
Clustering the Java Virtual Machine using
Aspect-Oriented Programming

Jonas Bonér, Terracotta Inc.

Eugene Kuleshov, Terracotta Inc.

ABSTRACT
Clustering (and caching) is a crosscutting infrastructure service
that has historically been implemented with API-based solutions.
As a result, it has suffered from the same code scattering and
tangling problems as other crosscutting concerns.

In this paper we will show how Aspect-Oriented Programming
(AOP) can help to modularize clustering and turn it into a runtime
infrastructure Quality of Service. We will show how AOP can be
used to plug in directly into the Java Memory Model, which
allows us to maintain the key Java semantics of pass-by-
reference, garbage collection and thread coordination across the
cluster, e.g. essentially cluster the Java Virtual Machine
underneath the user application instead of the user application
directly

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications; D.2.10
[Software Engineering] Design; D.3.2 [Programming
Languages] Languages

General Terms
Reliability, Languages, Software Engineering, Separation of
Concerns

Keywords
Aspect-Oriented Programming, Clustering, Java, JVM,
Distributed Computing

1. INTRODUCTION
Clustering is becoming increasingly important in the world of
enterprise application development. Developers continuously need
to address questions like: How do I enhance scalability by scaling
the application beyond a single node? How do I guarantee high-
availability, eliminate single points of failure, and make sure that
the SLAs (Service Level Agreement) defined by the customer are
met? These are all questions that, in one way or the other, imply
clustering. Predictable capacity and high availability are
operational characteristics that an application in production must
exhibit in order to support a sustainable business. Some
companies require up to 99.9999 percent uptime in their
application; others do not, but all applications need to remain
operational for as long as the SLAs defines.
What do we mean when we say clustering and how does it differ
from caching? The definition of clustering that we use in this
paper is: sharing the application state across multiple Java Virtual
Machines (JVM's), while caching can be defined as: bring the
application state closer to its execution context. In this sense,
caching is a subset of clustering.

One common approach to address scalability issues has been by
“scale-up”, meaning add more power in terms of CPU and
memory to one single machine. But today most data centers are
running cheap commodity hardware and this fact, paired with
more demand for high availability and failover, instead implies an
architecture that allows you to “scale-out”, e.g. adding more
power in terms of more machines - which implies using some sort
of clustering technology.
The problem is that clustering has been a hard problem to solve.
In the context of enterprise applications, this in particular means
ensuring high-availability and fail-over of the user state in a
performant and reliable fashion. In case of a node failure (the
application server or JVM crashes), enabling the use of “sticky
session” in the load balancer (which means that the load balancer
is always redirecting requests from a particular user session to the
same node), won’t help much. But an efficient way of migrating
user state from one node to another in a seamless fashion is
needed.
The minimal set of requirements that we think an enterprise-class
clustering solution should meet are:

• scalability
• high-availability
• fail-over
• performance
• minimal impact on existing code
• simple deployment and configuration
• runtime visibility (monitoring)

Clustering is a crosscutting infrastructure service that has
historically been implemented with API-based solutions. As a
result it has suffered from the same code scattering and tangling
problems as other cross-cutting concerns.
As we will see, using Aspect-Oriented Programming (AOP) [1]
can help to modularize clustering so effectively that user code can
become oblivious to clustering. This can be done by using AOP to
plug in to the Java Memory Model (JMM) [2] and maintain its
semantics along with the semantics defined in the Java Language
Specification (JLS) [3] across a distributed environment.
We will also show that using AOP not only helps with
modularization and obliviousness, but also turns out to be a key
enabler in achieving high performance and scalability.
At Terracotta [7], we have a custom load-time weaving
framework, built on AspectWerkz [4] and custom byte code
instrumentation based on ASM [5]. This framework is used to
capture and modify target application events that are of interest in
terms of clustering or distributed computing, e.g. join points and
advice, as well to do necessary enhancements (such as adding

interfaces, methods and fields) to the target application, e.g. Inter-
Type Declarations (ITDs).
The foundation of this framework was built over two years ago
and unfortunately there is still no common AOP framework that
can provide the same features set, which is one of the reasons why
such a hybrid approach is being used.
In this paper we are going to focus on issues related to the
application transformations required to make the clustering cross-
cutting concern orthogonal to the target application. For the
purpose of this paper we are going to illustrate the concepts using
AspectJ [6], this in order to base the discussion on a language that
is commonly understood, leaving deployment issues out of scope
of this paper. As you will see later, most of the original Terracotta
aspects can be reimplemented directly in AspectJ aspects, but, as
we will see, there are some ITD transformations that we cannot do
in the current version of AspectJ.
This paper is focusing on the AOP part of the implementation.
We will explain the implementation and semantics of each
pointcut and advice in detail, but since a discussion on how other
subsystems, like the garbage collector, instance manager, lock
manager, transaction manager or the network transport protocol
are out of scope for this paper, we will delegate to the
ClusterManager abstraction when calls to these subsystems are
being made. However, we will explain the semantics and the pre-
and post conditions for these API calls.

2. SAMPLE APPLICATION
We have a very simple sample application that will drive the
discussion. This sample application will function as the target
application that we want to cluster, e.g. weave in our clustering
aspect into. It is a simple counter abstraction (sort of reversed
CountDownLatch [14]) with two methods; increment() -- which
increments a counter value, and waitFor() -- which waits for the
counter to reach a specific value. Its sole purpose is to implement
the characteristics that are interesting from a clustering standpoint;
state (that is changing during the lifetime of the application) and
thread coordination (using wait/notify and synchronized blocks).

 public class Counter {

 public final static Counter soleInstance = new Counter();

 private int value = 0;

 public void increment() {
 synchronized(this) {

 this.value++;
 notifyAll();
 }

 }

 public void waitFor(int expected) {

 synchronized(this) {
 while(this.value < expected) {
 try {

 wait();
 } catch(InterruptedException ex) {

 }
 }

 }
 }
 }

3. HUB AND SPOKE VS PEER TO
PEER
Terracotta is using an architecture known as hub-and-spoke,
which means that it has one central L2 server and N L1 clients
(the L1 client is running inside the target JVM). This might seem
strange, since most clustering solutions on the market today are
using peer-to-peer, but as we will see, hub-and-spoke has some
advantages and plays a key role in some of the optimizations that
we will talk about later. We will refer to this central server as the
Coordinator, even though coordination is only half of its job.
First it serves as the coordinator (“the traffic cop”) in the cluster.
It uses the lock manager to keep track of things like; which thread
in which node is holding which lock, which nodes are referencing
which part of the shared state, which objects have not been used
for a specific time period and can be paged out, etc. Keeping all
this knowledge in one single place is very valuable and allows for
very interesting optimizations.
Second, it serves as a dedicated state database. This means that it
stores all the shared state in the cluster. The state server does not
know anything about Java, but only stores data and IDs. The
Coordinator itself is clusterable through a SAN-based [16]
failover mechanism. This means that it is possible to scale-out the
Coordinator (L2 server) in the same fashion as most peer-to-peer
solutions but with the advantage of keeping the L2 separate from
the L1 (see below for a discussion on some of the problems with
not separating them). This is the way that the Internet scales.
One of the problems with using peer-to-peer is that you need to
replicate everything everywhere, basically do multicast. For
obvious reasons, this cannot scale very well.
However, it is important to understand that this is only true for
pure peer-to-peer solutions, and that most clustering solutions on
the market today that advertise themselves as peer-to-peer are
actually using some sort of hybrid mechanism between hub-and-
spoke and peer-to-peer in which they bundle the L2 in the L1.
Unfortunately, this hybrid solution has problems such as relying
on the notion of an object home, with potential secondary homes.
The problem with this architecture is that it's really hard to know
on which set of nodes the entire representation of an object lives
and it is therefore easy to accidentally wipe out an object entirely.

4. STATE SHARING
We have split up the problem of clustering into two different
parts; state sharing and thread coordination. In reality they are
too tightly integrated to split up, but for simplicity and clarity we
will try to discuss each one in isolation.
First we will talk about state sharing, meaning how to find out
which parts of the Java heap has changed, how to track that
change set in a Unit of Work, how to replicate the Unit of Work to
the parts of the distributed environment that need it - when they
need it, and finally how to merge the change set into the Java
heap on these other nodes.
Second, we will talk about thread coordination, meaning how to
maintain the semantics of the JMM in order to ensure correctness

and coherence of the data that is shared, throughout the distributed
environment.
Traditional clustering and distributed computing platforms in Java
have been API-based and have in most cases used Java
serialization [15] to transfer data between different JVMs. As we
discussed earlier, this introduces problems like code scattering
and code tangling. But it also introduces two other, perhaps more
subtle and less commonly understood problems. Both of these
problems are inherited from the use of Java serialization. In the
following sections we will discuss these problems as well as what
we have done at Terracotta to address them.

4.1 Problems with Java Serialization
4.1.1 Breaks Java’s pass-by-reference semantics
The first problem with Java serialization is that it creates deep
clones (copies) of the object graph structure. At first glance, this
might not sound like much of a problem but it actually turns out to
have a serious effect on application architecture and design.
The Java language, as defined by the JLS, has pass-by-reference
semantics. But the problem is that when you are using Java
serialization you cannot rely on these natural Java semantics
anymore, since Java serialization breaks pass-by-reference
semantics. In other words; object identity is broken. The
implications that this has on the design and architecture of an
application should not be underestimated.
If object identity is broken, and one cannot rely on pass-by-
reference semantics any longer then developers have to maintain
the relational references between objects themselves. This usually
forces the developer to layer some kind of primary-key/foreign-
key mechanism onto their object model, e.g. break down and
maintain the object references using relational maps and almost
start thinking like relational database designers.
4.1.2 Can have performance implications
The second problem with API and Java serialization based
replication is that it is too coarse-grained. There is no way of
detecting which parts of the Java heap that have actually changed,
but the memory allocated for the whole object graph, that is
referenced from the “stale” instance, needs to be treated as “stale”
and therefore it has to be replicated. On top of this, Java
serialization can only work on the Java object structure level
which means that it will not only convert the actual data, but also
all information about the class structure etc., into a network
transportable format. All these things will force unnecessary data
to be sent over the wire, as well as marshaled and unmarshalled,
something that can have performance and latency implications.
Another problem with not being able to detect actual changes is
that it forces the use of a coarse-grained locking mechanism when
marshalling and unmarshalling on modifications. A lock needs to
be taken on the top-level object regardless of the scope of change,
something that can also cause premature lock contention. These
are things that can also have performance implications.

4.2 Roots
For practical reasons, it is impossible to cluster the whole Java
heap (replicate every single change) and at the same time achieve
acceptable performance. This might sound like a serious
limitation, but it actually turns out to be seldom, if ever, a real
problem, that in real world scenarios. Most applications clearly
distinguish between transient data, local data and data that need to
remain coherent across the cluster.

In order to identify these parts of the Java heap, Terracotta
introduces a new abstraction called Root. A Root can be either a
static or a member variable in a Java class and Root represents the
top of an arbitrarily large object graph, which state is ensured to
be made consistent across all nodes in the cluster. All instances
referenced from that graph, directly or indirectly, will become
clustered.
In our sample application we could pick the static field holding
the sole instance of the Counter in the Counter class to be the
Root, which will make sure that the state for the soleInstance field
(and its references) is consistent throughout the whole cluster. In
order to do that, we need some additional metadata for this field.
The Terracotta framework is using its own XML-based [17]
descriptors to configure the required metadata, but to keep things
simple, we will in our illustration make use of a field level
annotation [8] called @Root:

 @Root
 public final static Counter soleInstance = new Counter();

The @Root annotation can be also injected using an ITD like this:

 declare @field : * Counter.soleInstance : @Root;

We can now define the AspectJ advice for maintaining the
semantics of a Root field like this:

 Object around() : get(@Root * *.*) {
 String name = thisJoinPointStaticPart.getSignature().toLongString();
 return ClusterManager.getOrCreateRoot(name);
 }

As you can see, the pointcut for this advice picks out all join
points where a field annotated with the annotation @Root is
accessed. When the join point is executed, the advice invokes a
method in the ClusterManager that short circuits the real field
access and based on the signature of the field returns the clustered
object instance instead. This ensures that the ClusterManager can
maintain the current semantics for the Root field; if the field has
never been accessed before then create and return the clustered
instance, else always return the same clustered instance.

4.3 Configuration
In the previous section we introduced the @Root annotation as a
configuration element. Before we continue the discussion, we
need to introduce one additional configuration element; the
@Clustered annotation. This annotation identifies classes that
access, modify, or can potentially join, the distributed object
graph that is referenced from a Root field. It should be used to not
only identify classes whose state (i.e. instance fields) should be
distributed, but also on classes that can access distributed objects
and needs to preserve the semantics of the JMM across the cluster,
including synchronization and wait/notify calls. Here we apply the
class level @Clustered annotation to the Counter class.

 @Clustered
 public class Counter {
 @Root
 public final static Counter soleInstance = new Counter();

 ...
 }

All the pointcuts are completely generalized and rely only on
these annotations. As mentioned earlier, both annotations can be
used either explicitly in the source code or they can be injected
using an ITD. AspectJ allows the annotation ITDs to be defined
using patterns, which is something that simplifies this style of
configuration.
Note: our use of Java annotations will require using Java 1.5 or
above, however this is not a limitation of the original Terracotta
runtime, which is using XML descriptors

4.4 Maintaining Java’s pass-by-reference
semantics
Now, when we have identified the Root of the distributed object
graph and all the classes that can access, modify or potentially
join the distributed object graph we have all mechanisms in place
in order to detect when a new instance is attached to a distributed
object graph. This allows us to maintain a cluster-wide identity for
each shared instance.
For convenience, we will define isClustered() pointcut that will be
used in several other advice:

 pointcut isClustered() : @within(Clustered);

Now, we need to define a pointcut that picks out all join points
where a field on an object that is already attached to the
distributed object graph, is modified (starting from the root).
When any of these join points are executed, we need to dispatch
to an advice that notifies the ClusterManager about the field
change, passing in the object instance, field name and the new
value. The ClusterManager would delegate to the object manager
subsystem to propagate these changes to other nodes.
If the field is not of type literal (a Terracotta term which means
that it is a primitive or in some cases an immutable object, see
below), but a regular object instance then the ClusterManager
records that this object has joined the object graph for this specific
Root. However, if it is a literal then the ClusterManager will
record the data (the bytes that have changed in the Java heap) for
this literal, along with the name of the field and the id for its
enclosing object instance, in the Unit of Work for this specific
critical section (synchronized block).
If it is a newly created object that has not yet been distributed, the
object manager would have to send the bytes allocated for the
entire object, along with its unique id, to the Coordinator.
In some cases, immutable objects (such as java.lang.String) can
be treated as primitive types. Terracotta is using the term literal
for those special cases. However those implementation details are
out of the scope of this paper.
Similarly, on field access, we need to make sure that the field
always holds the most recent, up-to-date, value. That excludes the
Root fields handled by the advice discussed in the previous
section.

 pointcut isClusteredTarget(Transparent o) :
 isClustered() &&
 @target(Clustered) &&
 target(o);

 pointcut setClusteredField(Object o) :
 isClusteredTarget(o) &&
 set(!@Root * *.*);

 before(Object o, Object value) :
 setClusteredField(o) && args(value) {
 String name = thisJoinPointStaticPart
 .getSignature().toLongString();
 ClusterManager.fieldChange(o, name, value);
 }

It won’t be efficient enough to do reconciliation on every field
access but all we need to do is to update all changed fields at
once, in one atomic operation. In order to enable that, we define a
TransparentAccess interface that we will introduce (using an ITD)
on every class annotated with the @Clustered annotation. This
interface has two methods - getFields() and setFields() which
retrieves or writes a set of field values in one single atomic
operation:

 declare parents :
 (@Clustered *) implements TransparentAccess;

 public void TransparentAccess.setFields(Map values) {
 ClusterManager.setFields(this, values);
 }

 public Map TransparentAccess.getFields() {
 return ClusterManager.getFields(this);
 }

The implementation above is good for illustration purposes and is
the best you can achieve with AspectJ, but it is obviously not the
most performant one. To solve this in Terracotta we have used a
special type of ITD, which generates a class specific, optimized
implementation of the getFields() and setFields() methods that
does not use Java Reflection [18] to access or modify instance
fields. This can not be efficiently done in AspectJ because it needs
to know actual field names for the target class. Method setFields()
takes java.util.Map of field values and sets them to the
corresponding fields. Method getFields() does the opposite and
returns a java.util.Map with the current values for the clustered
fields.
Now we can write a generic pointcut and advice for field access
which retrieves clustered state:

 pointcut getClusteredField(TransparentAccess o):
 isClusteredTarget(o) &&
 get(!@Root * *.*);

 before(TransparentAccess o) :
 getClusteredField(o) {
 String name = thisJoinPointStaticPart.getSignature().toLongString();
 Map fields = ClusterManager.reconcile(o,name);
 o.setFields(fields);
 }

This gives us both very fine-grained control of the object state
changes, as well the ability to batch change deltas before sending
them to the remote nodes. This ensures both good performance
(on a single node) as well as allowing the Coordinator to optimize
the communication between different nodes in the cluster. For

instance, it can bring data locally, or collect usage statistics and
predict ahead of time what data will be needed locally.
In our Counter sample class, this would mean that the
ClusterManager will detect that the only change that has occurred
in the object graph that is reachable from the Counter.soleInstance
static field (that we marked as being Root) is the Counter.value
member field, and will make sure that only this integer of four
bytes is sent to the Coordinator.

4.5 Object identity
The different advice that we have discussed in the previous
section relies heavily on some sort of cluster-wide object identity.
For example, the fieldChange() method in the ClusterManager
needs to have a way to uniquely identify the modified instances
when committing the changes made to the local heap, to the
Coordinator. I.e., it needs to be able to map a specific change set
to a specific object identity. The same object identity is then used
by the Coordinator when the change set is replicated to the
different nodes in the cluster, as well as in the reconcile() method
in the ClusterManager when this data in the change set is merged
back into the local heap on the specific nodes. This task is
challenging, because object identity should be reproducible on any
node in the cluster and should guarantee object uniqueness for the
entire cluster. These are challenges that we are facing when
implementing the object manager and garbage collection
subsystems, but since their implementations are out of scope of
this paper, we will only discuss them briefly.

4.5.1 Class loader identity
Java’s flexible and in some sense complex class loading
architecture makes it hard to identify the ClassLoader that has
loaded a specific instance. For example, if you have the same
class instantiated in two different class loaders then you will get
two distinct instances. We need to be able to uniquely identify
each one of those. In some cases it is possible to use information
from the application container. For example, each Java Enterprise
Edition (JEE) [8] bundle (WAR or EAR module) has its own class
loader associated with the application name. But solving the
problem generically is harder.

4.5.2 Managed components
JEE application servers and Dependency Injection (DI) [10]
containers such as The Spring Framework [11] introduce another
class of objects, a.k.a. components, in which the instances are not
created by the user, but their creation is delegated to a container
which takes care of injecting all of its necessary dependencies.
Maintaining a cluster-wide identity for these components requires
special support, in order for the semantics of the component’s life
cycle to be preserved.

4.6 Virtual heap
As we have seen in previous sections, the ClusterManager has
full control over the state in each clustered object instance,
something that allows it to enrich the regular semantics of Java
memory management.
It can for example bookkeep memory access, e.g. keep a record of
how often a specific object instance, including all its references,
has been accessed. This allows it to detect if a specific sub-tree of
a distributed object graph has not been used for a certain amount
of time and it can then decide to page out all the memory
allocated on the Java heap for this specific sub-graph, to the
Coordinator (L2 state server). This is done by setting all the fields

in the top level object in the sub-graph to null using the
TransparentAccess.setFields(Map) ITD.
If some object later is trying to access a paged-out sub-graph
(with a top level field set to null) then this access operation will be
guarded by the ClusterManager which will make sure that all the
necessary state is first retrieved from the Coordinator and paged
back into the local Java heap before it hands out a reference to the
sub-graph to be used.
This feature allows an application to work with a virtual heap that
is much larger (sometimes orders of magnitude larger) than the
actual physical heap that JVM provides, but still have acceptable
performance.

4.6.1 Distributed garbage collection
Heap virtualization also affects the garbage collection. To allow
garbage collection of the local objects, Terracotta is using
java.lang.ref.WeakReferences and monitors when referenced
objects are collected using a java.lang.ref.ReferenceQueue. This
way the Coordinator always knows if nodes have local references
even for distributed objects that are detached from the distributed
object graph.
To collect the objects eligible for garbage collection from the
virtual heap, the Coordinator runs a special process that gets the
set of objects currently in the shared graph. Then it removes
objects that are held by all nodes and then traverses the distributed
object graph from the root, removing all reachable objects. After
that, anything that left in the set can be deleted from the virtual
heap.

5. THREAD COORDINATION
The JMM determines what values can be read at every point in the
program. In multi-threaded environments it also allows complete
prediction of the values that are seen by each thread. We already
saw how object reads and writes can be made transparent on the
cluster. However, to preserve the semantics of the JMM, we also
need to support locking for both synchronized statements and
synchronized methods.

5.1 Locking and synchronization
In AspectJ, join points matching critical sections, in Java called
synchronized blocks, can be picked out by the lock and unlock
Pointcut Designators (PCD), which match the
MONITOR_ENTER and the MONITOR_EXIT bytecode
instructions, respectively.
Note: this is currently an experimental feature which can be
enabled using the -Xjoinpoints:synchronization AspectJ compiler
flag.
Here are the two pointcuts that pick out all the critical sections
(entry and exit) where a clusterable instance is being locked on
(and most likely a shared instance is being modified):

 private pointcut clusteredMonitorEnter(Object o):
 isClustered() &&
 lock() &&
 @args(Clustered) &&
 args(o);

 private pointcut clusteredMonitorExit(Object o) :
 isClustered() &&
 unlock() &&
 @args(Clustered) &&
 args(o);

Then we can write a before and after advice that will delegate to
the monitorEnter() and monitorExit() methods in the
ClusterManager:

 before(Object o) : clusteredMonitorEnter(o) {
 ClusterManager.monitorEnter(o);
 }

 after(Object o) : clusteredMonitorExit(o) {
 ClusterManager.monitorExit(o);
 }

These calls will be delegated to the lock manager in the
Coordinator, which will use the object identity of the pointcut
argument instance to acquire (or release) a distributed cluster-
wide lock on the instance.
In our Counter sample class, this would mean capturing the
execution of the MONITOR_ENTER and MONITOR_EXIT join
points, e.g. the synchronized blocks that are guarding ‘this’, in the
increment() and waitFor(int) methods.

5.2 Locking and Unit of Work
It is worth mentioning that locking allows implementing certain
optimizations. For example, the lock manager can be coordinated
with the object manager and can use synchronization boundaries
to create a Unit of Work. Then the object manager can batch all
the field modifications that happen within the specific Unit of
Work and propagate them to the other nodes in the cluster when
the Unit of Work is completed upon distributed and local lock
release.
We can define several lock types with different semantics:

• Write lock has the same semantics as regular Java
synchronization and allows at most one single thread to
acquire a lock.

• Read lock reconciles object changes but does not require
blocking of the execution, e.g. multiple threads can
acquire the same lock.

• Concurrent lock is a looser form of write lock. Multiple
threads can be inside a concurrent lock at the same time,
and can all write to the data, but, only the changes made
by the last thread to exit the block actually take effect.
This is nondeterministic and thus is generally used only
with considerable caution.

Locks can be configured using the same configuration
mechanisms as Roots and Clustered objects.
The lock manager could apply several optimizations, such as
escape analysis and reentrant locking. In a distributed system,
greedy locking can give significant performance advantages. In
this case, the lock is owned by the particular node until it is
requested by another node and then it is transferred to that node.
This allows us to reduce the number of calls to the lock manager.

5.3 Wait/Notify
Apart from locking (synchronized), the two most important
primitives that are missing from the JMM, are wait (waiting for a
lock to be released) and notify/notifyAll (wake up other threads to
contend for a lock that was being held). The semantics of these
primitives also need to be maintained across the cluster.

In order to make this transparent for the target application we can
define the following advice that will use the ClusterManager to
delegate to the lock manager that is implementing the necessary
execution semantics.

 void around(Object o) :
 isClusteredTarget(o) &&
 call(void Object.wait()) {
 ClusterManager.objectWait(o);
 }

 void around(Object o, long t) :
 isClusteredTarget(o) &&
 call(void Object.wait(long)) &&
 args(t) {
 ClusterManager.objectWait(o, t);
 }

 void around(Object o, long t, int n) :
 isClusteredTarget(o) &&
 call(void Object.wait(long,int)) &&
 args(t,n) {
 ClusterManager.objectWait(o, t, n);
 }

 void around(Object o) :
 isClusteredTarget(o) &&
 call(void Object.notify()) {
 ClusterManager.objectNotify(o);
 }

 void around(Object o) :
 isClusteredTarget(o) &&
 call(void Object.notifyAll()) {
 ClusterManager.objectNotifyAll(o);
 }

5.4 Distributed Method Invocations
In some cases, a distributed system does not have state to
distribute, but may be required to distribute actions. One of the
most common scenarios is when listeners (for example
ActionListener in Java Swing [12]) or observers (for example in
the Observer Pattern [13]) need to be notified when some event
has been triggered. Because those events could happen anywhere
in the cluster, listeners (or observers) need to be notified on every
node.
For these scenarios, Terracotta has introduced a special
abstraction called Distributed Method Invocation (DMI). This
simply means that if method, that is marked for DMI, is called on
one cluster node, all other cluster nodes will also invoke the exact
same method invocation (with the exact same parameters).
Here we can mark such methods with special @DMI annotation.
We can then write a pointcut that picks out all join points where
one of these methods is executed and then finally bind an after
advice, which delegates the invocation call to the object manager,
to this pointcut.

 pointcut distributedMethodInvocation(Object o) :
 isClustered() &&
 execution(@DMI * *.*(..)) &&
 this(o);

 after(Object o) :
 distributedMethodInvocation(o) {
 String name = thisJoinPointStaticPart.getSignature().toLongString();
 ClusterManager.distributedMethodInvocation(

 o, name, thisJoinPoint.getArgs());
 }

This could be further extended to allow different semantics. For
example, the default semantics for a DMI is that they are invoked
asynchronously, but it could also be useful to provide a
synchronous implementation, or to maintain a Unit of Work and
wait while all invocations are propagated before releasing the
lock.
It is important to understand that DMI has nothing to do with
managing correctness and coherence of state in the cluster, but
only to trigger a cluster-wide action (behavior).

6. DISCUSSION
So far we have only used standard AspectJ features, which have
worked nicely for our simple Counter example. However, there
are several limitations that prevent us from using a plain AspectJ-
based solution for real-world applications. We already mentioned
the problems with the TransparentAccess ITD, that required us to
generate custom code for each advised class, but at least we were
able to work around it with reflection-based code.
Other critical AspectJ limitations include restrictions on
instrumenting java.* and javax.* classes and the absence of
pointcuts for array creation and for access to the array elements.
For the latter issue, there is experimental support for array
creation (which can be enabled with -
Xjoinpoints:arrayconstruction compiler flag), but there is still no
support for array access.
It is also worth mentioning the load-time weaving overhead for
AspectJ. In some of our tests, application startup time with
AspectJ load-time weaving was from two to three times slower
and memory overhead was about sixty times bigger (600% vs.
10% overhead after JVM garbage collection), when comparing
with similar transformations done with either the Terracotta
runtime or the AspectWerkz AOP engine.
7. CONCLUSIONS
In this paper we have shown how AOP technology can be used to
implement the cross-cutting concern of transparent clustering for
any arbitrary Java code. The described approach has been initially
implemented and proven on real applications in Terracotta’s
Distributed Shared Objects (DSO) product. The use of AOP
technology allowed us to focus on implementation details for the
services used in the clustering runtime and transparently weave in
the glue code into the application in order to get high-availability,
scalability and failover.
This approach to clustering provides great benefits to the end
users, who can focus solely on implementing their business logic
and still get the benefits of clustering without polluting their code
with traditional API-based clustering.
As we have shown, limitations of the existing AOP frameworks
for the Java platform give enough justification to implement a
hybrid solution, but we hope that in the future we might be able to
use a general purpose AOP language, such as AspectJ. While
being a great language and compiler, load-time weaving in
AspectJ is still suffering from performance problems (at start-up
time) and memory issues. These need to be addressed in future
versions of AspectJ. Also, to completely cover scenarios like
those described in this paper, AspectJ would have to support
advising access to array elements and open up the instrumentation

pipeline to allow plugging-in custom optimizations for inter-type
declarations, e.g., based on code-generation.
We believe that further evolution of the standard AOP tools would
make it possible to implement reusable aspects for application
clustering, failover and high-availability.

8. ACKNOWLEDGEMENT
First we would like to thank Steve Harris, the architect and lead
developer of Terracotta DSO, as well as Saravanan Subbiah, Tim
Eck and Orion Letizi from the DSO team for sharing their
technical excellence and for being great and humble team players.
Without them there would be no Terracotta DSO. We would also
like to thank Ron Bodkin and Dean Wampler for feedback on this
paper.

9. REFERENCES
[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In 1997 European Con I. on Object-Oriented
Programming (ECOOP '97), pages 220-242. Springer Verlag,
1997.

[2] Java Memory Model (JCP 133).
http://jcp.org/en/jsr/detail?id=133

[3] Java Language Specification.
http://java.sun.com/docs/books/jls/second_edition/html/j.title
.doc.html

[4] J. Bonér. What are the key issues for commercial AOP
use: how does AspectWerkz address them? In Proceedings of
the 3rd international conference on Aspect-oriented software
development, 2005

[5] E. Kuleshov. Using ASM toolkit for bytecode manipulation.
http://www.onjava.com/lpt/a/5250

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. Getting Started with AspectJ.
Communications of the ACM, 44(10):59–65, October 2001.

[7] Terracotta. http://terracottatech.com/
[8] Java Annotations.

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotatio
ns.html

[9] Java Enterprise Edition.
http://java.sun.com/javaee/technologies/javaee5.jsp

[10] M. Fowler. Inversion of Control Containers and the
Dependency Injection pattern,
http://www.martinfowler.com/articles/injection.html

[11] R. Johnson. Introduction to the Spring Framework,
http://www.theserverside.com/articles/article.tss?l=SpringFra
mework

[12] Java Swing. http://en.wikipedia.org/wiki/Swing_(Java)
[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. 1995.

[14] Java 5 concurrency libraries.
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/C
ountDownLatch.html

[15] Java Object Serialization Specification
version 1.5.0.

http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/s
erialTOC.html

[16] SAN – Storage Area Network.
http://en.wikipedia.org/wiki/Storage_area_network

[17] Extensible Markup Language (XML).
http://www.w3.org/XML/

[18] Java Reflection API.
http://java.sun.com/docs/books/tutorial/reflect/index.html

