Programming with Views and Collaborations in ObjectTeams/Java

Stephan Herrmann and Christine Hundt
Technische Universitat Berlin

{stephan,resix} @cs.tu-berlin.de

This document proposes a tutorial to be held at
AOSD 2006 in Bonn.

1 The Instructors

1.1 Dr.-Ing. Stephan Herrmann
(primary contaxct)

name: Dr.-Ing. Stephan Herrmann
position: Assistant Professor
affiliation/ Technische Universitat Berlin

Sekr. FR 5-6
Franklinstr. 28/29
10587 Berlin

postal address:

Germany
email: stephan@cs.tu-berlin.de
webpage: http://swt.cs.tu-berlin.de/“stephan
fone: +49 30 314 73174
fax: +49 30 314 73488

1.1.1 Selective Biography

Dr. Herrmann is an Assistant Professor at the Tech-
nische Universitdt Berlin. He received his PhD in
2002, the title of his thesis being ”Views and Con-
cerns and Interrelationships — Lessons Learned from
Developing the Multi—View Software Engineering En-
vironment PTROL”. Also in 2002 he made the first
international publication on the AOP language Ob-
jectTeams/Java. Since 2003 Dr. Herrmann leads
the joint research project TOPPrax (3 research in-
stitutes 2 companies), a publicly funded project for
the evaluation of aspect oriented software develop-
ment in practical application.

Dr. Herrmann was co-organizer of CD’02 (1st In-
ternational IFIP/ACM Working Conference on Com-
ponent Deployment), panelist for the Young Research
Workshop at GPCE’03, organizer of EIWAS’04 (Eu-
ropean Interactive Workshop on Aspects in Soft-
ware), and of VAR’05 (Views, Aspects and Roles,
workshop at ECOOP 2005). He will be an Orga-
nizing Co-Chair of ECOOP 2007. He also served
as a program committee member for the conferences
CD 2002, CD 2003, Net.ObjectDays 2005, and vari-
ous workshops (e.g., the AOSD workshops ACP4IS,
Early Aspects and DAW) and also as a reviewer for
several journals.

1.1.2 Teaching experience

Starting in 1997, Dr. Herrmann has continuously
taught various classes on software engineering with
special focus on object oriented software develop-
ment. One particular class has been developed by
him in 1999. Already in the first edition of this
class he gave an outlook to ongoing research in the
fields of AOP and SOP. Ever since he has continued
to closely link his research and teaching activities.
The language ObjectTeams/Java is part of this class
since 2003, meaning that one out of about four prac-
tical assignments has to be programmed in Object-
Teams/Java.



1.2 Dipl. Inform. Christine Hundt

name: Dipl. Inform. Christine Hundt
position: Research Associate
affiliation/ Technische Universitt Berlin

Sekr. FR 5-6
Franklinstr. 28/29
10587 Berlin

postal address:

Germany

email: resix@cs.tu-berlin.de

webpage: http://swt.cs.tu-berlin.de/staff/
ChristineHundt.html

fone: +49 30 314 73419

fax: 449 30 314 73488

1.2.1 Selective Biography

Dipl. Inform. Hundt finished here studies in early
2003. In here master’s work she developed the run-
time environment for ObjectTeams/Java, which she
is still maintaining. Since fall 2003 she works as a re-
search associate for the TOPPrax project (see above).
Within this project she participated in the design of
tutorials at our industrial partner, some lessons of
which she taught in person. She is also responsible
for extending the runtime environment from her mas-
ter’s work towards true runtime weaving. In this field
she is currently supervising three students for their
master’s work.

2 The Tutorial

Title
Programming with Views and Collaborations in
ObjectTeams/Java

Kind
Half-Day

Level
Intermediate.

2.1 Abstract

Aspect-oriented programming promises to signifi-
cantly improve modularity for a specific class of as-
pects, that cut across the system structure as defined
by classes and packages. The TOPPrax project sys-
tematically investigates the practical applicability of
new programming languages and assesses the benefits
for commercial software development.

This tutorial applies the second generation aspect
language ObjectTeams/Java. By the collaboration-
based approach of ObjectTeams/Java it is possible
to structure the design and even the implementation
according to the use-cases of an application. This
greatly improves the tracebility from requirements
down to code and significantly reduces the efforts
needed for software maintenance and evolution.

In this tutorial participants will learn how to de-
velop reusable collaboration modules in the vein of
collaboration-based design methods. The powerful
integration mechanisms of ObjectTeams/Java will be
used to demonstrate a-posteriori integration of mod-
ules cleanly separating functionality from integration.
This is the basis for fundamentally improved modu-
larity yielding easily adaptable architectures and fa-
cilitating future evolution.

Participants will also learn, how framework tech-
nology can be taken one step further by applying in-
heritance to a whole collaboration module. They will
furthermore learn how to use collaboration instances
to dynamically activate/deactivate aspects at run-
time, yielding a more dynamic structure of the appli-
cation including client-specific contexts and software
modes. Various examples demonstrate, how aspects
can be generalized to views, yielding an improved
module structure for a wide range of typical situa-
tions in software.

The tutorial has been successfully taught at our in-
dustrial partners and at Net.ObjectDays 2005. Prac-
tical examples will be shown using the comprehen-
sive, Eclipse based IDE for Object Teams/Java, which
is freely available at our web site. Participants are
expected to have good knowledge of object oriented
programming and Java in particular, and should be
interested in high-quality software designs.

For further information see www.0ObjectTeams.de.



3 Synopsis

In this tutorial participants will learn how to apply
the programming language ObjectTeams/Java in or-
der to address a variety of modularity issues which
cannot be solved in a satisfactory way with tradi-
tional object oriented languages. The language Ob-
jectTeams/Java (OT/J for short) emerged from the
Aspectual Components model and furthermore inte-
grates other advanced techniques like family poly-
morphism, confined objects and supports both aspect
oriented as well as collaboration based programming
with roles.

The relevance of this tutorial lies in the fact, that
OT/J is a modern programming language incorpo-
rating latest research results and at the same time
is intended for real world application. Thus the na-
ture of this language can only be truly experienced
by programming a number of different applications in
OT/J where each example sheds a light on a specific
property of the language.

The tutorial is intended for practitioners who want
to learn about current trends in programming tech-
nology as well as for teachers who like to include new
paradigms in their classes. Also researchers in this
field shall benefit from the tutorial as it will provide
an in-depth look into a technology that is more than a
particular solution to a particular problem, but gen-
eralizes over a set of concepts and technologies.

3.1 Overall structure

The tutorial will be given in two parts. Part one in-
troduces the programming language OT/J at a con-
ceptual level showing only small examples. Part two
will show patterns for good design with OT/J, thus
diving into an emerging method for applying OT/J
in practical software development. Both parts will be
interspersed with practically demos of running pro-
grams also showing the support provided by the tool
environment OTDT (the Eclipse-based Object Teams
Development Tooling).

3.2 Goals

The audience shall learn how OT/J supports im-
proved modularity in three dimensions.

”Teams” are introduced as a new kind of module
that combines desirable properties of classes, pack-
ages and components. Teams are like classes in
that they are instantiable modules defining fields and
methods, but they provide better support for large
scale designs. Teams are like packages in that they
are containers for classes, but there is much more
developers can do with teams than with packages,
due to the class-like properties of teams. Finally,
teams can be used to program light-weight compo-
nents, meaning that they allow some encapsulation
and a-posteriori integration known from components
without the need of an application server to host the
components.

Along the second dimension participants will learn
about the relationships which can be defined between
teams, in order to compose a system from subsystems
and modules. On this path team inheritance (with
overriding of virtual classes following the concept of
family polymorphism) will be shown as means for
programming-by-difference at a level of granularity
the goes beyond classes. It will be shown how team
inheritance takes the idea of object-oriented frame-
works to the next level. The second relationship to be
explained allows a team to adapt an existing applica-
tion. This adaptation relationship combines aspect-
oriented techniques with concepts from binding role
objects to their bases. The adaptation relationship
support much more flexible designs in terms of de-
coupling, options for multilplicities not supported by
inheritance and various forms of runtime dynamism.

Special focus of this tutorial lies finally on program-
ming with views. Here participants will learn how
they can use OT/J such that each part of the system
is developed using a most suitable ontology. Different
views within a system can be connected by the adap-
tation relationship mentioned above. Much in the
vein of the hyperspaces approach independently de-
veloped modules can be composed to a system. Two
main differences with respect to the hyperspaces ap-
proach are the lack of a language boundary (there is
no distinct composition language, everything is done



within the language proper) and a much more dy-
namic composition model (objects, teams, roles and
even their bindings all are dynamic instance based
techniques).

Apart from the core concepts participants shall
learn about patterns which have been identified
within existing programs written in OT/J. The gran-
ularity of these patterns ranges from small idioms
to medium scale architectures. By presenting these
patterns real world applicability of OT/J is demon-
strated and participants receive valuable instructions
for exploiting the new concepts towards improved de-
signs that are much better evolvable than their plain
object oriented counter-parts.

3.3 Syllabus

The tutorial is structured in two parts: core concepts
and patterns.

3.3.1 Core concepts

The first unit will introduce the fundamental con-
cepts of Object Teams, the technical realization by
compiler, runtime environment and IDE, and pro-
vide a glance into the language definition document
which has matured over the last years and by now is
a stable point of reference regarding OT/J. This unit
is framed by the demonstration of a teaser example
in which we show how an existing application with
GUI and database can a-posteriori be extended by
an aspect for input validation. The first showing of
the teaser will not show its realization which will be
explained at the end of this unit.

3.3.2 Patterns for good design with OT/J

Following the tradition of design patterns, this sec-
tion of the tutorial will always start with a general
problem and some seemingly conflicting forces that
restrict the design space. Only from that problem
statement specific best-practice solutions in OT/J
will be presented giving clear information on the im-
pact of that specific solution and degrees of freedom
by which variants of the pattern can be constructed.

Small idioms will be presented at the level of single
statements. Examples will be:

e "How can I achieve selective aspect activation
for specific registered base objects only?”

e "How do I implement a notification protocol?”

The second example demonstrates how former design
patterns (here the Observer pattern) will shrink to
mere idioms since the underlying concept is directly
supported by the programming language.

As an example for larger scale patterns the Con-
nector architecture will be taught, in which team in-
heritance and the adaptation relationship are used to
connect two independently developed modules. Sev-
eral medium level patterns will be shown, which help
to establish such a Connector architecture. Virtual
Association rebuilds the association structure of a
base module by another association structure within
a team without maintaining redundant links. Sev-
eral variants of Virtual Restructuring allow to define
the structure within a team as a re-mapped view of
a base module. By this re-mapping structures may
differ significantly and yet entities can be connected
in such a way that the program may handle them as
different views of the same conceptual entity.

Also, External Variants are presented as a way
of constructing variantes of a given module without
changing its code. External Variants solve a similar
problem as team inheritance but they are supperior
over team inheritance when multiple variants are to
be supported simultaneuosly, in unanticipated com-
binations and if variants shall be enabled or disabled
at runtime.

3.3.3 Summary

When wrapping up everything that was covered dur-
ing the tutorial, a medium sized design will be shown
which uses teams throughout. This final example
demonstrates the scalability of the presented con-
cepts. By scalability we mean the possibility to cre-
ate nested and layered structures without technical
restrictions. The audience will learn that it makes
hardly any difference whether an existing application
or sub-system only uses traditional object-oriented



techniques or whether it has already been build us-
ing OT/J. The same concepts can be applied to teams
and roles as well as to regular classes. In fact three
styles of creating larger structures will be shown,
which we call Nesting, Layering and Stacking.

3.3.4 Schedule

Each of the two parts will take 90 minutes with a
coffee break in-between.

3.4 Additional information
3.4.1 Targeted Audience

The tutorial mainly targets at developers with good
skills in object-oriented programming, who are well
aware of the difficulties of finding and maintain-
ing good designs for complex software. Participants
are not required to have a particular background in
AOSD, although some knowledge in this field will cer-
tainly help. The level of teaching is classified as in-
termediate, meaning that no prior knowledge about
Object Teams is required, but assuming good OO-
knowledge we will quickly advance into realistic prob-
lems and their solutions.

3.4.2 Previous teaching

After initial versions in classroom and at our in-
dustrial project parnter, this tutorial has in its pro-
posed shape successfully been taught at the confer-
ence Net.ObjectDays 2005 in Erfurt. In Erfurt it was
taught by the same instructors as for this proposed
tutorial.

Slides are included from the Erfurt tutorial, which
will be adapted and improved further for the next
edition of the tutorial.

3.4.3 Equipment

Required equipment includes a video projector and a
white board. A second video project would be great,
but is not mandatory.

3.4.4 Material for participants.

Participants will be encouraged to download the soft-
ware including examples from our web page in ad-
vance. We will also bring CDs for participants and
some handouts.

Hands-on exercises will not be part of the tutorial
proper, but we will encourage participants to make
first experiments with our tool and the language Ob-
jectTeams/Java during the coffee break and after the
tutorial. We will certainly provide help for those first
steps on-site.

References

[1] Object Teams home
http://www.Object Teams.org.

page.



