yet) exposing the synchronized block (or monitor entry and
monitor exit lock acquisition and release) as join points.

Native support for various action instance life-cycles is something
that would be good to have. For example support for pure per

instance based deployments of action instances, similar to the
work done in SteamLoom [12] is interesting.

As bytecode instrumentation is gaining popularity, introducing
such a new API is not neutral. It would represent a fairly high cost
to have a product developed so that it works for JVM that would
support this API - such as JRockit - and for JVM that would not
support this API. A specification, for example a Java Community
Process (JCP) [19], in this area would be beneficial.

8. REFERENCES

[1] Kiczales, G., Lamping, J., Mendhekar, A. ,Maeda, C., Lopes,
C., Loingtier, J.M., Irwin, J., Aspect-Oriented Programming,
ECOOP1997

[2] Gosling, J., Joy, B., Steele, G. The Java Language
Specification (2nd edition) Addison-Wesley, 2000.

[3] BonérJ., Vasseur,A., AspectWerkz, a dynamic, lightweight
and high-performant AOP framework for Java, 2002-2005.
(http://aspectwerkz.codehaus.org)

[4] Kiczales,G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
Griswold, W. G., An Overview of Aspect], ECOOP 2001.

[5] Press release, January 19" 2005, “Aspect] and AspectWerkz
to Join Forces”
(http://www.eclipse.org/aspectj/ajSannounce.html)

[6] Aspect] Development Tools — AJDT
(http://www.eclipse.org/ajdt/)

[7] JVMTI (JSR-163 - http://www.jcp.org/en/jsr/detail7id=163)

[8] JRockit JVM, BEA Systems (http://www.jrockit.com)

[91 HotSwap API (JSR-163 -
http://www.jcp.org/en/jsr/detail7id=163)

[10] JVMDI, Java Virtual Machine Debug Interface
(http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jvmdi-
spec.html)

[11] JSR-175, A Metadata Facility for the Java Programming
Language (http://www.jcp.org/en/jsr/detail?id=175)

[12] Bockisch, C., Haupt, M., Mezini, M., Ostermann, K.: Virtual
Machine Support for Dynamic Join Points. In: International
Conference on Aspect-Oriented Software Development.
(2004)

[13] JBoss EJB 3 (http://www.jboss.org)

[14] Terracotta Virtualization Server
(http://www.terracottatech.com)

[15] Java Dynamic Proxy Classes
(http://java.sun.com/j2se/1.5.0/docs/guide/reflection/proxy.ht
ml)

[16] The Spring Framework (http://www.springframework.org)

[17] JavaServer Pages Technology (JSP)
(http://java.sun.com/products/jsp)

[18] Java Servlet Technology
(http://java.sun.com/products/servlet/)

[19] Java Community Process (JCP, http://jcp.org)

AOSD'06 - Industry Track Proceedings 47



48

AOSD'06 - Industry Track Proceedings



Lessons learned building
tool support for Aspectd

Mik Kersten, University of British Columbia, beatmik@acm.org
Matt Chapman, IBM United Kingdom Ltd., mchapman@uk.ibm.com
Andy Clement, IBM United Kingdom Ltd., clemas@uk.ibm.com
Adrian Colyer, Interface21 Ltd., adrian.colyer@interface21.com

ABSTRACT

A key part of the Aspect] technology is the integrated
development environment integration, which makes it possible
for developers to use aspect-oriented programming without
giving up the tool support to which they are accustomed. In this
experience report we summarize our current tool suite, and
discuss the lessons we learned extending object-oriented
development environments to make crosscutting structure
explicit. We also report on the challenges of surfacing aspects in
structure views without encouraging misconceptions about the
language, our successes and failures in extending object-
oriented tools, and our ongoing work in supporting advanced
IDE features and exposing the dynamic properties of the
language.

Keywords

Aspect-oriented ~ programming,  integrated  development
environments, language design and implementation, software
tools

1. INTRODUCTION

Object-oriented programming (OOP) tool support makes the
inheritance and encapsulation structure of a system explicit.
Many programmers rely on query facilities to find overriding
methods, tree views to inspect the system’s type hierarchy, or
debugger mappings from exception traces to offending source
lines. Aspect] [10] is an Aspect-Oriented Programming (AOP)
[11] extension to Java [7] that provides the programmer with
language support for modularizing crosscutting. The goal of the
Aspect] tool support is to make the crosscutting structure of the
system explicit.

The Aspect] IDE plug-ins have been crucial to the adoption of
the Aspect] language for both practical and pedagogical reasons.
They allow programmers to use Aspect] without forcing them to
give up the other development tools they already use. Subtle but
fundamental assumptions in the object-oriented IDEs’ structure
models and views made it challenging to implement our AOP
extensions to these tools. In this experience paper we report the
lessons we learned from integrating aspects into existing IDE’s
models and views. We also discuss the technical issues that we
observed while building facilities for editing, compiling,
navigating, documenting, and debugging aspect-oriented
programs. Section 2 provides an overview of our current tool

suite. Sections 3 & 4 discuss what we learned designing and
implementing these tools.

2. THE ASPECTJ TOOL SUITE

The first tool we released was a command line compiler. As our
user community grew the number of requests for build and
development environment integration increased. Users wanted
the ability to invoke the Aspect] compiler from within their
development environment [9]. In addition, they asked IDE
integration that provided the editing and navigation facilities
that they were accustomed to in their Java IDEs. In 1999 we set
out to design and integrate IDE facilities for working with
crosscutting structure.

The first step we took was to show crosscutting structure as
navigable textual annotations in Emacs', and as links in Javadoc
[6] documentation generated with the ajdoc tool. We met the
increasing user demand with plug-ins for the JBuilder?,
NetBeans®, and Eclipse* IDEs. Since we were not able to
support all IDEs used by our community, we also provided a
standalone tool called the AJBrowser for navigating aspects, and
an Ant’ task for integrating the Aspect] compiler into an
existing build process. Figure 1 provides a historical perspective
on the tool support we released as the language matured and
demand grew. Intervals on the timeline indicate periods of
active contribution to those tools. Section 4.4 discusses why
some tool lasted while others did not.

2.1 AspectJ

AOP enables the modular implementation of crosscutting
concerns. Such concerns are inherent in complex systems, and
are impossible to capture cleanly with OOP. Aspect] is an
extension to Java that provides the programmer with language
mechanisms that explicitly capture crosscutting structure. The
result is similar to the benefits of OOP modularity for object
encapsulation and inheritance: easier to maintain code with
greater potential for reuse.

! http://www.gnu.org/software/emacs
2 http://www.borland.com/jbuilder

3 http://netbeans.org

* http://eclipse.org

* http://ant.apache.org

AOSD'06 - Industry Track Proceedings 49



ver: 0.3 04 05 0.6 0.7 0.8 1.0 1.1
20K monthly downloads
C ajdt eclipse plug-in |
C ajbrowser |
( ant task |
10K C netbeans plug-in D
C debugger )
C jbuilder plug-in D
5K C ajdoc |
C emacs plugin D)
2k C compiler |
e e
{ 1999 ' 200 ' 2001 ' 2002 | 2003 ' 004 ' 2005 |
PARC eclipse.org

Figure 1. Timeline of AspectJ tool releases (dashed line indicates missing statistics)

Consider the failure handling policy in Figure 2. This simple
aspect declares that after a WSIFException is thrown in any
public method within the org.apache.wsif package the
exception will be handled by the body of the advice (line 7).
The aspect defines a pointcut as the set of join points
corresponding to every execution of a public method within that
package. In Aspect]’s pointcut and advice mechanism, join
points are key points in the dynamic execution of the program
[13]. These include method and construction execution, class
initialization, and field accessors. The
FailurePolicyEnforcement aspect uses after advice to
define what action should be taken under these points in the
execution. Advice execution can also be specified to happen
before and around a join point. Aspects as simple as this one
have been demonstrated to be expressive enough to capture
crosscutting concerns such as first failure data capture policies
in application servers [2].

OOP implementations corresponding to Figure 2 result in the
exception handling code being scattered and tangled across the
system. By making these concerns explicit, Aspect) provides the
expected benefits of good modularity for crosscutting concerns.
The goal of the Aspect] tool support is to show the structure of
well-modularized crosscutting concerns.

2.2 Crosscutting structure views

The most common objection that arose during our tutorials and
presentations suggested that Aspect)’s ability to introduce

behavior invoked implicitly would compromise program
understandability. For example, around advice can prevent a
method from executing. Following references or imports from
the containing file does not help the programmer figure out
when this might happen, since aspects crosscut the type
structure. Without tool support the only way to know how
aspects affect a particular method is to examine all of the
aspects. To address this, the Aspect] tools make crosscutting
structure explicit by indicating which advice will affect that
method. For example crosscutting links in the Cross References
view make it possible to navigate from a method signature to
advice that may affect the execution of that method (Figure 2,
right hand side). These links are also exposed as inline
annotations in the editor ruler (Figure 2, left hand edge). Right-
clicking on the annotations displays a context menu with the
same relationships. The relationships are shown in both
directions, to allow consistent navigation between the source
and target of advice.

Aspect)’s inter-type declarations, an open class mechanism that
originated from Flavors [12], affect the type structure of the
system. For example, a class may have new members declared
on it. This structure is made explicit in the Cross References
view as well (Figure 3). Unlike Java member declarations,
advice and some inter-type declarations cannot be invoked
explicitly. As such, these declarations are not named. In the
Cross References view they are distinguished by their kinds and
by the pointcuts that they reference.

E FailurePolicyEnforcement.aj &3

= O[ 5= outline 2 ™ laz“eﬂvf@‘@l'vmﬁ

laspect FoilurePolicyEnforcement {

pointcut publicInterface():
execution{public * org.apache.wsif..*{..23);

3
4
5
¢ 6 after(]) throwing(WSIFException w):
7 publicInterface() {
g

9 // code to handle w...

vy @ FailurePolicyEnforcement
# publicinterface()
Y afterThrowingl)

= || #5 Cross References I3 TS B~—0O

v © FailurePolicyEnforcament
¥ Y% afterThrowing()
¥ S advises
- ] SWSIFServiceFactorv.newlnstance[il
v3  WSIFClientProxy.invoke(Object)

Figure 2. Advised-by annotation in the editor and crosscutting relationships in the Cross References view

50 AOSD'06 - Industry Track Proceedings



When beginners start prototyping aspects their first challenge is
to understand the places that the aspect affects. Advice affects
the execution of join points. But whereas join points exist in the
runtime call graph, the program elements that show up in IDE
views correspond to static structure. As a result, the Aspect]
structure views indicate all elements that could be effected by
advice execution. We call these relationships between static
program elements and join points the join point shadow. The
join point shadow shows how advice affects program elements,
and can be thought of as a projection of the dynamic execution
of the program onto the static structure. To make it clear where
the execution of advice will be decided by a runtime test (e.g. in
the case of control flow advice) a question mark is added to the
advice icon (Figure 4).

et e N =5

= -

v @ ship

Yy o aspect declarations

ﬂasﬁhip.color

ﬂasﬁhip.paint[{]raphicsj

Figure 3. AspectJ declarations in the Cross References view

Some pointcuts crosscut very large portions of the system. Tree
views are not effective for showing these because it is difficult
to maintain context when scrolling through the hundreds of
nodes that can populate the view. The Aspect Visualizer (Figure
5) addresses displaying the global effects of crosscutting by
showing advice relationships in a zoomed-out SeeSoft source
line-based view [5] inspired by the Aspect Browser [8]. The
vertical bars represent source files, with height corresponding to
file length. Each line affected by advice is colored according to
the aspect-to-color mapping in the right-hand list. The
Visualizer can display the crosscutting for an entire project,
zoom into a single package, and navigate to the corresponding
source code in the editor.

= = o
L3 E8 B0

vy O FailurePolicyEnforcement
v Y afterThrowing()
¥ o advises
L) SWSIFServiceFactnry.newlnstancet)
@ WSIFClientProxy.invaoke(Ohject)
¥ M afterThrowing()
¥ o advises
L] SWS.IFSer'.riceFactnry.newlnstance[)
3 WSIFClientProxy.invoke(Object)

Figure 4. Advice with and without a runtime test

Java developers are accustomed to structured ‘diff” views that
indicate what parts of the object-oriented program have
changed. As an aspect-oriented program changes, the changes
in pointcuts can have wide-reaching impact on the system. For

example, refactoring pointcuts may result in the associated
advice affecting more join points than was intended, particularly
if some of those join points were added by another team
member. The Crosscutting Comparison view (Figure 6)
addresses this by comparing the latest version of the program
against a check point.

38

Problems

Crosscutting comparison of build2.ajmap with current build (Showing 4 of 8 items)
Added /Removed Source Relationship Target

i ﬂ Added ‘} SaveAndRestore.afterRe ® advises w8 FigureWindowListener.w
4 Added F SaveAndRestore.before > advises °@ FigureWindowListenerw
4 Added ‘l‘{, declare parents: implerr &> declared on 6 FigureElement
B Removed % HistoryManagement.aft > advises @ Point.setY(int)

Figure 6. Crosscutting Comparison view

B2 visualiser Menu 32 = B
Bh -

T (T VT QTR T W () o
(O) & oebus

™ Display.Displaya
¥ Displayl.Space0
@ ™ Display2 spaceo
™ EnsureshiplsAliv

1
E Registry.Registra
L B

Visualiser - Aspect] Provider

=

Figure 5. Aspect Visualizer

2.3 Build and editor support

Since we extended the Java language, the Aspect] language and
compiler needed to be compatible with the Java platform. All
legal Java programs are legal Aspect] programs, and the
bytecodes produced by the “ajc” compiler can run on any Java 2
and later VM. Aspects can be declared in both “.java” and “.aj”
source files. Pointcuts can be declared in classes as well as
aspects, and inner aspects can be declared in classes. As a result,
crosscutting modularity is as primary and visible to the Aspect]
programmer as object-oriented modularity, and the Aspect]
tools’ role is to present a consistent view of both.

Integrating with the build process means that the Aspect]
compiler provides semantic errors and warnings using the same
problems list mechanism that IDEs use for Java errors. Since
modern IDEs provide eager feedback on syntax errors, Aspect]
editor support provides this for aspect members such as
pointcuts and advice (Figure 7).

after() xxx(WSIFException wl:
publ

Syntax error on token "xxx”, "throwing", "returning”, ":" expected

e Press 'F2' for focus.

Figure 7. Errors as you type in the AspectJ editor

Additional integration between the compiler and the editor
includes code formatting, the organizing of imports, and content
assist (Figure 8).

AOSD'06 - Industry Track Proceedings 51



after() throwing(WSIFException w):
publicInterface() {

& thisjoinPoint  JoinPaoint

& thisjoinPointStaticPart  JoinPoint.StaticPart
W w WSIFException

< clone() Object - Object

@ equals(Object argQd) boolean - Object

» finalize() void - Object

fal [ L

S

Figure 8. Content assist in the AspectJ editor

3. LESSONS LEARNED DISPLAYING
CROSSCUTTING STRUCTURE

To expose crosscutting structure, OOP views needed to be
extended to show the effects of aspects. Inheritance and
encapsulation have clear representations in static structure
views, but the core of the Aspect] structure model is dynamic
join points. We struggled with ways to model and display an
accurate aspect-oriented view of the program. This section
reports the key lessons learned from trying to model and display
crosscutting structure.

3.1 Crosscutting views made aspect-oriented
programs easier to understand

User feedback from tutorials, workshops, and our mailing lists
has indicated that the single most effective role that the tools
have played is to expose the crosscutting relationships of the
program. In contrast to OOP languages which have been
successfully used with plain text editors, Aspect] depends
heavily on tool support. A developer reading code written in an
OOP language can understand the structure of the program by
reading the text and following references. A developer reading
code written in an aspect-oriented language can not infer the
program from local examination of the code, since the
crosscutting of aspects can affect the execution of that code. The
increasing popularity and reliance on IDEs allowed us to
leverage graphical views to make AOP program structure
explicit (Figures 2-8).

The early releases of Aspect] IDE support made our users’
reliance on the crosscutting structure views clear. At one point a
bug prevented the views from displaying certain forms of call
site advice, and resulted in confused reports asking if the
language semantics had changed. During tutorials we often
observed users learning the semantics of Aspect] by inspecting
how the structure views show the effects of their first aspects.
We have also observed users learning the syntax of pointcuts by
inspecting the keyword highlighting and early error indication
feature of the Aspect] editor (Figure 7).

3.2 New navigation techniques were
required to expose crosscutting

Object-oriented views serve well for showing hierarchies and
navigating references. But aspects are about non-hierarchical
structure, and the presence of aspect-oriented structure in large

systems can overload the tree views with relationships and links.
In Eclipse the editor gutter annotations (Figure 2) suffer from a
related problem. The gutter is narrow and only capable of
displaying a single icon per source line. If additional annotations
are present (e.g., breakpoint indicators) they occlude the advice
annotation.

Since the Java IDEs showed program structure in tree views, we
needed to extend these views to show crosscutting. But the
advice affecting a method could not just appear as a regular
child node of the method, since it relates through crosscutting
and not by containment. Initially this resulted in our adding
relationship nodes (e.g., “advised by”) to tree views such as the
Outline. To reduce the visual complexity and overload of those
views when working on large systems, we moved the
relationships out from the structure view and into the Cross
References view (Figure 2). A keyboard shortcut also makes it
possible to temporarily overlay this view on the editor, for
example when a gutter annotation indicates the presence of
advice.

Aspects are inherently good at expressing the global properties
of a system, whereas object-oriented views tend to focus more
on containment and information hiding. Changing a single
pointcut can result in every public method of the system being
advised. To show this global structure, the Aspect Visualizer
(Figure 4) presents a cross-file or cross-package view of the
crosscutting. The Crosscutting Comparison view (Figure 5)
shows changes to the crosscutting structure between different
versions of a project. This allows the programmer to see the
crosscutting in the system not limited to a localized portion of
the code, and shows the effects of refactoring a pointcut without
needing to navigate to other pointcuts or advice.

We also had to provide facilities for helping the programmer
maintain context when navigating crosscutting. When updating
the body of an advice, the behavior of each of the join points it
affects can be of interest. IDEs make it easy to lose context by
presenting only the structure relevant to the current focus of the
editor. To offset this we first introduced navigation history. Our
tree links acted as hyperlinks and navigation could be stepped
back and forward (most IDEs now support a similar history
feature). This helped, but it did not solve the main problem of
needing to see both aspect and affected join point at the same
time. The Cross References view addresses this by maintaining
a structure view focused on the crosscutting while allowing a
second structure view, such as the Outline view in Eclipse, to be
synchronized with the editor.

3.3 The tools taught both concepts of and
misconceptions about the language

Early on in the development of the IDE support we decided to
use Fluid Document technology [4] to present the effects of
advice. Figure 9 shows how our prototype made the code of an
advice appear at the applicable join point shadow with an
animation that fluidly displaced the original code in order to
prevent the programmer from losing context by being forced to
navigate to the advice. This approach had the benefit of showing
both the advice code, and the context in which it would execute.
Unfortunately, this also gave the incorrect impression that
Aspect] used preprocessor semantics and inserted code into a
method, whereas advice does not execute in the same scope as

52 AOSD'06 - Industry Track Proceedings



the method. As a result we did not proceed with this approach.
This approach could have potential if combined with a
mechanism that shows the separation of scope and the dynamic
test that controls the execution of the advice. There is a related
caveat with the Aspect Visualizer view (Figure 5) which
encourages the developer to think in terms of source lines
instead of dynamic points in the execution.

indication of advice
void fire() _{_,&‘/

if i!expeﬁdEnergyiBULLET_ENERGY)3
return;
new Bullet (getGamei)), xV, vV);

/ body of before advice

rif itraceMethods . getBtate()) |

i infollin. println {thisJoinPoint | getSigmature ()} ;
i

]

expansion

woidh fire () |

if {!expendEnergy (EULLET_ ENERGT) !
return;
new Bullet {getGamed)), =W, W) ;

Figure 9. Fluid in-lining of a before advice body

Making it clear that Aspect] is based on a dynamic model has
been the biggest challenge of displaying the structure of
Aspect]’s crosscutting mechanisms. When developers think in
terms of static transformations of source code, they do not learn
how to understand and work with aspects as a first-class
structure of the system. We have repeatedly observed the
preprocessor misconception preventing programmers from
attaining an intuitive understanding of Aspect)’s semantics. For
example, it is awkward to think of join point parameter binding
in terms of method parameters. As a result, a driving goal of
crosscutting structure views was to discourage notions of
inserting code.

3.4 Surfacing the dynamic properties of
crosscutting was difficult

The current tools give the developer no assistance for
determining what dynamic conditions will affect the potential
execution of advice at a join point shadow. Multiple advice can
apply to a single join point. Their execution is specified by
ordering rules, or explicitly declared by the programmer. But
the structure views do not surface the ordering semantics. There
was no simple way to extend the object-oriented views to show
this information, and it has remained an open problem®.

Part of the problem stems from the fact that the IDEs’ views
show static structure. While much pointcut matching is static,
which is why Aspect] is efficient, some matching has runtime
tests (e.g., when a pointcut constrains the join points to only
those within the control flow of a particular method execution).
We use join point shadows (Section 2.2) to surface all of the
places that advice might affect. For example, both method
signatures and call sites are of interest for advice on calls. To

® For potential solutions see http://eclipse.org/ajdt/ui.html

make the programmer aware of dynamic tests we annotate the
relationship with a question mark indicating the presence of the
test (Figure 4). But the programmer is left to infer what runtime
conditions need to be true for the advice to execute. The
crosscutting structure views need to become more specific about
providing context indicating what runtime tests and conditions
will affect the execution of the advice (e.g., by showing the call
graph for the control flow constraining a pointcut). Exposing the
dynamic properties of crosscutting will involve extending our
structure model, which like the IDE’s structure models has
focused on representing structure that can be easily mapped to
source code.

3.5 A crosscutting structure model was key,
but over-generalizing it was a mistake

From the beginning of the project our use of agile methods
helped the tools evolve along with the changing language
implementation and IDE platforms. The tools framework grew
out of a single IDE implementation, to one generic enough for
two Swing’-based IDEs, and finally to a GUI-independent
framework when we needed to support Eclipse’s SWT toolkit.

EE Tool
Programmer
|/ coupling
| Plugin UI (SWT, Swing) |

Aspect] Plug-in | Swing UL H ajdoc |

Framework & ASM ajc
Compiler & Weaver

Figure 10. AspectJ tools framework and clients.

Java IDE UI

The Aspect] Structure Model (ASM) is at the core of the tools
framework on which the IDE plug-ins are built. ASM clients
expose the model in task-specific views. Unlike the compiler’s
abstract syntax tree (AST), the model is kept in memory since
the crosscutting structure of the entire system must be presented
to the user without invoking a search. If the user switches build
configurations it is saved to disk. Figure 10 shows how our
tools can extend the ASM directly, as ajdoc does, or extend the
framework to provide views specific to the look-and-feel of the
host IDE. The Framework and ASM have also been extended
by someone outside of the core Aspect] team in order to provide
support for the JDeveloper IDE®,

The ASM represents the crosscutting, inheritance, and
referential structure of Aspect] programs (Figure 11). Since
structure views represent static program structure, the structure
model is a projection of Aspect)’s dynamic properties onto the
static structure of the system—i.e. from the join points to the
join point shadows. The example in Figure 11 depicts pointcut

" http://java.sun.com/products/jfc
% https://jdeveloperaop.dev.java.net, created in 2004

AOSD'06 - Industry Track Proceedings 53



and advice relationships. Note that the pointcut does not point to
affected members, since a pointcut alone does not have a
behavioral effect on the program.

pointcut access(): get(private Foo.*);
after(): access() && set(private Foo.*);

pointcut access() [ class Foo |

pointcut used byD | Drivate =0 |
uses pointcut [ void bar() |
advises =142

Figure 11. Example of ASM relations

The ASM started out as a string-based map of correspondences
between declarations. To incorporate structural relationships for
inter-type declarations and other kinds of join point shadows we
built a generic data structure composed of program elements and
associations relating them. This graph was used for constructing
containment, inheritance, referential and crosscutting views. It
did not contain a dominant decomposition (the containment
hierarchy in most IDEs) and did not require searches to build
structure views. It also captured additional relationships, such as
the “@see” links from Javadoc. It was intended to be extensible
to UML’-specific associations or relationships between program
elements and structure declared in external resources (e.g.,
XML files in J2EE'!). We also started down the road of
making the ASM general enough to support a wide range of
AOP tools and languages. However, over-generalizing in this
way turned out to be a mistake.

The latest ASM implementation is, once again, a string-handle-
based mapping between elements in a containment hierarchy.
The more flexible and extensible generic data structure
attempted to solve interesting problems, but was not practical
for solving the core problem of supporting high-quality IDE
integration. The lack of a dominant hierarchy resulted in
multiple graphs representing the entire program structure and
causing an excessive memory footprint when used with systems
larger than ten thousand classes. In addition, to achieve a deep
integration with the Eclipse IDE the update of the structure
model needed to happen eagerly as the user edited. In order to
make the ASM support incremental update and improve
performance we concretized it and returned to using string
handles as references to program elements. The relationships
still persist in memory, but as a much leaner and easier to
incrementally update map between handles corresponding to
program elements.

? http://www.uml.org
19 hitp://www.w3.org/xml

" http://java.sun.com/j2ee/

4. LESSONS LEARNED EXTENDING
OBJECT-ORIENTED IDEs

Modern IDEs provide the programmer with a lot of support for
editing and navigating object-oriented programs. We needed to
extend the existing functionality in a consistent and elegant way
to support Aspect] without getting in the way of the Java
tooling. In building this support we iterated through three levels
IDE integration, and each of our tools evolved along the path
defined by Table 1.

Table 1. Levels of IDE integration

Integration Goal

1. Invocation Invoke the Aspect] compiler on project
& resources resources and display compiler messages.

2. Editor & Provide a custom editor for aspects and new
views structure views.

3. Structure Integrate with the IDE’s structure model,
model editor, parser, and views, and add new

crosscutting-centric views.

The invocation & resources integration was our first
improvement over the command line compiler and text editor
interface. This involved mapping the IDE’s definition of
projects and paths to command line parameters understood by
our compiler. This level of integration is still used in the form
of Ant support by those who do not have IDE support for
Aspect] (e.g. IntelliJ users).

The editor & views integration improves on the previous level
by providing an editor that understands aspects and can support
features like keyword highlighting, and views that show
crosscutting structure. The JBuilder, NetBeans, and early AJDT
plug-ins offered this level of integration. For example, the
Outline view in these looked very similar to the IDE’s Outline
view, but was a replacement that showed Aspect] declarations
and crosscutting relationships. But this approach is
fundamentally limited because the advanced IDE features that
rely on the IDE’s parser, compiler, and structure model are not
supported, and views that mimic the IDE’s views are never up-
to-par with the user’s expectations.

The structure model integration extends the core model of the
IDE to understand AOP semantics. AJDT provides this, and
exposes it in features such as eager parsing and content assist.
But deep integration is challenging due to the Java-language
specific bindings and assumptions made by the IDE’s structure
model. As a result, as of the writing of this paper AJDT does
not yet integrate deeply enough to offer refactoring support,
which is now a commonly expected feature in Java IDEs.

While working through these levels of integration we have
struggled with extensibility limitations that result from AOP
breaking the core assumptions made by object-oriented IDEs.
OOP is about encapsulation and hierarchies, whereas AOP is
about structure that crosscuts encapsulation and hierarchies. As
a result the underlying data structures of AOP and OOP tools
are fundamentally different. In this section we report on the
strategies that we developed for providing a clean integration of
AOP into OOP IDEs.

54 AOSD'06 - Industry Track Proceedings



4.1 Overriding the file extension broke the
IDEs’ extensibility model

Aspect] is intended to be a seamless integration of AOP and
Java. The file extension for Aspect] sources seems like a
seemingly small detail, but turns out to have significant
implication on the degree to which the integration is seamless.
One of the core goals of the Aspect] language is to make
crosscutting mechanisms available as a part of the base
language. This goal is in contrast to the reflective and
XML/annotation-based approaches (e.g., AspectWerkz'?) in
which crosscutting is declared outside of the main language.
Aspect)’s approach benefits the programmer by providing
consistent support for both objects and aspects. However,
current IDEs only allow for language extensibility outside of the
core program text (e.g., in comments, metadata tags, strings, and
new file extensions). In any file named “.java” the tools expect a
language that conforms to the Java language specification.

The easiest way to address this is to only allow Aspect) code in
separate resources (e.g., “.aj” files with the current syntax or
“.xaj” with XML syntax). But this would have only side-stepped
the problem. For example, consider an inter-type declaration
made in a separate resource. The tool support could try to make
the resulting structure clear, but there would still be a confusing
and awkward disconnect between the external code for the inter-
type declarations and the pure Java declarations. A reference to
an inter-type declaration in a “java” file would be a compiler
error. The Aspect] language and tool support makes crosscutting
a primary part of the system’s architecture and allows aspect
declarations in “.java” files.

Aspect] 5 offers a compromise called the @Aspect] style (vs.
the code style of “.java”) first introduced by AspectWerkz. The
@Aspect] style allows declaration of aspects and aspect-
members using pure Java syntax by exploiting Java 5 style
annotations. This is less disruptive to tools expecting pure Java
syntax inside “java” files, but does not alleviate the major
requirement to show crosscutting structure. The @Aspect] style
was released recently, and we are still gathering feedback on
this approach. But a key enabler is the fact that AJDT can
present crosscutting consistently in both styles, and even allow
toggling between one style and the other by rewriting the aspect.

4.2 No IDE was inherently extensible to
AOP

This may seem at odds with the fact that we built IDE plug-ins.
But the Aspect]J plug-ins do not directly extend the OO structure
model of the IDEs. They either replace it or layer onto it. When
contrasted with the efforts behind commercial Java tooling, the
resources available to the Aspect] project have made this catch
up game a slippery slope. Take for example the Eclipse IDE,
which offers no facilities for extending its Java model with new
semantics. The structure model is the foundation of features
such as eager parsing, code assist, and refactoring. Both the core
Java tool support and 3™ party extensions contain explicit
bindings to the Java language, and as such do not inherently

12 http://aspectwerkz.codehaus.org

support language extensions. Taking the external-language
approach is less intrusive to the other Java tooling (Section 4.1).
But this only delays the problem by pushing the aspect-oriented
structure out of the way. IDEs’ structure models needs to be
made semantically extensible to other program structures in
order to cleanly integrate crosscutting. So far we have only to
layer on this sort of extensibility to the Eclipse IDE, which is
open source and has a rich model of Java Structure. As a result,
the core Aspect] team’s integration efforts are focused on
Eclipse.

4.3 Semantic extensibility requires openness
and structure-aware features

Our first IDE plug-in after Emacs extended the Microsoft Visual
J++ 6 IDE". Its extensibility APIs are similar to those currently
available in VisualStudio.NET. However, the IDE was closed-
source and not self-hosted on the APIs (i.e. the internal
implementation was not based on them). It was not possible to
extend the IDE beyond the limited use cases that the IDE’s
developers had planned for. The release of the pure-Java
JBuilder 3.5 was promising. We released the first IDE plug-in
on JBuilder’s much broader open APIs. The breadth and
stability of these APIs helped bring Aspect] into the hands of
real developers [14], but the APIs were not designed for
incorporating new modularity ideas and language extensions.
JBuilder is not open source, and was missing critical extension
points. For example, to make the file structure view work we
had to walk the Swing component tree, and overwrite the Java
structure specific view.

The first NetBeans release was encouraging since the IDE was
open source. Open sources proved invaluable for figuring out
how to extend the IDEs in a way that was not originally
planned. However, due to an overly general architecture and not
enough focus on extensible Java tooling it was more difficult to
build the NetBeans plug-in than to build the JBuilder plug-in.
The Eclipse 2 release combined openness, broad APIs, a much
deeper self-hosting on those APIs, a more complete plug-in
component model, and more features for viewing and
manipulating OOP structure. Eclipse was also the only IDE to
provide an open source compiler, AST, and structure model,
which offered opportunity for a deep integration. However, the
advanced tool features of Eclipse are a double-edged sword for
language extensions. They set the feature bar very high. For
example, Eclipse users new to Aspect] often expect refactoring
to work for Aspect] as seamlessly as it works for Java.

4.4 The cost of supporting multiple IDEs
was justified by a broad outreach

We released support for 7 versions of JBuilder, 5 versions of
NetBeans, and 4 versions of Eclipse. Supporting multiple IDEs
was costly. But it helped establish Aspect] as standard for AOP
on Java rather than as an extension to a single IDE, and helped
ensure that the command line compiler remained de-coupled
from any IDE. Also, we could not initially choose one IDE up-
front because we did not know what our users’ platform of

'3 http://msdn.microsoft.com/vjsharp

AOSD'06 - Industry Track Proceedings 55



choice would be. More recently we have prioritized deep
integration with a single IDE, but have maintained the APIs that
make extensibility with other IDEs possible (Section 3.5).

The porting of plug-ins to newly released APIs of a given IDE
has been more straightforward than we expected. Our main
problem has been maintaining a single release that is backwards
compatible with older releases. Users want the latest bug fixes
even if they are stuck on an older version of the IDE, while
others expected immediate support for new IDE releases.
Supporting both the latest and older versions imposed a drag on
evolution, was time consuming, and involved marginal solutions
such as checking the IDE version at runtime and invoking the
appropriate API call reflectively. The only complete solution is
to maintain multiple release streams, one for each IDE release,
and this is the approach we have resorted to now.

One good domain for AOP is enterprise applications [3]. To
enable Aspect] use for these developers we needed to support
the enterprise versions of the IDEs (JBuilder® Enterprise
Edition, Sun Java Studio Enterprise built on the NetBeans
platform, and IBM® Rational® Application Developer for
WebSphere®  Software built on the Eclipse platform). In
theory, this should not have required extra work since all plug-
ins making correct use of the extensibility model should
interoperate with the extended enterprise IDEs. However,
testing and updates specific to the enterprise editions were
necessary to ensure compatibility. This additional work was
necessary, in part because enterprise project configurations
involve more kinds of resources, and because the enterprise
editions can depend on core platform features that are not used
by the standard edition. Unlike the early adopters who always
downloaded the latest free standard version of their IDE, the
enterprise developers are often stuck on a version until their
organization decides to upgrade. Another problem was that we
did not use the enterprise versions of the tools internally. Close
dialog with enterprise versions users helped us understand the
expectations they had of the integration.

4.5 Integrating with existing Uls was more
important than creating new ones

Numerous IDE views can be affected by the presence of aspects,
for example:

e Document outline: additional members

e Content assist: additional members and special join point
variables

e [nheritance tree: additional super types can be declared by
aspects

e Debugger thread tree: additional stack frames appear for
generated methods

Our bug report database indicates that the most important part of
clean integration is not getting in the way of existing Java tool
support, but showing the relevant crosscutting information when
needed. New users curious to try Aspect] are not willing to
continue using it if they have to sacrifice their existing Java
support. To further improve integration quality we set a policy
of zero-configuration after install (e.g. by automatically
configuring preference settings). In addition, we had to provide
IDE-specific Uls for toggling whether or not Aspect] was

enabled for a particular project. Although effort spent on
improving integration was at the expense of adding features it
was critical for getting feedback from use on real systems. For
example, the first release of JBuilder support with zero-
configuration resulted in many more bug reports than we had
ever received for the tool. This made us realize that users were
not bothering to submit bugs if they did not get far when first
trying the tool.

We started by making Aspect] features as visible as possible
(e.g., there was an Aspect] menu that provided build
commands). As our plug-ins improved, access to Aspect]
features was integrated with the corresponding Java features. In
general, extending existing views worked better than adding
new ones. We were able to populate the standard Outline view
with the structure of aspects, instead of using a custom version
of the Outline view which did not look or behave identically to
the standard version provided by the IDE. The new structure is
placed inline with Eclipse’s editing and navigation features, and
indicates when the user might want to pop up a view or menu
indicating the crosscutting structure. ~ We only provide
additional views (Figures 4-6, Cross References, Crosscutting
Comparison and Visualiser) to support crosscutting-centric
navigation of inspection of the system.

4.6 Integrated debuggers were more
extensible than expected

In 2001 we released a JPDA'*-based debugger with a command-
line and GUI interface. However, we were not able to get the
quality and features of the debugger up to the expectation set by
debuggers in existing IDEs, and discontinued the standalone
debugger after 1.0. Extending existing debuggers turned out to
be easier than extending the IDE’s core structure model because
of the extra extensibility that results from requirements on
debuggers to support breakpoints in non-Java languages. For
example, to support Java Servlets, a debugger must map
bytecodes to corresponding Java source embedded in “.jsp” files
(JSR-45").

We were able to support the use of standard Java debuggers on
Aspect] by encoding the source line mappings in the bytecodes.
However, Java debuggers expose the implementation of the
Aspect] language instead of the language semantics. For
example, extra frames corresponding to advice call-outs show
on the stack. Nevertheless, this allowed us to consider the
additional functionality as an additional user interface layer over
the existing debugger functionality. User feedback on debugger
support has indicated the need to preserve both views. The
standard Java debugger views turns out to be useful for the cases
where seeing exactly what executes is more important than
seeing clean Aspect] language abstractions, for example in
resource-constrained environments.

' http://java.sun.com/products/jpda
'S http://www.jep.org/en/jsr/detail ?id=45

56 AOSD'06 - Industry Track Proceedings



5. SUMMARY

Aspect] provides tool support that exposes the aspect-oriented
structure of programs by extending object-oriented IDEs. In this
experience paper we reported the way in which we surfaced
crosscutting structure by extending the object-oriented IDEs.
From our user community we learned about the need for
seamless integration with the IDE, the importance of providing
mechanisms for viewing the global effects of aspects and the
need for maintaining context when navigating crosscutting
structure. Whereas we succeeded at showing the static mapping
of join points to structure views, we have not yet managed to
fully expose the dynamic properties of crosscutting. We also
learned to choose mechanisms for displaying crosscutting
carefully, since these have the ability to both teach the language
and to encourage misconceptions about it. The most difficult
problems we encountered resulted from the lack of extensibility
beyond OOP that is an inherent limitation of the tool platforms.
But we are continuing to improve the depth and integration of
the Aspect) tool support, and in the process hope to provide
additional experience on making object-oriented tool platforms
more extensible.

6. ACKNOWLEDGEMENTS

Thanks to Gregor Kiczales and Gail Murphy in helping select
and distill the lessons learned, the Aspect) and AJDT teams who
continue to improve the tool support, and currently include
Adrian Colyer, Jonas Bonér, Andrew Clement, George Harley,
Helen Hawkins, Wes Isberg, Sian January, Mik Kersten,
Alexandre Vasseur, Julie Waterhouse Park, and Matthew
Webster. Additional thanks go to Erik Hilsdale and Jim
Hugunin, former members of the Aspect] team, who played a
key role in helping design the tool support, and to our user
community whose feedback continues to teach us about AOP.

7. REFERENCES

1. Beck, Kent: Test-Driven Development By Example,
Addison-Wesley, 2003.

2. Colyer, A., Clement, A., Bodkin R., Hugunin, J.:
Practitioners report: Using Aspect] for component
integration in middleware. In: Proceedings of the

Conference on Aspect-Oriented Software Development
(AOSD). Lancaster, UK (2004)

3. Colyer, A., Clement, A.: Large scale AOSD for middleware.
In:  Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA). ACM, Anaheim, California (2003)

4. Chang, B.W., Mackinlay, J.D., Zellweger, P.T. and Igarashi,
T.: A Negotiation Architecture for Fluid Documents. In:
Proceedings of the ACM Symposium on User Interface
Software and Technology, pp. 123-132 (1998)

5. Eick, S.G., Steffen, J.L., Sumner, E.E.: Seesoft - A Tool For
Visualizing Line Oriented Software Statistics. In IEEE
Trans. on Software Engineering, Vol. 18, N. 11 (1992)

6. Friendly, L.: Design of Javadoc. In: The Design of
Distributed Hyperlinked Programming Documentation
(IWHD). Springer-Verlag, Montpellier, France (1995)

7. Gosling, J., Joy, B., and Steele, G., Bracha, g.: The Java
Language Specification. Second Edition. Addison-Wesley,
Reading, Maschusetts (2000)

8. Griswold, W.G., Kato, Y. and Yuan, J.J.: Aspect browser:
Tool support for managing dispersed aspects. In First
Workshop on Multi-Dimensional Separation of Concerns in
Object-oriented Systems, OOPSLA (1999)

9. Kersten, M., Murphy, G.: Atlas: A Case Study in Building a
Web-Based Learning Environment Using Aspect-Oriented
Programming. In: Proceedings of the Conference on Object-
Oriented  Programming  Systems, Languages, and
Applications (OOPSLA). ACM, Denver, Colorado (1999)

10.Kiczales, G., et al:. An Overview of Aspect]. In:
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP). Springer-Verlag, Finland (2001)

11.Kiczales, G., et al.. Aspect-Oriented Programming. In:
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP). Springer-Verlag, Finland (1997)

12.Moon, D.: Object-oriented programming with Flavors. In
Conference on ObjectOriented Programming Systems
Languages and Applications, pp.1-8 (1986)

13.Masuhara, H. and Kiczales, G.: Modeling Crosscutting in
Aspect-Oriented Mechanisms. In:  Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP). Springer-Verlag, Spain (2002)

14.Price, R.: Real-world AOP Tool Simplifies OO
Development. Java Report, September Issue (2001)

AOSD'06 - Industry Track Proceedings 57



Gathering Feedback on
User Behaviour using
Aspectd

Ron Bodkin Jason Furlong
Founder Consultant

New Aspects of New Aspects of
Software Software
rbodkin AT new jfurlong AT new

aspects.com
(650) 941-8344

Abstract

This report describes our experiences
applying aspects to provide feedback on user
behavior, system errors, and to provide
robust a solution for a widely deployed
diagnostic technology for DaimlerChrysler.
We describe how the capability is being
extended to support recording and playing
back macros. We detail a list of challenges
and lessons learned as well as report on the
tools that we used to build the feedback
feature.

aspects.com

These aspects have been incorporated in
production releases and are used to improve
the application and underlying business
process performance in a deployment to
thousands of locations. We achieved our
primary objective of being able to
seamlessly integrate the User Monitoring
concern with minimal coupling to the core
application.

Overview

New Aspects of Software has been
consulting and training for the
DaimlerChrysler Next Generation Scan Tool
(NGST) project, providing expertise in
aspect-oriented software development in
particular and in effective application
architectures and agile development more
generally. This experience report describes
our experiences using Aspect] with an
existing Java GUI application that is
distributed to a large number of dealerships
and other service centers.

The NGST project delivers a family of
hardware and related software applications
for use in diagnosing vehicles. The first
generation product, the StarSCAN, is an
embedded device running Linux and a Java
1.1 VM using AWT. The second generation
product, the StarMOBILE [StarMOBILE], is
a device that can run Java applications in
standalone mode, or in a pass through mode
in which a “Desktop Client” Java 1.4
application controls the behavior. The
NGST project wanted to implement an “in
flight data recorder” feature that would track
the user’s interaction with the Desktop
Client application to better understand how
users used the system. Once gathered from
all deployed versions, this data would be
used to optimize the user interface.
Capturing this data is especially timely as it
will be used in a new effort to update the
NGST user interface from one suited for use
on embedded devices to one that makes use
of a full featured desktop computer.

This report describes our experiences in
developing and deploying this feature,
which has recently been released globally to
thousands of locations. This project
represents an important step in the adoption
of aspects on this project. Subsequent to our
initial effort we have reused the feedback
pointcuts to capture and play back macros.
Future plans include developing aspects to
provide rigorous integration tests of
components and to support product line
variations for different software
configurations.

Approach

The project followed an iterative
development process. We started with a
simple summary of requirements derived
from discussions with the project
stakeholders. Two developers on the project,
Sam Konyn and Guangjing Zhou, had
previously written aspects to allow

recording system events and output for
subsequent playback in regression testing.
Using their experience, we devised a

AOSD'06 - Industry Track Proceedings



preliminary set of pointcuts for monitoring
the application. These pointcuts formed the
core of a set of tracing aspects that were
incrementally refined to determine which
join points would best capture GUI events.

Initially, we had expected to track user
events (button pushes) as well as navigation
among Ul views. However, for this
application, it became clear early on that the
most interesting information was defined by
the views since there was typically only a
single way of navigating from one view to
another. Moreover, the Ul events in the
application, like the UI approach in general,
was somewhat complex and had evolved
over time, with newer code following
different patterns. Once we decided to focus
on the change in views that were presented
to the user, we were able to significantly
reduce the amount of data that we were
writing to the log. This provided us with a
robust set of pointcuts to capture the
transition of main screens but didn’t capture
several special cases. Foremost among the
special cases were wizards that were a
combination of AWT and Swing-based
panels.

To arrive at robust pointcut definitions, we
needed to address a number of issues. The
system in question often relies on events to
invoke operations, yet there are significant
variations in how events are handled and
distributed. We elected to depend on the
executions of certain non-public but
descriptive navigation methods rather than
the nuances of event. Most of the pointcuts
depended on base class methods, rather than
enumeration or use of name patterns. In a
few of the more complicated cases, we
needed to correlate a series of join points,
tracking state with inter-type declarations.
We consciously avoided any use of
privileged aspects and took care to minimize
dependencies on parts of the system that
were deemed likely to change. In
performing some judicious refactoring to
some of the existing Ul code we exposed
relevant information and made some
protected methods public. This resulted in

an improved integration of information with
user monitoring. Additional pointcuts were
needed for the tracking of metadata (both
device and vehicle) that exposed the
connection state of the application.

As an additional feature of the feedback
concern, we included pointcuts to capture a
summary of exceptions encountered during
program execution. Advice attached to the
error monitoring pointcuts tallies a count of
exceptions based on certain common
characteristics (message, subclass of
Throwable, and the join point that first
handled them). Upon system shutdown, the
monitor aspect writes all the error statistics
to the log.

Once the implementation was working well,
we refactored the experimental aspects into
a production-ready design that divided up
responsibilities by subsystem. We created an
abstract base monitoring aspect that was
extended by several concrete aspects; each
one concerned with monitoring specific
types of user interface or other events. The
system also uses an aspect to ensure that
session information (metadata) is included
with each log output entry.

Error Isolation

We created an Aspect whose job was solely
to contain any errors generated within the
monitoring code so that they wouldn’t flow
into the basic application. This was inspired
by Ron’s previous work with Glassbox
[Glassbox], which demonstrated the
importance of isolating errors in monitoring
code and showed the feasibility of doing so
with aspects.

Configuration and Runtime
Control

As the NGST application uses an Inversion
of Control (IoC) container’ strategy for

! Specifically, it uses the Interface21 framework,
which is a precursor to the Spring Framework.
Interface21 is still being used because of its

AOSD'06 - Industry Track Proceedings 59



configuration, we elected to utilize it to
configure the feedback feature. All the
aspects associated with the feedback
concern are configured through a class
which acts as a configuration facade that
delegates the setting of values. Initially, this
design was chosen to work-around
limitations in the IoC container’s
configuration ability (in marked contrast to
the full Spring 1.2 framework). When
capturing the system’s state we had a choice
between using the existing configuration
mechanisms or writing pointcuts to find the
unique instances of objects being created.
Ultimately, we preferred the use of an loC
configuration, to minimize coupling and to
keep the mechanism consistent with the rest
of the application.

A customer-defined requirement of the
system was the ability to enable and disable
aspects at runtime. There are two means of
configuring this ability: a user can explicitly
change the feedback level in the application,
and when updated, the system as a whole
can be configured to change the level
allowed.

Subsequently, the configuration facade
proved useful to provide a single point of

<<lnterfacer>

control for monitoring policy changes
through the enabling and of disabling
aspects. The abstract base monitoring aspect
defines an interface for enabling and
disabling advice, and we reuse an idiom for
runtime control of aspects that is described
in [Glassbox2]. The monitoring control bean
can iterate over each aspect, configuring the
level of feedback required.

The monitoring control bean also is
responsible for managing the life cycle of
the shared event log (including registering
and unregistering a shutdown hook). It also
registers as an event listener for some
system events in the application. It further
publishes an event for the Ul screen to listen
to. We discuss the use of the Observer
pattern below.

To support macros, we are refactoring this
approach to split responsibilities so we can
support both logging events and updating
display state. We have defined thin
monitoring aspects that track various view
events, system events, and tracking error.
These expose a pointcut interface. l.e.,
logging and updating display state aspects
can advise these pointcuts. However, the
context data we want to expose from the join

MaonitoringControl

hlonit
oniter gecific:Userhdonitor
.
i) 1.7
]
|
1
<= aspect=»

Afshactiior itord spect

setUzarFeedbacklevell  waid

Manitorlog

enabled : boolean o
isAdviceEnabled : vaid

recordEventiin event : waid) : woid

Z2pointcutzF isAdviceEnable d : woif

ddazpectss

hdanitaringfspect

support ch is still being used on
embedd NGST system.

Figure 1. Configuration of Monitoring Aspects

inrite ERtrel) ¢ waid

SLMonitorlog

AOSD'06 - Industry Track Proceedings



points can not be bound using Aspect]
pointcuts. Instead, the monitoring aspects
track the system’s state and create an
arranged join point that passes the relevant
context to a no-op method. This allows the
two different types of aspects to simply
write advice before a view display event is
seen:

public interface Monitor {
void recordBeforeViewDisplay(ViewDisplayEvent event);

pointcut beforeViewDisplay(ViewDisplayEvent event) :
execution(* Monitor.recordBeforeViewDisplay(..)) &&
args(event);

-
Testing

We performed unit tests of the core
responsibilities of the monitoring aspects.
However, due to the complex, inconsistent
and undocumented UI structure of the
system, integration testing was the most
essential requirement. The monitoring
aspects are broken into a number of cases,
mirroring the various different
implementation approaches used.

Nicholas Lesiecki has coined some good
terms to describe things that might possibly
break when writing aspects. In his terms, we
had to test carefully to find Unheeded
Advice and Unwanted Advice (including the
special case of Duplicate Advice) and in
some cases Bad Binding (from drafts of
[LesieckiTest]). While writing unit tests to
verify correct behavior against a model of
the general pattern of system behavior is
useful, it is much less effective than
systematic integration tests that ensure the
model is faithful. We have written
integration tests that verify both behavior
and interfaces for the feedback subsystem
(e.g., ensuring that changes to the runtime
configuration enable and disable advice and
produce proper logging). We integrated the
JMock framework for proxy-based mock
objects and also have used virtual mock
objects for integration testing (e.g., to
replace VM shutdown hooks with actions at
the end of a test case). [Ajmock]

However, the project is currently focusing
on the use of FitNesse [FitNesse] to allow
regression testing of system functionality.
We have designed an approach to
integrating feedback testing with any FIT
tests: we will ensure that the fixtures used to
simulate user input are also monitored
correctly by the feedback system. Then we
will make a crosscutting assertion that can
affect any FIT test. We can check the
monitored output for any or all system
acceptance tests & report back if there is
expected output and the actual output
diverges. The comparison will mostly
involve comparing for file equality, although
a few fields (time stamps and session id’s)
will need to be extracted out as variables. As
existing FIT tests are completed, we will be
in a position to add integrated feedback
testing to whatever degree we need to
mitigate risks. As a result, the project
conducted extensive manual system tests,
which will provide input to automated
testing in future.

Tools Integration

The project team had standardized on the
IntelliJ IDEA IDE for development and uses
Apache Ant for production builds. The first
approach we used to develop aspects in this
environment was to extend the Ant build
scripts to allow certain modules to use the
Aspect] compiler (ajc) instead of a Java
compiler for compiling production code and
tests, and to allow tests to weave into
production code to support virtual mocks.
The ant build script built separate, unwoven
jars for each module, with the intention
being to weave subsequently.

The next step we took was to set up load-
time weaving so that aspects could be
applied to the code that IntelliJ compiled,
using the standard IntelliJ launcher. To
accommodate this, we developed a custom
load-time weaving implementation that
works with Aspect] 1.2.1 or the Aspect] 5
milestone releases. This implementation
uses a non-delegating URL Weaving
ClassLoader that weaves all the classes it

AOSD'06 - Industry Track Proceedings

61



loads by default, to allow easy integration
with the IntelliJ IDEA IDE. The Aspect]
URL Weaving ClassLoader uses a different
classpath variable to specify the classes to
be loaded, which wouldn’t allow us to use
the standard IDEA mechanisms to assemble
classpaths when launching.

However, we really missed having
autocompletion, integrated compiler output,
and the ability to navigate project structure
inside the IDE. So we set up a limited scale
parallel development environment in Eclipse
using the AJDT plug-in. Even given some
bugs and limitations that are discussed
below, the environment was more
productive. Initially, we developed aspects
by depending on ant-built jars that would be
included in the inpath of the feedback
project in Eclipse.

Subsequently, we presented the benefits and
costs of switching from IDEA to Eclipse to
the team. The major benefits from this
would be better support for developing
aspects in particular and the much greater
level of industry support for Eclipse in
general. The team decided to try using
Eclipse again, and Guangjing Zhou set up an
Eclipse workspace for development. This
has been a much more productive
environment for aspect development, since it
allows integrated development with the
Perforce version control system the project
uses and allows working on all the code in
one environment. However, the environment
uses linked source folders for all projects,
which has caused a number of problems
which we expect to be resolved by using
direct references to file system folders.

We have also sponsored Mik Kersten who
has developed better support for incremental
ant compilation. The idea is to allow an IDE
like IDEA to kick off incremental ant builds
and to show crosscutting structure with
visualization views, to better allow
developers using IDEA to see the affect of
aspects in their environment. We think this
tool will be helpful as developers want to
see how aspects affect Java code, but that

developers writing Java code will still want
to have the productivity of integrated IDE
support with easy navigation to Aspect]
types and code completion when writing
aspects.

There have been a few minor issues in tools
integration to date. When the Aspect] ant
task produces compilation errors, the
CruiseControl automated build system
doesn’t handle them like Java compiler
errors and display them in the summary of
errors encountered. Instead, we have to open
up a detailed log viewer to find the compiler
output. We have spent some time
investigating this issue, integrating an
update to ant support after Aspect] 1.5.0 and
finding problems in reporting ant tasks from
that. A bigger potential problem is the use of
the Clover test coverage tool, which works
only on Java source code and has to be
excluded from tracking coverage in Aspect]
code. While we have used bytecode-based
coverage tools (notably EMMA) on past
projects successfully, this project adopted a
different source code coverage tool, and it is
typically a problem to switch technologies.

Performance

While we did not measure runtime
performance precisely, there was no
noticeable delay in the performance of the
monitored code during testing. There was,
however, a noticeable delay at start up when
we tested the use of load-time weaving to
apply the monitoring aspects (e.g., taking 10
seconds instead of two seconds on a
minimum recommended workstation for the
application).

It is important to minimize the bandwidth
required to update binaries for each release,
to allow quick updates even over shared
connections at 100 kbps. Using build-time
weaving would have resulted in a one time
complete replacement of the entire
application. Moreover, changes to
monitoring aspects would have likely
required similarly large updates to many
distributed components for future releases.

AOSD'06 - Industry Track Proceedings



Requiring such extensive updates was
highly undesirable.

As such, we created a custom utility that
performs command-line weaving for
Aspect] requiring only Aspect)’s 1.5
megabyte aspectjweaver.jar (which designed
for load-time). This utility consists of a
stripped out and simplified weaver, which
performs the same binary weaving functions
as the Aspect] ajc compiler, but avoids the
need to distribute a 4.5+ megabyte compiler
jar with source code compilation capabilities.
This utility has been contributed to the
Aspect] project and is slated to be integrated
into Aspect]. This command-line weaver
was integrated into the existing installation
scripts, to weave each jar as it is unpacked.
This approach allows correct functioning
when the application is partially updated.

Assessment

Benefits

The primary objective was achieved as we
were able to seamlessly integrate the User
Monitoring concern with minimal coupling
to the core application. The minor changes
that we implemented in the core application
actually contributed to making it more
modular. For example, the feedback system
invokes a vehicle scan report that captures
the current state of the vehicle being
diagnosed. In the original application this
feature was tied into the GUI process, but
the new requirement of being called from a
headless required one of the team members
to separate out the Report Generation from
the GUI code.

DaimlerChrysler will now be able to gather
metrics about application use to streamline
future versions of the user interface. In
many respects, this data collection allows
analysis of user behavior like Web log
analysis packages do, although there is the
potential to capture more precise
information in a rich client environment. In
particular, we expect to analyze the most
frequently used views, types of problems

and data that are relevant, and common
navigation paths. These metrics will assist
in a reorganization of the presented views,
and the order in which they are presented
which should facilitate training and better
creation of content to improve diagnostic
effectiveness. It will also indicate areas in
which shortcuts could be best introduced in
the application, views that should not be
buried deep in a hierarchical view set as well
as profiles of different users. Monitoring the
use of the embedded tools that the end-users
use allows the client to determine which
diagnostic procedures are effective and
which ones are seldom used. The
monitoring system will also capture more
accurate information about errors
experienced in the field, including errors
that are intermittent that may not be reported.
All the metrics are uploaded periodically to
a Web server and then loaded into a
database server, from which standard reports
will be generated along with some ad hoc
analyses.

The feedback subsystem consists of 1200
lines of production Aspect] code distributed
amongst 10 aspects plus an additional 2400
lines of supporting classes. The feedback
system affects about 8500 join points in the
rest of the system. The NGST family of
software contains over 400,000 lines of Java
code.

This represents a major improvement over
what would have otherwise been an
extremely scattered and tangled
implementation. If a traditional
implementation had been performed in this
case, then code would have had to been
inserted into the core application in all these
places, and it would have been difficult to
implement a consistent and correct strategy.
Moreover, it would have been difficult to
follow the incremental refinement strategy
to feedback that we plan to use. This would
have further required much greater
preplanning, more conflict resolution, and
more coordination and communication with
the other programmers on the team.
Because we were not adding code to core

AOSD'06 - Industry Track Proceedings 63



components of the system we nearly
eliminated all conflicts and did not introduce
additional errors into the system. Any
additional errors that we did introduce with
the aspects were contained within the error
monitoring aspect.

An important benefit of the AOP solution is
that it can be unplugged for certain
configurations, and updates to feedback (e.g.,
to track user events) can be made modularly.
The localization of the user monitor feature
within a several aspects as meant that
configuration changes of the monitoring
policy was easy to manage both during
runtime and at startup. The entire feedback
system was contained within its own
package hierarchy in a separate module.

The only code that was not contained within
this separate module was the user interface
to allow user configuration of the feedback
system.

Because we separated the user monitoring
concern from the rest of the application we
reduced the need to add monitoring to all the
unit tests for the target classes. As the
project is following an agile methodology,
unit tests form a very important part of the
software development process. Avoiding
the need to rewrite all the unit tests
represents a significant cost reduction for the
installation of a new feature. As noted
above, we were able to unit test the feedback
feature in isolation and decide how much
integration testing to perform in a principled
fashion.

The rest of the team continued to develop
new features to include in the next release
and wanted to include the feedback feature
with these. By using AOP we were able to
work fairly independently, with few
conflicts and no need to enforce a policy for
instrumenting all new application code.
Aspect] significantly reduced the need for
coordination with the other programmers.
The areas in which we did need to
coordinate were in understanding the UI
patterns of the application and in integration
of specific capabilities like file upload,

reporting, and specific data collection. This
is typical of integrations between cohesive
modules, again indicating that the feedback
capability was well modularized.

Overall, the AspectJ tools worked well. The
command line Aspect] compiler (ajc) and its
integration within Apache Ant worked very
well. While we needed to do some work to
integrate Aspect] technologies into the build
and installation process was fairly
straightforward. The debugging support
within Eclipse was also of great benefit and
the AJDT plug in for Eclipse was very
useful, even though its support was still
incomplete.

Challenges

There was an initial ramp up period for the
user monitor development team as we had to
spend time understanding the flow of control
between the various screens, and to
understand all of the different patterns and
options in how the Ul functioned. On
several occasions we used case statements as
a device to handle the complexity of the
GUL

We found the AJDT integration with Eclipse
still sometimes clunky (e.g., needing to
restart to allow refactorings) and it would be
useful for AJDT to have the “Open Type
Hierarchy” feature available for aspects and
to include aspects when it is called up for
POJOs and interfaces. AJDT still does not
do a very good job at visualizing
crosscutting structure when applying aspects
from one project to others. And because we
used load-time weaving for faster compile
and test cycles, we further sacrificed
effective visualization. Despite these minor
issues, AJDT was our primary and most
productive IDE for Aspect] development.

We also experienced some challenges
relating to the long release cycle of Aspect]
5. Our experiences on other projects as well
as this one led us to believe that Aspect] 5
milestone builds after M4 were more stable
than Aspect] 1.2.1, and we had concerns

AOSD'06 - Industry Track Proceedings



about there being timely bug fixes in that
branch if we chose to use it. The ability to
use updated Eclipse plug-in tools was
another factor that led us to adopt AspectJ 5
early on. However, working with milestone
or development builds of Aspect] 5 led to a
configuration management problem,
primarily related to changing bytecode
formats frequently, which requires careful
synchronization of the versions of compiler
with load-time weaving jars including the
versions used in Eclipse when testing with
load-time weaving.

For successful project use we believe it will
be very important for the Aspect] project to
put more effort into supporting branches and
to have shorter release cycles now that
Aspect] 5 has been released. It’s important
to understand that Aspect] 5 is integrating
support for some major Java language
changes, although in retrospect a more
incremental approach to releasing these
would have been beneficial to projects like
ours.

As noted earlier, there were some areas
where we needed to expand weaving support
for these use cases. The project had recently
switched to using Java 1.4 and would have
needed compelling benefits to incur the
expense of testing and distributing an
updated Java 5 VM. At the time we started
work, this meant we had to build the non-
delgating URL weaving ClassLoader as
described before. Even with Aspect] 5°s
capacity to use a URL Weaving ClassLoader
that reads an aop.xml definition file, we still
need the non-delegating ClassLoader to
integrate easily into IDE launch commands.

The limited ability to visualize Aspect]
sources has led to a few occasions where
refactorings have broken Aspect] code,
which wasn’t exposed until the continuous
integration build failed. Developers on the
project typically assume that if everything
works in IntelliJ, then everything works
properly, which is a bad assumption for the
Aspect] code.

Lessons Learned

Complexity of the Application: The central
challenge in designing this solution was to
avoid a tight coupling with the existing UI
implementation while not making wholesale
changes to the Ul For instance, sometimes
we had to use a series of correlated pointcuts
with cf1ow advice to accurately track
processing for wizards. In other instances
we needed to refactor the application code to
improve modularity and to expose needed
data. We used Inter-Type Declarations
(ITDs) to manage state about the target
classes in certain situations.

Use of Load Time Weaving: During the
development and testing of the user
monitoring feature we discovered that it was
much faster to build our aspects separately
and then run with load time weaving to
allow testing even in Eclipse where build
time weaving is feasible.

Pointcut Stability: One interesting note was
that in typical OO programming you try to
program with a focus on the parts of the
system you anticipate are most likely to
change. In our case we had to structure the
aspects to depend on design structures that
we anticipated would change the least. For
instance, if we created pointcuts that were
tightly coupled to design structures that are
likely to be changed in the near future, then
these pointcuts would break, revealing a
fragile implementation on our part.

This mirrors our previous experience in
applying aspects to any non-trivial
subsystem: the hardest part is to fully
understand all the valid uses of the
subsystem. This differs from programming
calls from another subsystem which requires
only understanding enough valid uses to
achieve a specific result. Aspects are
invoked by the system, so they need to be
correct in all cases. This follows Postel’s
Law “Be liberal in what you accept, and
conservative in what you send.” Aspects
need to be liberal in responding to any valid
means that their collaborators might act, and

AOSD'06 - Industry Track Proceedings 65



66

conservative in the assumptions,
requirements and calls they make in turn.
Then again, one of the most important uses
of aspects is to modularize interaction
protocols, so it shouldn’t be surprising that
an important rule about protocols applies to
them!

Previous Use: The previous effort by the
project team to use aspects to capture and
playback integration testing ran into the
previous two problems: by writing aspects
that were privileged and depending on
internal implementation details the code was
fragile. It would have been better to have
refactored the base code to expose important
information. Moreover it raised the
importance of clear ownership of aspect
code: in a sense this is not new, although it
raises the importance of awareness and
support for developers to work with aspects.
We believe the real issue in this previous
effort was the low priority of maintaining
integration tests.

Policy Configuration: We developed a
configuration system that made it easy to
allow the system to properly function, even
if the aspects couldn’t be instantiated. This
allowed for a more robust deployment (in
case the weave on install failed) and easier
development for the developers who weren’t
using an IDE with AOP support (or who
didn’t want to incur the extra start up time
required for load-time weaving).

Observer pattern: The existing application
uses the traditional OO implementation of
the observer pattern fairly extensively to
propagate information about changes to
model objects to the UI and other model
objects. We elected to build on a familiar
pattern in a context where it works fairly
well. Our monitors register as listeners to
some existing events, and we also used the
existing application pattern to configure the
feedback Ul as a listener for updates to
feedback levels. However, we did use an
aspect to observe the different means
whereby feedback levels might change
(whether initiated by the user or the system),

rather than scattering checks in several
places. In general, we had to sacrifice the
slight benefit of better modularity with
aspects to focus on higher value areas with
less impact on the project. As the project’s
familiarity with aspects grows, this is an
area where more use of aspects could offer
some real benefits.

Organizational Acceptance

The use of a new technology always causes
it to be a suspect whenever something goes
wrong. In particular, the use of aspects was
suspected for IDE integration, for problems
in building, or in one case for problems in
running tests with code coverage. Because
the AOP development occurred in Aspect],
sometimes we neglected to test in IntelliJ.
Out of these experiences, we devised the
more robust fallback strategy and
development from integration jars
approaches described above. However, in
other cases when there were build problems
or test failures, aspects were often suspected
when they were not the cause.

The team had been introduced to aspects
before and they had adopted them for use in
integration tests. However, the previous
implementation was not maintained in part
because of resistance to regression testing,
and in part because the implementation was
made without changing the underlying
system at all, and as such it was tightly
coupled to internal details (e.g., having
many privileged aspects), which made it
hard to maintain. By contrast, when we
integrate feedback assertions in automated
system tests, we expect to be able to track
problems and to maintain the feedback
subsystem.

The project team has been generally
favorable to the use of aspects and interested
to learn from the data received by the rollout.
The two team members who previously
developed with aspects are both favorable
towards the use of aspects and would like to
see them adopted more widely.

AOSD'06 - Industry Track Proceedings



For the first phase of the deployment of
aspects, most of the project team is
developing code that can be nearly oblivious
of the use of aspects, so there has not yet
been significant interaction or opportunity to
apply aspects in other areas of development.
We anticipate that the use of aspects for
testing will allow more widespread use and
will show tangible benefits to the project
team as a whole.

Conclusion

Overall, the project has been quite
successful, being able to develop an
important capability quickly and with
minimum intrusiveness. We are looking
forward to building on the initial success of
this project.

Acknowledgements

Thank you to Ray Tackett, Dan Marus, Sam
Konyn, Guangjing Zhou, Andy Barba, Jim
Mitchell and the whole NGST team for
teaching us so much on this project. Thank
you also to Will Edwards for his support on
this project, and to Gregor Kiczales for
introducing us to the project team.

References

e [FitNesse]A fully integrated
standalone Wiki, and acceptance
testing framework.
http://www.fitnesse.org/

¢ [Glassbox] Performance monitoring
with Aspect], Part 1: A look inside
the Glassbox Inspector with Aspect]
and JMX, Ron Bodkin, IBM
Developerworks, Sept. 2005
http://www-
128.ibm.com/developerworks/java/li
brary/j-aopwork10/

e [Glassbox2] Performance
monitoring with Aspect], Part 2:
Extend the Glassbox Inspector with
load-time weaving, Ron Bodkin,
IBM Developerworks, Dec. 2005

e [LesieckiTest].Unit test your aspects:

Eight new patterns for verifying
crosscutting behavior. Nicholas

Lesiecki, IBM Developerworks,
Nov. 2005

[Ajmock] Virtual Mocking ... with
jMock, May 2005, Ron Bodkin,
http://rbodkin.blogs.com/ron_bodki
ns_blog/2005/05/virtual mocking.ht
ml

[StarMOBILE] More information
about this device can be found
online at
http://www.dcctools.com/en/starmo
bile/

AOSD'06 - Industry Track Proceedings

67



Implementation of AOP in non-academic projects

Allison Duck
Business Objects, Vancouver, BC, Canada
alliduck(@gmail.com

Abstract

Aspect-Oriented Programming (AOP) had been actively
researched in academia but little has been published
about its implementation in industry. The purpose of
this study was to investigate the benefits and pitfalls
encountered  while using AOP in commercial
applications.  This paper examines the experiences of
eleven programmers in five countries who used AOP in
their role as project manager, lead architect or
developer.  Participants were interviewed on a wide
variety of topics in regards to their AOP project and the
results of those interviews are presented here.

The following observations were made: Interviewees
conveyed that AOP was a powerful tool to reduce
complexity, defects and workload. The interviewees
were early adopters and have implemented AOP in a
wide variety of applications. AOP made their code
more compartmentalized, readable and reflective of its
original intent. AOP suffered common limitations of
emergent technologies including fewer resource
materials, compatibility problems and minor system
complications with earlier versions of the Aspect]
compiler.

1. Introduction

This paper examines the experiences of eleven
programmers in five different countries who used
Aspect-Oriented Programming (AOP) to implement a
new application or to work on an existing software
program. This paper is written for someone with a basic
understanding of AOP. If you are new to AOP there is a
wealth of material available on the Web or, for a more
comprehensive introduction, Ramnivas Laddads’ well-
written book “Aspect] in Action: Practical Aspect-
Oriented Programming” is highly recommended. This
paper is written for those who have either worked with
or are interested in working with AOP and would like to
know more about other programmers’ experiences with
AOP.

2. Study Format
1.0. Layout of interview

Participants were asked about the background of
their AOP project, the resources they considered useful,
the “nuts and bolts” of the project, the actual coding and
the results of using AOP. Eleven people were
interviewed, all of whom were project managers, lead
architects, or developers. All but one interview was
conducted over the phone. The other interview was done
via email. The duration of each interview ranged from
45 to 60 minutes. These early adopters of AOP were
located across the globe: Norway, India, Brazil, Canada
and the United States. There were two companies with
small groups of programmers who had adopted AOP.
The others had single-handedly added AOP to new or
existing projects. No one involved in a large AOP
project volunteered to participant.

2.0. The interviewees

All but one referral came from AOP experts': Ron
Bodkin, Adrian Colyer or Nick Lesiecki. One
interviewee responded to a request for participants,
which was sent to the Aspect] and AspectWerkz users
mailing lists”. The self-selected respondents readily
agreed to talk in depth about their experiences with
AOP. There was no lack of bias here; these were people
who, on the whole, were excited about the benefits they
had reaped using AOP.

3. Background of the project

The interviewees reported using AOP for a wide
range of projects. These include:
e A legacy system migration for a customer.
e Several Web applications including a business-
to-consumer Website and a J2EE Web
application.

" In the vernacular, they are referred to as ‘AOP evangelists’.
2 An AOP expert, Alexandre Vasseur, forwarded this respondent
the mailing list request.

68 AOSD'06 - Industry Track Proceedings



e Two different frameworks: one for auditing
J2EE enterprise applications and one for
creating large-scale business applications.

e Problem analysis using tracing.

e  Fine-grained security at the object incidence
level for a Swing-based application

The respondents said that they chose their particular
projects because of a good match in terms of
requirements. They were prominently involved in the
project and were able to exercise influence in choosing
AOP.

4. Adopting AOP

1.0. Stages of AOP adoption

Gregor Kiczales, who led the Xerox PARC teams
that developed AOP and Aspect], in collaboration with
Ron Bodkin, established a three-phase AOP adoption
model. A successful AOP adoption must happen in
three stages in order to build successive, positive
experiences with AOP and to manage risks associated
with implementing any new technology. The three
phases are:

1.0.0. Phase 1: Introduce exploration and
enforcement aspects.

The exploration aspects return information about the
system, whereas the enforcement aspects maintain the
system requirements for quality control. Both these
aspect types are used mainly for development work.
This is not to say that these aspects are trivial or
ineffectual; these aspects can be quite substantial and
powerful as will be examined later in the paper.

This introduces AOP to a team project in a non-
invasive way. These aspects are normally transparent to
other programmers. One or two developers can create
these aspects without impacting the rest of the team.

There were eight interviewees at this phase.

2.0.0. Phase 2: Use aspects to aid in
auxiliary/infrastructure software design

After successfully passing through Phase 1, aspects
are used to implement system infrastructure such as
exception handling, transactions, threading,
synchronization, caching. Aspects may or may not be
transparent, depending on how they interact with the
System.

There was one interviewee at this phase.

3.0.0. Phase 3: Make AOP core to business code
Aspects form the core of the system’s functionality.
They are now a crucial part of the design. Other

developers are aware of the aspects and how they impact
the code. Aspects are a central part of the main code
and, therefore, not transparent.

There were two interviewees at this phase.

2.0. Why AOP?

There were many reasons why AOP was chosen. As
one programmer succinctly put it, “After searching,
[AOP] was the best solution." Another said, "[AOP]
made conceptual sense." Other factors stated were:

productivity
quality/consistency

ease of modification of code
transparency

Some interviewees chose AOP as it made conceptual
sense; for others, it helped avoid perceived limitations of
expressiveness in Java. Some went for AOP because of
the ability to modularize concerns. Still others decided
on AOP because it improved infrastructure code. Some
chose it simply because it was the best solution in terms
of transparency, consistency, and ease of use across
applications or between application tiers.

3.0. Capacity in the project

The participants had  strong  programming
backgrounds and held senior programming roles - most
were senior developers, chief architects, team leads or
project owners.

4.0. Number of AOP programmers on the
project

The number of people programming in AOP was
usually one or two with a maximum of four. Of the
people interviewed, five were the sole AOP
programmers, two were in a group of two and four were
in a group of three or four.

5.0. Number of other non-AOP people involved

The number of other developers involved in the
project ranged from 3 to 15. The ranges were split fairly
evenly into these five categories: 3 other developers,
between 3 and 6 developers, between 8 and 10
developers, greater then 15 developers, and varied (one
was a consultant, another did project support).

AOSD'06 - Industry Track Proceedings 69



6.0. Person who programmed core code also
programmed AOP

The majority of the solo (or near-solo) AOP
programmers worked on legacy code and wrote aspects
to help them. Only two of the solo (or near-solo)
programmers and one of the groups of AOP
programmers developed core code and wrote all aspects.
Only one group developed all the core code and wrote
all the aspects. At the time of the interview, that project
is still ongoing and several more developers have been
added to it.

7.0. Amount of time spent programming with
AQOP

The amount of time spent programming with AOP in
general ranged from 1'% to 2% years. Typically, the
aspects were programmed during an intense work
period, which varied from several weeks to an entire
one-year project development.

8.0. First exposure to the concept of AOP

The majority of study participants were first exposed
to the concept of AOP by reading the October 2001
version of the “Communications of the ACM (IEEE).”
Another group attended a presentation by Ron Bodkin
on Aspect] and AOP at the No Fluff, Just Stuff lecture
series and knew immediately this was a solution to their
problem. In one case, an in-house expert explained it to
them in an "immediate way.” He was available to
answer questions as they naturally arose. The rest of the
programmers had either read about AOP online at
TheServerSide.com or other Web sites, heard about it
through colleagues, or could not remember.

5. Resources

Nine out of eleven interviewees cited Ramnivas
Laddads’ Aspect] in Action as the most useful AOP
resource book. One programmer learned AOP by
working through this text in 48 hours straight. Another
said he was eagerly awaiting Laddads’ next book on
Aspect] 5.

There were two people with differing opinions of
Adrian Coylers” book. One highly recommended it
because it "motivates the tools and the tools help
motivate the concepts." Another disliked it as he felt it
was "written for a mixed audience: very basic [to begin
with], for those with Ilimited exposure to Java
programming and then [it] skips to advanced compiler
details."

Other highly recommended resources were two
blogs; Ron Bodkin of New Aspects of Software
(rbodkin.blogs.com) and Adrian Coyler of IBM
(www.aspectprogrammer.org/blogs/adrian). One
programmer said that while there were "several blogs
which talk about [AOP] in interesting ways, [Adrian's]
is the one that I've had the most ‘Ahas’ with." Websites
that were recommended repeatedly were the Eclipse
resources for Aspect] (www.eclipse.org/aspectj) , and
for Aspect] Development Tools, AIDT
(www.eclipse.org/ajdt) and TheServerSide.com.

When people were stuck on a problem that could not
be solved by discussing the problem with a fellow
programmer (or beating their head against the wall, as
one solo AOP programmer suggested), they would turn
to either the Aspect] documentation or the Aspect] users
mailing lists archives. If that search didn’t return a
solution, they would send out a message to the users
group mailing list.

1.0. Training on AOP

Most people weren't trained formally; they expanded
their knowledge of AOP by using it. In order to master
the technicalities of aspects, such as pointcut syntax, the
programmers learned by working with the aspects and
the code. "Playing" is how more than one developer put
it. A couple of people had downloaded the Aspect]
compiler and worked through some of the given
problems. Still others worked through the "Aspect] in
Action" book (one in 48 hours as previously
mentioned). Several people learned about AOP through
either in-house or external presentations.

2.0. "I wish I knew about AOP before I
started."

The interviewees were asked to fill in the blank in
the sentence; "I wish I knew about AOP before I
started." The most humorous answer was "more."
Others said they wished they knew when to use AOP. A
few said they wished they realized sooner that AOP was
not a “golden hammer”, a solve-all for any
programming dilemma. They said, in retrospect, they
were so pleased with the results of using aspects that
they had tried to use aspects where they didn’t apply.
Several said that they wish they knew about the bugs in
the tools, most of which have now been fixed, before
they began working with Aspect]. For instance, the
incremental Aspect] compiler on older versions of
Eclipse had tooling issues. This will be discussed in
more detail later in this paper.

70 AOSD'06 - Industry Track Proceedings



6. Nuts & Bolts

1.0. Criteria for aspects

The main criterion for aspects was that they be
robust. In one programmer’s case aspects had to have
the ability to switch from being general to being
specific. In another instance, the aspects had to be
“generic enough that [they] wouldn’t need to be
modified for other applications.” Transparency was also
a concern; aspects needed to be the invisible hand,
affecting the code without being obtrusive. As one
participant put it, “Above all, the program should have
no noticeable changes to the end user if aspects are on
or off. The functionality should be the same.” > There
were a couple of technical requirements, such as “must
use load-time weaving.”

2.0. Types of aspects used

The most common type of aspect used was the
enforcement aspect, followed by development process
aspects and exploration aspects. One project also used
core logic aspects and infrastructure aspects. Another
project used both core logic aspects and development
process aspects.

Enforcement aspects allow the programmer to define
architectural and coding style rules and ensure they are
followed consistently in the code. A common usage was
to find and convert system.out.println into debug
statements. Another enforcement aspect created an error
if files were saved using the wrong letter case. Another
enforcement aspect helped high-level customer support
diagnose problems in complex sections of the
customer’s code.

Exploration aspects helped an auditing software
application to investigate what method calls were
performed on EJB (Enterprise JavaBeans), JDBC (Java
Database Connectivity), or SQL prepared statement
execution. The aspects were used against J2EE
interfaces. Using AOP gave the code auditors an
immediate, meaningful view of what was actually going
on in the system. They had better insight into the code
than could possibly be done by just looking at the raw
code or flat output. Using AOP allowed them a more
complete view of the inner machinations of the audited
system. Programming exploration aspects was less

® This as striking as AOP can be used for much more than this,
according to AOP evangelists.

laborious than, for example, adding debug statements to
each and every method.

An illustrative example of the power of exploration
aspects is the story one programmer told of being hired
on to find out the root cause of unusual runtime
behaviours in a Web application. After some
consideration on how to approach this problem, he
solved it by writing a ten-line aspect to follow the thread
execution throughout the program, which ended up
saving him time and many, many lines of code.

The development process aspects were most often
used to log information. In one case, the exception
introduction pattern for performance profiler as
described in AspectJ In Action was used. Logging and
tracing were also used. One participant had created a
virtual mocking framework, which tested the system.

Most of the aspects were exploration, enforcement or
infrastructure type aspects. This may have to do with
apprehension on the part of the non-AOP programmers
of integrating core logic aspects into the system as AOP
is still considered by some to be "bleeding edge"
technology.

The aspects themselves were split almost evenly
between advice and intertype declarations.

3.0. Range of scope

The majority of applications had a large range of
scope; they crosscut most classes. The application with
the second largest scope crosscut at most 200 persistent
classes. The application with the largest scope crosscut
about 700 classes, with a few thousand methods. The
range of scope was flexible for the applications that
used infrastructure aspects. In those cases, the range
varied depending on the application it was being run
against. According to one developer, “If an application
had a lot of EJBs then it would pointcut a lot of classes.
It really depended on how many different J2EE
interfaces that it was pointcutting against. So the bigger
the application, the more things we would pointcut.”
Only one project had a small range, with very few
classes involved, as the company was sold and hence the
application while it was in the prototype stage.

4.0. Homogenous or heterogeneous aspects

A homogenous aspect applies consistently across the
code wherever the pointcut is matched. Logging and
tracing aspects are examples of homogeneous aspects. A
heterogeneous aspect impacts multiple places yet
exhibits different behaviour in each place [4]. An

AOSD'06 - Industry Track Proceedings 71



example of a heterogeneous aspect is an aspect that
decides between two different protocols.

Eight of the eleven programmers solely used
homogenous aspects for logging and tracing. As one
interviewee said, “[The aspects are] very simplistic; in
fact they’re very thin. There isn’t much code in any of
the aspects.”

One of the developers used solely heterogeneous
aspects because his aspects made decisions based on
“architecture, technology platform, and design
decisions” for a model driven development framework.

The other two developers used a mix of
homogeneous and heterogeneous aspects. In one case,
the heterogeneous aspect made a decision “to build an
EJB-based system or use local execution instead.” In
the other case, heterogeneous aspects were used for
making decisions about exception handling.

5.0. Modeling and designing aspects

None of the participants used formal or high-level
notation such as UML diagrams. The AOP design
process was informal and iterative. The majority of
interviewees used whiteboards. Two of the solo AOP
programmers just programmed into a text editor or their
IDE and ran the code from there. The whiteboard was
used as it was better for “emergent design” and the
developers got a quick visual idea of what was going on.
Generally, they used the whiteboard to write down some
sample cases and data flow. Interfaces were sometimes
sketched out and methods named; groups were captured
and diagrams drawn. After working on the whiteboard,
they would try out their ideas, see how they worked and
then go back to the whiteboard to repeat the process
until completion. Regardless of design technique, aspect
creation was an iterative process.

7. Implementation

1.0. Language/extension used

All of the code was written in Java. Ten out of the
eleven programmers used Aspect]. One group had
originally written their application in Aspect] and then
had to switch to AspectWerkz in order to be compatible
with the target platform, BEA WebLogic. However, the
project manager said now that Aspect] and
AspectWerkz have merged and “there’s going to be
some runtime capabilities in Aspect], we’re going to be
going back [to Aspect]].” One solo AOP programmer
initially programmed in Aspect], and then for

compatibility issues had someone else write it in
AspectWerkz. There was one programmer who worked
solely with AspectWerkz. Another programmer was in
the initial stages of programming in Ruby as he felt it
was more suitable for AOP.

2.0. IDE used

Eclipse was used by all but one programmer who
used NetBeans for AspectWerkz.

3.0. Implementation Testing

Most people said that implementation testing with
aspects didn’t differ too much from regular
implementation  testing. Some people integrated
independently tested classes and aspects and others did
“big bang” testing. Overall, implementation testing
seemed to go fairly well. However, according to a
couple of people, the challenge came in “trying to
automate those tests.” One said “integration testing
worked well, no problems, pointcuts [were fine], if it
worked in one case [it seemed to work in all].” One
person said they found their experience “very
satisfactory.”

4.0. Debugging in AOP

Generally, those interviewed found debugging
slightly more difficult than normal. They said that AOP
was more time consuming to debug. One interviewee
said that he “found debugging a little bit challenging for
the first 5 minutes. Eclipse is perfectly capable of
debugging aspects, you can put a breakpoint in your
aspect and it will stop in the proper place. If you have a
pointcut related to a method call or an accessor, at first
it’s a bit weird but then you realize you can just play
through them. We had some tricky problems and had to
debug them but it was because they were tricky, not
because of the debugger.” He also said, “I'm still
searching for a really good way that doesn’t take a ton
of effort to test on aspects to make sure the pointcuts are
matching where you’re expecting them to, hopefully not
matching on things you’re not expecting them to.”

Two interviewees mentioned that they had difficulty
with debugging and weaving in Aspect]. One said that
the compiler would stop weaving if there was an error.
However, this problem has now been addressed in
version 1 .2.1 of Aspect]®. The other said that the error

*http://www.eclipse.org/aspectj/doc/released/changes.html
74245 Specifying the -proceedOnError flag will now cause the
compiler to attempt weaving even in the face of errors.

72 AOSD'06 - Industry Track Proceedings



messages returned while weaving were not clear. This
has been fixed in version 1 .2 of Aspect]’.

One interviewee had trouble with the lines not
matching up. This seems to have been fixed in the 1.2.1
version of Aspect]. Yet another interviewee mentioned
that, in Eclipse, if the compiler “inline” flag is set to
“no”, the line numbers are valid and the debugger can
ascertain where it went wrong. This makes it “much,
much easier” to debug an aspect. One person mentioned
“having clear pointcut naming helped with debugging.”

One participant stated that they felt frustrated
because AJDT doesn’t provide an eager parser so the
outline view would not be in sync. When he changed
code in the editor, it would take a full rebuild before the
outline view was updated. Using Eclipse for non-aspect
classes, the parser is eager so he was accustomed to
seeing his changes immediately. Because of this, he had
a hard time understanding what was happening where.
As a workaround, he wrote the aspect in a text editor,
compiled and ran the application with print statements
where aspects would be. If everything was as expected,
he would activate the real code after that. This issue has
been acknowledged on the eclipse.org Website®.

8. Results - Qualitative

When asked, "Would you use AOP again?” the
answer was a resounding "yes." The interviewees said
they would use it in their own projects if certain
conditions were met and indicated it would be
particularly useful for large projects with crosscutting
concerns. One person said that the version of Eclipse
would have to be greater than 1.2 and that they would
use it on a "small team, with modern tools, good
communication and a high level of expertise", which is a
good description of the two teams that successfully used
AOP. Another person cautioned that aspects are very
powerful and could be "dangerous" if misused to create,
for instance, a situation where overmatching occurs.
Another person stated that they now have automated
aspects making it easier to use AOP if a project called
for it and was large enough.

Participants were asked to give three advantages and
three disadvantages of using AOP.

1.0. Advantages of AOP

® 54819 Error and warning messages coming from the weaving
phase of compilation now show source context wherever it is
available, and also indicate as the source location of the error either the
class file or jar file from which the binary source unit came.

‘http://dev.eclipse.org/viewcvs/indextech.cgi/ajdt-
home/faq.html?rev=1.3#q:outlineupdate

The main advantage, epitomized in the words of an
interviewee, is that AOP “does exactly what you want.”
And it does it quickly, cleanly and powerfully according
to the interviewees. AOP reduces complexity, defects
and workload. Other stated benefits of applying AOP
were:

=  AOP works. There’s no esoteric reason why these
programmers are creating and implementing
software using AOP. They are using AOP because
it helps them achieve programming goals. This was
the number one reason stated for using AOP.

= AOP is powerful. Another reason stated for using
AOP is that its strong design ability helped improve
productivity. For one programmer, it was the
ability to achieve good results with a few lines of
code. AOP helped them move towards having one
design concept to one implementation.

= AOP keeps code cleaner and cleaner code is an
advantage: the core code looks “elegant” and this
leads to improved readability. As applications are
continually revised and programmers work on code
that they did not write, it is advantageous to “[see]
what the developer was thinking.”

= AOP saves time. One developer sold his group on
AOQOP by pointing out that “if it takes 1 developer 6
minutes per class and we can use an aspect instead
.7 A few programmers mentioned the speed of
aspects and how quickly an aspect could be written.
Aspects not only saved time, they also reduced code
size. One programmer’s experienced this fully after
switching to another project that didn’t have aspects
to do infrastructure support. He said “You realize
all of the heavy lifting that Aspect] was doing...All
of those things added up to when you’re writing
code in a main project ...is just a lot of extra stuff to
think about [that you’d rather not think
about]...You tend to forget that very quickly until it
goes away and then you find it again.”

=  AOP makes changes easy. Because modifications
are confined to the aspects themselves,
programmers do not have to search through
hundreds of lines of core code to make the change.
The aspect alone need be changed. This helps keep
the code consistent and “avoids tedious retyping of
code.”

=  AOP encapsulates modular concerns. Several of
those interviewed liked the modularity, the ability
to code a crosscutting concern in a single place.
Modularity is one of the central tenants of OOP.

AOSD'06 - Industry Track Proceedings 73



However, as one interviewee stated, “Object-
oriented programming is good but it has limitations;
it can't solve crosscutting issues easily.”

AOP helps manage complexity. One participant
said, “AOP is one of the tools for managing
complexity. And complexity is the death nail of big
projects over time. AOP decreased the complexity.”

AOP can be used transparently when necessary.
One mentioned that they liked the fact that AOP
could be used transparently to hide the detail from
those not familiar with AOP. The advantage of
reusable and flexible aspects was also mentioned.

Two programmers mentioned how AOP gave them
the “power to redefine how parts of language
work.” They said they liked being able to extend the
language.

2.0. Disadvantages

The disadvantages of using AOP varied greatly.

There were issues with past versions of Aspect] and

Eclipse. As one

interviewee said, ‘“Historically,

debugging has been a problem. Even just understanding
how things apply” can be a struggle for someone new to
AOP. Some disadvantages cited were:

74

Length of time to compile. One complaint was that
the Aspect] version 1.1 took too long to compile.
One of the teams started with AspectJ, version 1.1
but ended up switching to AspectWerkz as it had
load time weaving. The other team was locked into
using Eclipse 1.2 because they were using
WebSphere Studio Application Developer. They
added in “-proceedOnError”, the development build
of AJDT (1.1.6), and ANT script to use Aspect]
1.2, which helped. He said that they were still
having many problems with “proceed on error”
weaving and compiling. These should have been
solved with the Aspect] 1.2 release. According to
the Website, compared to Aspect] 1.1.1, Aspect]
1.2 is “faster, with weaving completing in less than
half the time it used to take in many cases.”

Less AOP than OOP resources. A common
disadvantage cited was that, as AOP is a relatively
young concept, there is not the wealth of
information to draw upon as there is with OOP. A
Google search for a problem in AOP is not going to
return the number of hits as for a similar issue in
OOP. Another complaint was that “robust aspects
systems” were limited to Java. A C++ programmer

is going to have a drastically smaller subset of
information to draw upon for AspectC.

Aspects as “red herring” as mentioned in Nick
Lesiecki’s article’. Aspects are often blamed for any
problems that arise. A few people mentioned that if
an aspect was involved in a system, it was the first
thing blamed, regardless of the truth of the
situation. One example that was given was when
working with a customer’s (prototype) code, a null
value was passed in as an argument. A
NullPointerException was thrown and when the
stack trace was examined, the aspect appeared
prominently. It looked to the untrained eye as if the
aspect broke the code. The developers turned this
experience into a principle: “we realized we really
need to take a good look at the aspect and try to
account for all scenarios that might occur so we
don’t look like we’re breaking someone’s
application.” They had to make their aspects rock-
solid so AOP wasn’t blamed instead of unmasking
the true problem. One interviewee warned “make
your aspects bullet-proof.”

AOP tools were not always compatible. One
developer said “as AOP is not widely adopted,
[one] cannot assume [other AOP tools] will be
compatible. For example, [we] had problems with
compatibility for JVMs, such as JRockit.”

AOP training is required. Not a lot of developers
know about AOP, however, from previous
comments, the take-up time of AOP for a skilled
OOP programmer seems to be reasonably small as
opposed to shifting to OOP for a functional
programmer. There was apprehension about
unskilled programmers using AOP. One person
was concerned about the potential problem of a
widely matching aspect that was “woven left and
right”, everywhere in code (overmatched).
However, this comes down to expertise in
programming; an inexperienced, poorly taught
programmer is a danger regardless of programming
language or methodology.

Not being able to see where the code matches
before compiling. One developer said, “It would be
useful to have some tool...to be able to take a set of
application code and just have a pointcut and to be
able to analyse that code and lift out all of the
places that the pointcut would have matched. Just
quickly write a pointcut in a window and it shows
what code in my whole project that would match.

7 http://www.aosd.net/2005/archive/Applying-Aspectj.pdf

AOSD'06 - Industry Track Proceedings



[This] would be useful for challenging aspects. For
example, ones that matched too much. As
challenging to not match the wrong thing as it is to
match the right thing.”

= Inability to do a “hot swap.” One interviewee
lamented not being able to do a “hot swap.” He said
that in a “hot swap ... the developer is able to make
changes to a class which is loaded in a running
application, and the class will be automatically
swapped out for the modified version without
stopping and restarting the application. When
running in a full J2EE environment with servlets
and EJBs, starting up the application can take
several minutes, and it may take several more
minutes to set the state and navigate to the page you
are testing. So being able to make changes to code
and have it take effect immediately without
stopping and restarting can be a huge benefit. The
standard JDT provides this, so developers expect
this in the AJDT as well.”

9. Quantitative Results

The question, “What metrics did you take?” had a
universal reply: a short burst of laughter, and a single
word, “none.” These developers were intimately familiar
with their code; they knew that with aspects it worked
better and faster. “[We had] no formal review,” said
one, “[it was] absolutely apparent that it was better.” If a
performance problem occurred, they would address it
immediately or remove the aspect. When problems did
occur, such as an aspect under- or over-matching, teams
would deal with this informally adjusting the aspect as
need be. Most said they didn’t really put any value in
measuring lines of code. One group did informally run
metrics using Maven (software).

The developer who had a negative experience due to
being tied into an older version of Aspect], said that
using aspects “reduced [time] in general, 2.5 person
months but the extra compilation time blew that out of
the water.”

10. Interviewees As “Early Adopters”

In Crossing the Chasm, Geoffrey Moore divides the
people who accept technology into five categories. The
interviewees all seemed to fall into the second category:
early adopter. Characteristics of early adopters include:
Articulate
Pragmatic
Willingness to experiment
Skillful

YVVYVY

1.0. Articulate — able to sell their ideas

The developers and project managers who embraced
AOP were enthusiastic and articulate. They spoke with
ebullience about their programs. They were thrilled
about how clean and modular the code was. They were
convinced of the power of AOP to manipulate the code,
that it gave them, as in the words of one interviewee,
“[the] capability to do things that aren’t part of the
language.” Their passion for AOP was persuasive.
After speaking with them, it would be hard to not be
excited about AOP.

2.0. Pragmatic — want to solve a real problem

The interviewees were not starry-eyed believers;
they had a healthy skepticism of AOP and were aware
of the potential pitfalls of viewing AOP as a “golden
hammer.” They had clear expectations of what they
expected AOP could and could not do for them.

3.0. Willingness to experiment - whatever will
do the job

They reported that the creation of aspects was
iterative — the creation process was informal with a lot
of communication back and forth. Interviewees shared
the common characteristic of tenacity, the ability to keep
going until a solution was found. As these are the AOP
pioneers, there was less reference material available
when stuck on a specific predicament. For example, as
two separate developers mentioned, a Google search on
an issue in AOP will produce fewer results than a search
on OOP. None of them had a clear path to follow. But
almost all were further ahead than if they had stuck to
OOP instead of using AOP in regards to productivity,
code clarity and reduction in errors.

As one developer said “To do AOP well you have to
stop thinking of it as special solution, think of it as any
other tool in your toolbox and not be afraid of using an
aspect. If it’s a crosscutting concern and it doesn’t seem
like that big a deal, you shouldn’t be afraid to use
experimental technology.”

4.0. Skillful — high level of expertise

The interviewees were adept programmers who were
fluent in technical terminology. All of the interviewees
seemed comfortable with using an amalgamation of
applications. They freely mixed multiple commercial
and open source applications. They felt comfortable
taking things apart, for example, going into the library
of an open source code application to change something

AOSD'06 - Industry Track Proceedings 75



unsatisfactory. They ended up doing amazing
workarounds rather than giving up. Even though there
was often not a clean, obvious solution to a problem,
they were not thrown by the complexity of the situation.
This might be accredited to their advanced level of
programming expertise but it appeared to be more of a
common attitude rather than a measurable amount of
experience.

11. Explaining AOP To Others

1.0. Easiest idea to convey

Almost all those interviewed suggested giving quick
conceptual examples as the best way to explain AOP,
several used tracing as an example. Instead of writing
trace statements for each method under inspection, a
single aspect could be written with the methods of
interest designated in the pointcut. One person said that
tracing was such a powerful explanation of AOP that
people’s eyes glazed over with the thought of the
possibilities. The problem was, he said, some people
walked away thinking that tracing was the only thing
that could be done with AOP.  Another person
recommended “showing the classic example ... of
logging in Apache, [how the aspect] goes across many
classes and the code is just in one place. When people
see the aspect and how short it is, that’s easy to
understand.”  Another said that “the application
client/server is the best way to explain AOP.”
Regardless of the chosen example, people had an
immediate understanding when shown how a particular
concern was implemented by a corresponding aspect.

Other ideas that were quickly picked up on were
how aspects aided in clarity by not cluttering the code,
the concept of modularity and the concept of
instantiated (or realized) interfaces. One person said,
“People from a C++ background can understand the idea
of multiple inheritance immediately.” Another
interviewee said they had heard it described as “coding
on a ’z’ axis. If existing code is on flat paper, [AOP] can
come in from above and apply little bits here and there.”

Other people said they had the most success when
building on what the person already knew, putting it into
their syntax. For example, one interviewee explained
AOP in terms of Java syntax; an aspect is like a class
and a join point is like a method signature.

2.0. Challenging ideas to convey

The challenge came when explaining applications of
AOP past straightforward applications, for instance,

moving to using AOP for production or core business
logic rather than infrastructure support. But one of the
pitfalls of not doing this is that if AOP is explained in
the context of logging, people will say, “Isn’t AOP just
for fixing bad design?” Or according to another
interviewee, “If you only show simple examples in
AOP, people are going to say, why not just use OOP?”
To get around this, one interviewee said that once he
explained “AOP can only do what OOP can do, just as
OOP can only do what functional programming can do”
people understood the role of AOP better. He would use
simple examples to explain the concepts of AOP and
then finish his explanation with his future vision of
AOP, for instance, moving on to create architectural
aspects.

As one developer eloquently said, “There’s so much
subtlety within the language and yet very few keywords
which makes it difficult to convey how much power it
adds. It’s easy to explain simple uses, the simple syntax;
it’s a bit more difficult [to show how AOP can do so
much].”

One said that the biggest barrier to understanding
was answering, “Why do we even want to do this?” A
concept like “join point” is easier to understand once
people know the benefits of modularity that AOP
provides.  Terminology  follows  understanding;
keywords only become useful once AOP is broadly
understood.

That said one point of confusion was that “[join]
points and pointcuts are different things but sound like
the exact same thing. Better naming would be more
helpful.” New learners seem to have trouble
differentiating between join point and pointcut.

A few people said that they struggled explaining the
syntax of pointcut declarations. One (bravely) admitted
that this area was “troublesome [to him] so [he]
struggled to explain to others.” Specifically, two areas
of pointcut syntax that were difficult to explain were
“call” versus “execution”, and “this” versus “target.”

As expected, some said that advanced topics like
inter-type declarations (introductions) and mixins could
be confusing to explain.

3.0. Ideal communication setup

Developers who work along side each other in close
quarters had an easier time passing on their knowledge
and enthusiasm about working with AOP. The most
challenging one was a distributed, trans-national team.
This developer had less than ideal results with applying

76 AOSD'06 - Industry Track Proceedings



AOP, which may have been due to not following the
phased adoption process. Phase 2 aspects rather than
Phase 1 aspects were used opaquely which resulted in
aspects being blamed for problems in the code that it did
not cause.

12. Conclusion

Almost all of the aspects used by the interviewees
were for Phase 1 (exploration and enforcement aspects)
or Phase 2 (infrastructure aspects) of the AOP adoption
sequence. Those interviewed were, in general, keen
supporters of AOP. They understood that AOP aids
modularity and encapsulates crosscutting concerns.
They were using AOP because it helped them achieve
programming goals. Its strong design ability helped
them improve productivity and achieve results. In
addition, AOP kept the code cleaner and reduced code
size.  The interviewees found AOP encapsulates
modular concerns, helps manage complexity and can be
used transparently when necessary. AOP was also
timesaving, from the speed of creating an aspect to the
modifying the aspect directly rather than going through
many lines of core code. This also decreased the
possibility of errors through retyping of code and kept
the code consistent.

Some interviewees expressed frustration with the
limitations of past versions of Aspect] and tools such as
AJDT, for example, compile time and lack of
compatibility with other tools. Many of these issues
have now been solved, and are continuing to improve as
the tools evolve and newer versions of Aspect] are
created. The issue an eager parser in Aspect] is still
unresolved.

Another disadvantage cited was that as AOP is
relatively young, there is not the wealth of information
to draw upon. However, the body of knowledge about
AOP has grown since these interviewees first began
working with AOP. The interviewees were the early
users of AOP. Since they began, improvements have
been made to the tools and language extensions such as
Aspect]. As more people are becoming familiar with
AOP, the information and available knowledge grows.
AOP is gaining momentum: for example, the University
of British Columbia has hired AOP experts to research
and disseminate information on AOP; it is being taught
in some undergraduate courses and Aspect] study
groups are being created. Although specialized training
is still required, a skilled OOP programmer can learn
AOP relatively quickly.

Overall, the interviewees were happy with the results
of using AOP and would definitely use it again. They
willingly shared their experience and knowledge

regarding AOP. They were enthusiastic about AOP, as
they had found it to be a useful tool in their
programming.

13. Future Work

Some possible future studies include repeating the
study with a larger group, examining failed
implementations of AOP and investigating large
software projects that have implemented AOP.

14. Acknowledgements

This paper was originally developed at the University of
British Columbia under the supervision of Gregor
Kiczales. Thanks to Gregor for his wisdom and time and
the reviewers of this paper for their insightful
comments.

15. References

[1] Adrian Colyer, Andy Clement, George Harley, and
Matthew  Webster.  Eclipse  AspectJ:  Aspect-Oriented
Programming with AspectJ and the Eclipse Aspect]
Development Tools. Pearson Education, 2005.

[2] Tzilla Elrad, Mehmet Aksit, Gregor Kiczales, Karl
Lieberherr, and Harold Ossher. Discussing aspects of
AOP. Communications of the ACM, 44(10):33-38,
2001.

[3] Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and
Mehmet Aks,it, editors. Aspect-Oriented Software
Development. Addison-Wesley, Boston, 2005.

[4] Boris Jabes. Aspects in the Real World. CMU CS 15-819
Objects and Aspects: Language Support for Extensible and
Evolvable Software. Nov. 13, 2004. Sept. 2, 2005.
www.cs.cmu.edu/~aldrich/courses/819/slides/aop-

middleware.ppt

[5] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William Griswold. Getting
started with ASPECTIJ. Communications of the

ACM, 44(10):59-65, 2001.

[6] Ramnivas Laddad. Aspect] in Action: Practical
Aspect-Oriented Programming. Manning, 2003.

[7] Geoffrey A. Moore. Crossing the Chasm: Marketing
and Selling High-Tech Products to Mainstream Customers.
Harper Collins, New York, 1991.

[8] Gail C. Murphy, Robert J. Walker, Elisa L. A. Baniassad,
Martin P. Robillard, Albert Lai, and Mik A.

Kersten. Does aspect-oriented programming work?
Communications of the ACM, 44(10):75-77, 2001.

AOSD'06 - Industry Track Proceedings 77



