
 1

AOSD 06
Tutorial Submission

About the Presenter
Name: Markus Voelter
Contact information:
Markus Voelter
Independent Consultant
Ziegelaecker 11, 89520 Heidenheim, Germany
voelter@acm.org
www.voelter.de
mobile: +49 171 86 01 869
Brief biography:
Markus Völter works as an independent consultant and coach for software
technology and engineering. He focuses on software architecture,
middleware as well as model-driven software development. Markus is the
author of several magazine articles, patterns and books on middleware and
model-driven software development. He is a regular speaker at conferences
world wide. Markus can be reached at voelter at acm dot org via or
www.voelter.de
Summary of teaching experience
I have given various tutorials and presentations at conferences worldwide
(with a focus in Germany); among them OOP, JAOO, JAX, OOPSLA and
ECOOP. A complete listing can be found at www.voelter.de/conferences. I
have also given lectures at the University of Applied Sciences, Ulm.
Typically the tutorials are quite well received and the feedback is accordingly
positive.
Primary contact: Markus Voelter

About the Tutorial
Title: Models and Aspects – Handling Cross-Cutting Concerns in Model-
Driven Software Development
Half-day or full-day: Half Day
Abstract
Aspect Oriented Software Development (AOSD) as well as Model-Driven
Software Development (MSDD) are both becoming more and more important
in modern software engineering. Both approaches attack important problems
of traditional software development. AOSD addresses the modularization
(and thus, reuse) of cross-cutting concerns (CCC). MDSD allows developers
to express structures and algorithms in a more problem-domain oriented

 2

language, and automates many of the tedious aspects of software
development.
But how do the two approaches relate? And how, if at all, can they be used
together? This tutorial looks at both of these questions. The first one – how
AOSD and MDSD relate – is discussed in the first part of the tutorial.
The second, and main part of the tutorial introduces six patterns of how
MDSD and AOSD can be used together. These include:

• Using Code Generation Templates to handle CCC
• Using AO techniques in template languages
• Using the platform to handle CCC
• Using suitable, pattern-based design to handle CCC
• Generating pointcuts to be woven with the system
• Using aspect orientation to structure models (AO modelling)

All the patterns are illustrated with practical real-world examples taken from
various model-driven software development projects.
Expected audience:
Software Developers and Architects
Level of the tutorial
intermediate
Prerequisites for participants
Basic Understanding of AO concepts as well as MDSD/MDA techniques
Synopsis
AOSD and MDSD are both becoming more and more important in the
software engineering world. Both approaches attract a big crowd of
followers. However, the interactions between the two groups are limited.
One can often find discussions whether MDSD is a special case of AOSD, or
vice versa. In real-world projects, you can find discussions about whether to
use MDSD or AOP.
So, this tuturial has the following goals:

• Show the common aspects of AOSD and MDSD, as well as their
differences in order to understand that both are complementary, not
opposites.

• Show proven ways how both can be used together; specifically show
the role AOSD can play in an MDSD/MDA environment

Note that the tutorial’s contents are not research! All of the patterns are mined
from actual, practical work in real world projects.
The outline and schedule of the tutorial is given in the following table. A
more elaborate discussion of the tutorial’s content can be found from page 5
of this submission, onward.
For even more details, see the tutorial slides at

www.voelter.de/data/presentations/ModelsAndAspects.zip

 3

Topic Duration
[min]

What is MDSD:
Brief Intro to the topic

10

What is AOP:
Brief intro to the topic

10

Commonalitities and Differences:
Outlines the conceptual and practical commonalities and
differences of the two approaches.

30

Forces:
Outlines the forces that need to be taken into account when
considering how to handle CCC in MDSD

10

Patterns:
This section contains the 6 core patterns; this is the “meat” of
the talk. The patterns are:
 Templates-Based AOP
 AO Templates
 AO Platforms
 Pattern-Based AOP
 Pointcut Generation
 AO Modelling

80

Pattern Relationships:
This topic looks at some of the relationships between the
patterns, i.e. if and how some of the patterns can be
combined

15

Introductions and Collaborations:
The tutorial looks primarily at before/after/around-kind of
things. However, AOP also addresses introductions as well
as collaborations. This section explains these two aspects.

15

Overview and Summary
Wraps up the tutorial

10

Previous venues at which this tutorial has been presented
JAX 2005, OOPSLA 2005, ECMDA-FA 2005

 4

At JAX I had roughly 60 participants. The rating averaged between very
good and good; I happen to still have the feedback, see below. For OOPSLA
and ECMDA-FA, I don’t have feedback yet since the tutorial has not yet been
given.
 (1=very good, 2=good, 3=ok, 4=acceptable, 5=bad)

Overall
1:44.83%
2:41.38%
3:13.79%
4:0.00%
5:0.00%

Speaker’s technical competence
1:75.86%
2:20.69%
3:0.00%
4:0.00%
5:3.45%

Was the topic covered well?
1:51.72%
2:44.83%
3:0.00%
4:0.00%
5:3.45%

Style of presentation
1:48.28%
2:34.48%
3:10.34%
4:3.45%
5: 3.45%

Required equipment for presentation
Overhead projector, flip charts, microphone
Required equipment for participants
None.
Material
You can download the slides for the JAX session from:

www.voelter.de/data/presentations/ModelsAndAspects.zip
The tutorial is based on a patterns paper that I wrote for EuroPLoP 2005. It
can be downloaded from:

www.voelter.de/data/pub/ModelsAndAspects.pdf

 5

SYNOPSIS CONTINUED

Introduction to AOP and MDSD
Before we actually look at the patterns of how to combine AOSD and MDSD
in practice, let us first define, what we understand by AOSD and MDSD,
respectively, and outline the commonalities as well as the differences of the
two approaches.

What is MDSD
Model-Driven Software Development is about making models first class
development artifacts as opposed to “just pictures”. Various aspects of a
system are not programmed manually; rather they are specified using a
suitable modelling language. These models are significantly more abstract
than the implementation code that would have to be developed manually
otherwise – the language for expressing these models is specific to the
domain for which the models are relevant. The modelling languages used to
describe such models are called domain-specific languages (DSL).
Models themselves are not useful in the final application, however. Rather,
models have to be translated into executable code for a specific platform.
Such a translation is implemented using model transformations. A model is
transformed into another, typically more detailed (and thus, less abstract)
model; a series of such transformations results in executable code, since the
last transformation is typically a model-to-code transformation. Because of
today’s somewhat limited tool support, many MDSD infrastructures use just
one generation step, directly from the models to code. Model transformation
tools using the latter approach are often referred to simply as model-driven
code generators.
As can be seen from this introduction, I am primarily looking the generative
approach of MDSD where models are translated into more concrete artefacts.
Alternatively, models could be interpreted at runtime. However, in industrial
practice, the interpretative approach is a niche; I will ignore it for the rest of
this paper.

What is AOSD
Aspect Orientation is about modularizing cross-cutting concerns (CCC) in
software systems. CCCs are features of a system, that cannot easily be
localized as a single module in a software system, because the abstractions
and modularization facilities provided by the respective programming
language (or system) do not allow such a modularization. Aspect Orientation
uses various approaches to allow the modularization (and thus, localization)
of such CCC. Aspect Oriented Programming (AOP) aims at introducing
programming language constructs to handle the modularization of CCC.
The above explanation of AOSD is what the mainstream considers AOSD to
be. There are, however, two additional "aspects" of AOSD which I don't want
to leave unmentioned: introductions and collaborations. Note that these two
aspects are not ass well known in industrial practice, and several AOSD tools

 6

don't even support them. This paper will not address these two aspects in
detail; at the end of a paper, there is a small section that provides some detail.

Commonalities of the two approaches
Separating Concerns. Both approaches can be used to separate concerns in a
software system. AOSD typically modularizes CCC by separating them into
aspects and later weaving them into the “normal” code (source or binary).
MDSD works by specifying system functionality in a more abstract, and
domain specific DSL and the transformations are used to add those concerns
that can be derived from the model’s content.
Technical Aspects. Both approaches are often used to factor out (and then
later, reintegrate) repetitive, often technical aspects. In both cases it is also
possible to factor out function (or domain-specific) aspects, although this is
not widely used – usually, because technical aspects are more obvious and
well-understood candidates.
Mechanics. Technically, both approaches work with queries and
transformations1 (see [FF04]). In AOSD you use pointcuts to select a number
of relevant points (join points) in the execution of a program (or in its code
structure) and “contribute” additional functionality called advice at these
points. In MDSD, a model transformation selects a subset (or pattern) of the
model, and transforms this subset into some other model.
Metamodels. Metamodels play an important role in both approaches. In
MDSD, the metamodel is clearly evident, as it forms the foundation of the
model that is being transformed. In model-2-model transformations, the
metamodel of the transformation target is also relevant, whereas model-2-
code transformations typically use textual templates to generate the target
code. In AOSD, the metamodel is not so readily obvious. However, the join
point model of the particular AOP system is also a metamodel. A specific
program (or program execution) is an instance of this metamodel by
exhibiting the occurrence (or instantiations) of the respective join points.
Selective Use. An important concept in both approaches is the fact that the
handling of CCC can be turned of or off for a specific system. In AOP, you
can decide at weaving time whether you want to have a certain aspect
included in the system. In MDSD, you can select the transformation you want
to use for a specific system – the chosen transformation may or may not
address a certain concern.

Differences
Dynamic vs. Static. MDSD works by transforming static models. That means,
MDSD transformations work before the system is run at generation time
(remember that we ignore the runtime interpretation of models in this paper),
MDSD has no relevance during the execution of the system – you cannot tell
that a system has been built by using MDSD by examining the finished
system. AOSD, on the other hand, contributes behaviour to points in the

 7

execution of a system. In many systems it is therefore possible, to consider
dynamic aspects in the definitions of pointcuts (such as the current call stack;
an example is AspectJ, [AJ]).
Invasiveness. MDSD needs to be used during the development of the
software system, since the (finished) system is obtained by transforming
models into code. It is not possible to benefit from MDSD after a system has
been developed. With AOP, however, it is (in most systems) possible to
introduce behaviour after the base system has been developed completely.
This non-invasiveness is a key advantage of AOP, since aspects can be added
to a system after the fact.
Abstraction Level. A fundamental concept of MDSD is that it allows
developers to express their intent with regard to the software system on a
higher abstraction level, more closely aligned with the problem domain. The
specifications are thus more appealing to domain specialist, compared to 3GL
code. A DSL serves exactly this purpose. AOSD, on the other side, is basically
bound to the abstraction level of the system for which it handles the CCC; in
AOP, this is the base programming language. While AOP can of course be
used to more concisely express relationships, collaborations or other concerns
of the underlying base program, there is no fundamental change to the level
of abstraction of the domain specific-ness of the constructs.
Non-Programming Language Artifacts. In MDSD, it is easily possible to also
generate non-programming language artefacts such as configuration files,
build scripts or documentation; this is because in model-2-code
transformations, any textual artefact can be created. AOP however works on
the running system (remember it is dynamic in nature), and as such it cannot
affect things that are not relevant at runtime (or said differently: things that
are not expressed in the programming language).

General Problem statement
As we have seen in the previous sections, there are a number of
commonalities between AOSD and MDSD. As a consequence, developers
often don’t know whether, or how they should relate AOSD and MDSD.
Should they use either AOSD or MDSD? Is AOSD or MDSD a more general
approach? Is MDSD a special case of AOSD? Or vice versa? Can/should both
approaches be used together, or would that just be “hype overkill”?
The following patterns are intended to answer some of these questions. As a
consequence of the authors’ experience and opinion, they are written from an
MDSD perspective, i.e. they solve the following problem in the context of
different forces:

How can cross-cutting concerns be handled efficiently in an
MDSD-based development environment?

An author with a stronger background in the AOSD domain might have
written the paper from the other perspective, addressing problems such as
“how can domain-specific notations used in AOSD”, or “how can AOSD
address non-programming language concerns”.

 8

General Forces
This section introduces a number of forces that influence the solution of the
patterns that follow. All the patterns described below are governed by the
forces listed in this section; however, they resolve those forces differently. As
a consequence, the various patterns presented below are applicably in
different contexts. All patterns include an evaluation of all of these forces in
their respective consequences section.
Applicability. We would like to be able to use the pattern’s solution to the
problem above in a many situations, environments and “technology
environments” as possible. The broader the applicability the better. The more
we rely on particular features of languages, architectures, technologies or
environments, the harder it is to use the solution in general.
Granularity. Handling CCC – as explained – is about specifying queries over
the execution of a program, and then doing something at (some of) these
selected points. Different approaches provide different levels of granularity,
at which such a query can be specified. For example, an approach might only
allow to advice calls to component operations, whereas other approaches
might allow interception of any method call in the system, thrown
exceptions, field access, etc.
Performance/Footprint. As usual in software development, nothing comes
for free; each proposed solution has a more or less dramatic impact on system
performance or footprint. In some environments, such as embedded systems,
this can become a problem that deserves developers’ attention.
Complexity. Another well-known problem in software technology is, that
while a certain approach solves a specific problem, it creates additional
complexity – aka problems – in another area. For example, the requirement to
use additional languages or tools can be such an issue. Another issue in this
respect can be the readability of the generated code, or the complexity of the
things you have to write/specify in order to use the pattern.
Flexibility. Different approaches to CCC handling have different
consequences with regards to (runtime) flexibility. Some approaches allow to
turn on/off the handling of a specific aspect at runtime or allow to change
the behaviour at a certain pointcut, while others don’t.

Pattern Overview
The following list provides a thumbnail of each pattern. The more extensive
discussions below provide a lot of additional detail.
Template-inherent AOP: You are using a template-based code generator
[MV03]. The templates contain code that iterates over the model as well as
textual output that should be created for a certain part of the model. The CCC
you need to handle can be well localized in the templates.
How to handle CCC? Use normal template-level if statements to address the
CCC. Depending on the if expression, a particular piece of code is either
added to the generated code or not.
AO Templates: In some cases, especially if you’re building related families of
code generators, using TEMPLATE-INHERENT AOP becomes too unwieldy,

 9

because all kinds of concerns are handled inside the templates. Typically, a
few architecture-specific hot spots inside the templates are affected by ifs that
handle the various different CCC. These hot spots become unmanageable
rather quickly.
How to handle CCC? Use an AO approach on template level. Rather that using
template-level if statements, use an “aspect template” that advices the
standard code generation templates with CCC-specific code. There are two
ways how a pointcut can be defined; implicit and explicit. The examples
show details of this difference.
AO Platforms: You are generating code that is intended to run on a technical
platform, usually some kind of communication or component/container
middleware. Such middleware typically already supports factoring out some
of the technical CCC that occur in the domain for which the middleware has
been developed. The middleware platform usually also provides some kind
of configuration facility (annotations (see [VSW02]), scripts, or descriptors) to
control how the middleware applies its CCC capabilities to the respective
piece of application code.
How to handle CCC? Use the CCC-handling capabilities of the middleware as
far as possible. Use the code generator to generate the annotations (see
[VSW02]) that control how the middleware handles the (manually written, or
generated) application code. The information needed to generate the
configuration is extracted from the model.
Pattern-Based AOP: In some scenarios the platform you are required to use
does not provide services that handle CCC, or it does not handle the CCC
you need to address. You still need to have the flexibility to change at
runtime the CCCs handled by the system. You maybe even don’t know the
CCCs you need to handle at generation time. However, the pointcuts are
accessible to the generation process.
How to handle CCC? Use a selection of the well-known patterns to generate an
infrastructure that allows for custom CCC-handlers to be plugged in.
Typically, this consists of generating proxies [GoF] for application
components that can hook-in interceptors [POSA2]. Use a factory to
instantiate the proxies if necessary.
Pointcut Generation: In some scenarios all the approaches described above
don’t work – performance is not sufficient, the platform does not support
your needs, or the granularity offered by the solution is too coarse. Is there
still hope?
How to handle CCC? Integrate an AOP language into the MDSD software
development infrastructure. Specifically, define a number of prebuilt advice
as part of the platform, and then generate the pointcut based on
specifications in the model. Use the AOP language’s standard weaver to
integrate the aspects with the generated code – the code generator can stay
untouched, it just has to be extended (not modified!) to generate the
necessary pointcuts.
AO Modelling: Up to now, we were mainly concerned with handling CCC in
the resulting application, which would be built using an MDSD approach.
The application is described using models, and model transformations and

 10

code generation is used to create the final application. In many scenarios,
however, it is necessary to separate concerns in the application models, too!
How to handle CCC? Create several models, one for each aspect. Each model
uses a DSL (i.e. concrete syntax and metamodel) suitable for the expression of
the particular aspect. The code generator reads all these models, weaves
them, and then generates the complete application from it. Join points are
defined on the metamodels, for example, by using a specific metaclass in
more than one aspect’s metamodel, thereby building up links between the
models.

The following illustration shows where in an MDSD infrastructure the
respective CCC-handling approach will take effect.

Model

Metamodel

instanceof

Generator
Application Code

Platform

runs on

 Templates

uses

AO PLATFORMS

POINTCUT GENERATION

TEMPLATE-INHERENT AOP

AO MODELLING

AO TEMPLATES

PATTERN-BASED AOP

locaitons that must be
"supportive"

primary location, where
CCC are handledKey:

Dependency (as in UML) Data Flow

Generated Non-Gen.

The following diagram provides a summary of the consequences in the form
of a chart. The more grey in the box, the better. The rationale for the length of
the bars should be obvious from the consequences sections of the respective
patterns.

 11

Applicability

TEMPLATE-INHERENT AOP

AO TEMPLATES

AO PLATFORM

PATTERN-BASED AOP

POINTCUT GENERATION

AO MODELLING

Granularity Performance

Complexity

TEMPLATE-INHERENT AOP

AO TEMPLATES

AO PLATFORM

PATTERN-BASED AOP

POINTCUT GENERATION

AO MODELLING

Flexibility

N/A

N/A

- + - + - +

- +- +

