NET.OBJECTDAYS 2005

Aspect Oriented Programming
with Views and Collaborations

The TOPPrax approach

Stephan Herrmann

Christine Hundt
Technische Universitat Berlin

_ berln

- stephan@cs.tu-berlin.de
resix@cs.tu-berlin.de

e www.ObjectTeams.org

Language & Method

PART 1:

ObjectTeams/Java - The Language

PART 2:
Patterns of Good Design with OT/J

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #2

2

Design Patterns

Encapsulation

Principles

NODe Tutorial 19.09.2005

Motivation

Work in Teams

Evolution

Comprehension

Stephan Herrmann, Christine Hundt

Variants

Quality

#3

What can a programming language help?

* Define ,,module™
- Classes don't scale

- Packages are too weak
- Components may be too heavy

Language support for modules larger than classes?

* Define module relationships
- Use

- Adaptation
- Encapsulation

Relationships for modules larger than classes?

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #4

Optimal Module Structure?

* Objectively optimal?
* Subjectivity!
- is introduced by
* Stakeholder, concern, variant, task, use case, diagram, ...

- manifests as

* Views, viewpoints, roles, aspects, ...

Each view suggests a good modular break down

Support different structures simultaneously!

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #5

Our Answers

* Against crosscutting:
Aspect Oriented Programming

* Modules larger than classes:
Collaborations (,,Teams")

* Module relations for ,Teams"

°* Programming with views:
Roles

Aspect Oriented Programming
with Views and Collaborations

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #6

OT/J Facts

* Object Teams (Programming Model)
- Incorporates concepts from

* Aspect Oriented Programming
* Programming with Roles
* Collaborations

* ObjectTeams/Java (Programming Language)
- Fully compatible with Java (currently 1.4)
— Compiler and runtime environment

s OTDT (Development Environment)

- - Eclipse extension
- Extended convenience & new views

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #7

OT/J) Status

* The road we have come so far
- Work on tools started late 2001
- First class-room use summer 2003

- Continuous testing

* Two test-suites:
compiler: > 1100 cases (programs), 98% PASS

OTDT: > 1600 cases, 95% PASS ceirikartvam:

* Project TOPPrax: »

Universities < Fraunhofer < Companies

Bundesministenum
fiir Bikdung
inrul Farschung

- Consolidation

- Method | The TOPPrax Approach I
- Evaluation 2
www.topprax.de

#8

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt

Core Concepts

* 2 new kinds of modules:

- Team = Group of Roles

* New relationships:
- Team «adapts» base
- Team inheritance
Both relationships will be refined

e Integration:
Classes * Role-base

Methods * Forwarding * Overriding/Interception

Dynamism ° Activation/Deactivation ¢ Instantiation

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #9

Aspectoriented Programming
with Views and Collaborations

The TOPPrax approach

Teaser Example

Mini C R M

 Existing application
- ,Database" application with simple GUI
- Shipped in a jar-file

* Existing module for input validation
- A-posteriori integration of

* Validation (field types: Sstring, (phone) number, city-codes)
* Error-Dialog
- Select extension at launch time

Demo Time ...

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #11

Mini C R M

 Existing application
- ,Database" application with simple GUI
- Shipped in a jar-file

* Existing module for input validation
- A-posteriori integration of

* Validation (field types: Sstring, (phone) number, city-codes)
* Error-Dialog
- Select extension at launch time

© Adapt existing applications.
© No need for pre-planning.
© Extension is a module, too.

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #12

Aspectoriented Programming
with Views and Collaborations

The TOPPrax approach

Roles, Bases & Teams

Overview

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #14

e:Employee p:Person

getSalary() » getName() -
getPhoneNumber() getPhoneNumber()

Roles and Bases

c1:ClubMember

* Roles

provide a view to the base

add additional behavior

use part of the base functionality
multiple roles played by a base
instance level: multiple role objects
method dependencies

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt

\ c2:ClubMember

#15

Method Binding (1) .

 Callout Binding

- Forwarding (instance based inheritance)

- declarative: get Nane -> get Nane

- adaptable: name, signatur

:Emplovee : Person

getName () base.getName ()
> getName () <l »getName ()

lowering

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #16

Method Binding (2) _

Employee
callin String allNumbers() {
return base.allNumbers()

+“\n“+officeNumber:;

}

allNumbers <- replace getPhoneNumber;

Person
«playedBy» e

getPhoneNumber () 9

* replace callin:
- replace the originial base method (overriding)

- only for callin methods

* base call:

etPhoneNumber

- semantics: call of the original method, recommended

- syntax: base.rm()

* role method signature -> independent of binding

NODe Tutorial 19.09.2005

Stephan Herrmann, Christine Hundt

#17

Method Binding (2) .

* Callin Binding
- replace (overriding); before, after (additive)

- advice weaving

- declarative: p <- after o

- adaptable: name, signatur

o ()

— >

D() - rale.pU | oy
it

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #18

-
[

Role Lookup

payFee(p)y

- e . m1:ClubMember | m2:ClubMember
* Multiplicity

- Every base object can have an
arbitrary number of roles co:Company

* Lookup (Lifting)

- How to find the proper role?
- Automatism at runtime

team class Club {
class ClubMember playedBy Person { ... }
vold payFee (Person as ClubMember cm) {...}

J

cl.payFee (p) ;

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #19

* Modules larger than classes

- Contains roles (Container)
- Encapsulation (Facade)
- Interaction (Collaboration)
- Group identity (Mediator)

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #20

Team Activation

* When do callins have an effect?
- for every objects of the base class

- for every active instance of the team

* Semantics:
- switch on all callin bindings of a team

- for individual Team instances
- program mode

* Methods:

- Team.activate() and Team.deactivate()

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #21

% Guard predicates -

* Example:

team class Company {

class Employee playedBy Person@{

boolean onLeave;
callin String allNumbers() {...}
allNumbers <- replace getPhoneNumber;

)
* Granularity of guard predicates:

Location Affected role methods

role method binding |call of the role method via callin from the
corresponding base method

role method every call of the role method via callin
role all in this role
team any in every role of the team

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #22

Guard predicates -

—P control flow

t: MyTeam —> references
when (...) base when (...)
lbase
r : MyRole (b . MyBase
liftb to r 2l
Control of activation Control of instantiation
* role side * base side (pre-role instantiation)
e when (<boolean expression>) e base when (<boolean
e Access to role features via this SHREBEEN>)
and callout-bound base features | ®* Access to base features via
base.<base-feature>

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #23

Summary

* Roles played by Bases

* Methodbinding: Callout, Callin

* Navigation: Lifting, Lowering

* Teams

* Team activation, Guard predicates

And now...

Example: StopWatch

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #24

Aspectoriented Programming
with Views and Collaborations

The TOPPrax approach

Team Inheritance

What is a Team?

* Team = Container for Roles

- Is it a class? - Yes: class (team)
with inner classes (roles).
- Is it a package? - Yes: roles may be stored

in @ team directory ...

- Is it @a component? - Team encapsulates its roles,
flexible: black, white, gray box.

© better scalable than classes
© stronger semantics than packages
© strong, flexible encapsulation

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #26

% Team-Classes

* Team Inheritance
- ,import": Use features & role classes from the super-team
- ,overriding": Adapt mismatching methods & role classes

* Java cannot override inner classes!
* Overriding of roles classes in Object Teams

» Vvirtual classes
» ,implicit inheritance™

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #27

Calendar start, today;
boolean isValid() { ... }

}
}

team class UniBT extends Busin

{
s Application

protected clas
* UBT.A implicitly inherits from BT.A
* Relation is defined by name equality ,A".

 Implicit inheritance supports
- import
- overriding

}

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #28

team class BusinessTrip {
protected class Event { ... }
protected class Application {
Event getEvent() { ... }

}
}

team class UniBT extends BusinessTrip {
protected class Event ({
boolean havePaper;

}
boolean checkGrant (Application appl) {

Event e = appl.getEvent();
return e.havePaper;

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #29

Multi-Class Refinement - -

team class BusinessTrip {
protected class Event { ... }
protected class Application {

Event getEvent() { ... }

) ; ¥Type Event is bound dynamically

team class UniBT extends BusinessTrip {
protected class Event ({
boolean havePaper;

—__|Overrides class
BusinesTrip.Event

}
boolean checkGrant (Application appl) {

Event e = appl.getEvent()|;
.havePéper;

has type ,,UniBT.Event"

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #30

team class BusinessTrip {
protected class Event { ... }
protected class Application {
Event getEvent() { ... }

}
}

team class UniBT extends BusinessTrip {
protected class Event ({
boolean havePaper;

}
boolean checkGrant (Application appl) {

Event e = appl.getEvent();
return e.havePaper;

} © Implicit overriding of associations I

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #31

Frameworks

e Team =~ Framework

- Partial implementation (compound)

- Hotspots

* (abstract) methods
* (abstract) role classes

 F. instantiation = T. inheritance
- Adaptations at hotspots

* define/override methods
* define/override role classes

* Role instantiation?
- Factories?

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #32

abstract team class BT
1

abstract class A {}
A appl = new A();

}

team class UBT extends BT

{
class A {...}

}

abstract class C
{
abstract void hook();
volid template(){
hook () ;

}
}

class C2 extends C {
void hook() {...}

}

Template & Hook for Classes

- Team BT is template = incomplete implementation

- Rolle & is hook

NODe Tutorial 19.09.2005

= opening filled in UBT

Stephan Herrmann, Christine Hundt

Implicit Inheritance

* Overriding role implicitly inherits
- Inheritance relation by name equality

- Import features of super-role
- Override features of super-role

* Difference to regular inheritance
- Even constructors are inherited

- » making covariance safe: no sub-type relation

* Both kinds can be combined

TA
7N A

TB E«implicit»

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #34

Summary Part 1

* Concepts presented

- roles played by bases playedBy
- method bindings callout/callin
- navigation role < base lowering/lifting

- role creation

* implicitly lifting

e explicitly even abstract roles
- teams

* class & package

* activation explicit + guards

* inheritance role overriding + implicit inheritance

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #35

Outline Part 2

* Patterns of good design with OT/J

Patterns found in existing applications:

W

- Connector

- Notification

- Virtual Association

- Virtual Restructuring
- Variant

Scalable Designs:
- Nesting, stacking and layering of Teams.

NODe Tutorial 19.09.2005 Stephan Herrmann, Christine Hundt #36

