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ABSTRACT 
Clustering (and caching) is a crosscutting infrastructure service 
that has historically been implemented with API-based solutions. 
As a result, it has suffered from the same code scattering and 
tangling problems as other crosscutting concerns.  

In this paper we will show how Aspect-Oriented Programming 
(AOP) can help to modularize clustering and turn it into a runtime 
infrastructure Quality of Service. We will show how AOP can be 
used to plug in directly into the Java Memory Model, which 
allows us to maintain the key Java semantics of pass-by-
reference, garbage collection and thread coordination across the 
cluster, e.g. essentially cluster the Java Virtual Machine 
underneath the user application instead of the user application 
directly 

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Distributed applications; D.2.10 
[Software Engineering] Design; D.3.2 [Programming 
Languages] Languages  

General Terms 
Reliability, Languages, Software Engineering, Separation of 
Concerns 

Keywords 
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Distributed Computing  

1. INTRODUCTION 
Clustering is becoming increasingly important in the world of 
enterprise application development. Developers continuously need 
to address questions like: How do I enhance scalability by scaling 
the application beyond a single node? How do I guarantee high-
availability, eliminate single points of failure, and make sure that 
the SLAs (Service Level Agreement) defined by the customer are 
met? These are all questions that, in one way or the other, imply 
clustering. Predictable capacity and high availability are 
operational characteristics that an application in production must 
exhibit in order to support a sustainable business. Some 
companies require up to 99.9999 percent uptime in their 
application; others do not, but all applications need to remain 
operational for as long as the SLAs defines.  
What do we mean when we say clustering and how does it differ 
from caching?  The definition of clustering that we use in this 
paper is: sharing the application state across multiple Java Virtual 
Machines (JVM's), while caching can be defined as: bring the 
application state closer to its execution context. In this sense, 
caching is a subset of clustering. 

One common approach to address scalability issues has been by 
“scale-up”, meaning add more power in terms of CPU and 
memory to one single machine. But today most data centers are 
running cheap commodity hardware and this fact, paired with 
more demand for high availability and failover, instead implies an 
architecture that allows you to “scale-out”, e.g. adding more 
power in terms of more machines - which implies using some sort 
of clustering technology. 
The problem is that clustering has been a hard problem to solve. 
In the context of enterprise applications, this in particular means 
ensuring high-availability and fail-over of the user state in a 
performant and reliable fashion. In case of a node failure (the 
application server or JVM crashes), enabling the use of “sticky 
session” in the load balancer (which means that the load balancer 
is always redirecting requests from a particular user session to the 
same node), won’t help much. But an efficient way of migrating 
user state from one node to another in a seamless fashion is 
needed. 
The minimal set of requirements that we think an enterprise-class 
clustering solution should meet are:  

• scalability 
• high-availability 
• fail-over 
• performance 
• minimal impact on existing code 
• simple deployment and configuration 
• runtime visibility (monitoring) 

Clustering is a crosscutting infrastructure service that has 
historically been implemented with API-based solutions. As a 
result it has suffered from the same code scattering and tangling 
problems as other cross-cutting concerns.  
As we will see, using Aspect-Oriented Programming (AOP) [1] 
can help to modularize clustering so effectively that user code can 
become oblivious to clustering. This can be done by using AOP to 
plug in to the Java Memory Model (JMM) [2] and maintain its 
semantics along with the semantics defined in the Java Language 
Specification (JLS) [3] across a distributed environment. 
We will also show that using AOP not only helps with 
modularization and obliviousness, but also turns out to be a key 
enabler in achieving high performance and scalability.   
At Terracotta [7], we have a custom load-time weaving 
framework, built on AspectWerkz  [4] and custom byte code 
instrumentation based on ASM [5]. This framework is used to 
capture and modify target application events that are of interest in 
terms of clustering or distributed computing, e.g. join points and 
advice, as well to do necessary enhancements (such as adding 



interfaces, methods and fields) to the target application, e.g. Inter-
Type Declarations (ITDs).  
The foundation of this framework was built over two years ago 
and unfortunately there is still no common AOP framework that 
can provide the same features set, which is one of the reasons why 
such a hybrid approach is being used.  
In this paper we are going to focus on issues related to the 
application transformations required to make the clustering cross-
cutting concern orthogonal to the target application. For the 
purpose of this paper we are going to illustrate the concepts using 
AspectJ [6], this in order to base the discussion on a language that 
is commonly understood, leaving deployment issues out of scope 
of this paper. As you will see later, most of the original Terracotta 
aspects can be reimplemented directly in AspectJ aspects, but, as 
we will see, there are some ITD transformations that we cannot do 
in the current version of AspectJ.  
This paper is focusing on the AOP part of the implementation.  
We will explain the implementation and semantics of each 
pointcut and advice in detail, but since a discussion on how other 
subsystems, like the garbage collector, instance manager, lock 
manager, transaction manager or the network transport protocol 
are out of scope for this paper, we will delegate to the 
ClusterManager abstraction when calls to these subsystems are 
being made. However, we will explain the semantics and the pre-
and post conditions for these API calls. 

2. SAMPLE APPLICATION 
We have a very simple sample application that will drive the 
discussion.  This sample application will function as the target 
application that we want to cluster, e.g. weave in our clustering 
aspect into.  It is a simple counter abstraction (sort of reversed 
CountDownLatch [14]) with two methods; increment() -- which 
increments a counter value, and waitFor() -- which waits for the 
counter to reach a specific value. Its sole purpose is to implement 
the characteristics that are interesting from a clustering standpoint; 
state (that is changing during the lifetime of the application) and 
thread coordination (using wait/notify and synchronized blocks). 
  
  public class Counter { 

    public final static Counter soleInstance = new Counter(); 
 
    private int value = 0; 

 
    public void increment() { 
      synchronized(this) { 

        this.value++; 
        notifyAll(); 
      } 

    } 
 
    public void waitFor(int expected) { 

      synchronized(this) { 
        while(this.value < expected) { 
          try { 

            wait(); 
          } catch(InterruptedException ex) { 

          } 
        } 

      } 
    } 
  } 

3. HUB AND SPOKE VS PEER TO 
PEER 
Terracotta is using an architecture known as hub-and-spoke, 
which means that it has one central L2 server and N L1 clients 
(the L1 client is running inside the target JVM). This might seem 
strange, since most clustering solutions on the market today are 
using peer-to-peer, but as we will see, hub-and-spoke has some 
advantages and plays a key role in some of the optimizations that 
we will talk about later. We will refer to this central server as the 
Coordinator, even though coordination is only half of its job. 
First it serves as the coordinator (“the traffic cop”) in the cluster. 
It uses the lock manager to keep track of things like; which thread 
in which node is holding which lock, which nodes are referencing 
which part of the shared state, which objects have not been used 
for a specific time period and can be paged out, etc. Keeping all 
this knowledge in one single place is very valuable and allows for 
very interesting optimizations.  
Second, it serves as a dedicated state database. This means that it 
stores all the shared state in the cluster. The state server does not 
know anything about Java, but only stores data and IDs. The 
Coordinator itself is clusterable through a SAN-based [16] 
failover mechanism. This means that it is possible to scale-out the 
Coordinator (L2 server) in the same fashion as most peer-to-peer 
solutions but with the advantage of keeping the L2 separate from 
the L1 (see below for a discussion on some of the problems with 
not separating them). This is the way that the Internet scales.  
One of the problems with using peer-to-peer is that you need to 
replicate everything everywhere, basically do multicast. For 
obvious reasons, this cannot scale very well.  
However, it is important to understand that this is only true for 
pure peer-to-peer solutions, and that most clustering solutions on 
the market today that advertise themselves as peer-to-peer are 
actually using some sort of hybrid mechanism between hub-and-
spoke and peer-to-peer in which they bundle the L2 in the L1. 
Unfortunately, this hybrid solution has problems such as relying 
on the notion of an object home, with potential secondary homes. 
The problem with this architecture is that it's really hard to know 
on which set of nodes the entire representation of an object lives 
and it is therefore easy to accidentally wipe out an object entirely. 

4. STATE SHARING 
We have split up the problem of clustering into two different 
parts; state sharing and thread coordination. In reality they are 
too tightly integrated to split up, but for simplicity and clarity we 
will try to discuss each one in isolation. 
First we will talk about state sharing, meaning how to find out 
which parts of the Java heap has changed, how to track that 
change set in a Unit of Work, how to replicate the Unit of Work to 
the parts of the distributed environment that need it - when they 
need it, and finally how to merge the change set  into the Java 
heap on these other nodes.  
Second, we will talk about thread coordination, meaning how to 
maintain the semantics of the JMM in order to ensure correctness 



and coherence of the data that is shared, throughout the distributed 
environment. 
Traditional clustering and distributed computing platforms in Java 
have been API-based and have in most cases used Java 
serialization [15] to transfer data between different JVMs. As we 
discussed earlier, this introduces problems like code scattering 
and code tangling. But it also introduces two other, perhaps more 
subtle and less commonly understood problems. Both of these 
problems are inherited from the use of Java serialization. In the 
following sections we will discuss these problems as well as what 
we have done at Terracotta to address them. 

4.1 Problems with Java Serialization 
4.1.1 Breaks Java’s pass-by-reference semantics 
The first problem with Java serialization is that it creates deep 
clones (copies) of the object graph structure. At first glance, this 
might not sound like much of a problem but it actually turns out to 
have a serious effect on application architecture and design.  
The Java language, as defined by the JLS, has pass-by-reference 
semantics. But the problem is that when you are using Java 
serialization you cannot rely on these natural Java semantics 
anymore, since Java serialization breaks pass-by-reference 
semantics. In other words; object identity is broken. The 
implications that this has on the design and architecture of an 
application should not be underestimated.  
If object identity is broken, and one cannot rely on pass-by-
reference semantics any longer then developers have to maintain 
the relational references between objects themselves. This usually 
forces the developer to layer some kind of primary-key/foreign-
key mechanism onto their object model, e.g. break down and 
maintain the object references using relational maps and almost 
start thinking like relational database designers. 
4.1.2 Can have performance implications 
The second problem with API and Java serialization based 
replication is that it is too coarse-grained. There is no way of 
detecting which parts of the Java heap that have actually changed, 
but the memory allocated for the whole object graph, that is 
referenced from the “stale” instance, needs to be treated as “stale” 
and therefore it has to be replicated. On top of this, Java 
serialization can only work on the Java object structure level 
which means that it will not only convert the actual data, but also 
all information about the class structure etc., into a network 
transportable format. All these things will force unnecessary data 
to be sent over the wire, as well as marshaled and unmarshalled, 
something that can have performance and latency implications. 
Another problem with not being able to detect actual changes is 
that it forces the use of a coarse-grained locking mechanism when 
marshalling and unmarshalling on modifications.  A lock needs to 
be taken on the top-level object regardless of the scope of change, 
something that can also cause premature lock contention. These 
are things that can also have performance implications. 

4.2 Roots 
For practical reasons, it is impossible to cluster the whole Java 
heap (replicate every single change) and at the same time achieve 
acceptable performance. This might sound like a serious 
limitation, but it actually turns out to be seldom, if ever, a real 
problem, that in real world scenarios. Most applications clearly 
distinguish between transient data, local data and data that need to 
remain coherent across the cluster. 

In order to identify these parts of the Java heap, Terracotta 
introduces a new abstraction called Root. A Root can be either a 
static or a member variable in a Java class and Root represents the 
top of an arbitrarily large object graph, which state is ensured to 
be made consistent across all nodes in the cluster. All instances 
referenced from that graph, directly or indirectly, will become 
clustered.  
In our sample application we could pick the static field holding 
the sole instance of the Counter in the Counter class to be the 
Root, which will make sure that the state for the soleInstance field 
(and its references) is consistent throughout the whole cluster. In 
order to do that, we need some additional metadata for this field. 
The Terracotta framework is using its own XML-based [17] 
descriptors to configure the required metadata, but to keep things 
simple, we will in our illustration make use of a field level 
annotation [8] called @Root: 
 
 @Root 
 public final static Counter soleInstance = new Counter(); 
 

The @Root annotation can be also injected using an ITD like this: 
 
 declare @field : * Counter.soleInstance : @Root; 
 

We can now define the AspectJ advice for maintaining the 
semantics of a Root field like this: 
 
  Object around() : get(@Root * *.*) { 
    String name = thisJoinPointStaticPart.getSignature().toLongString(); 
    return ClusterManager.getOrCreateRoot(name); 
  } 

 

As you can see, the pointcut for this advice picks out all join 
points where a field annotated with the annotation @Root is 
accessed. When the join point is executed, the advice invokes a 
method in the ClusterManager that short circuits the real field 
access and based on the signature of the field returns the clustered 
object instance instead. This ensures that the ClusterManager can 
maintain the current semantics for the Root field; if the field has 
never been accessed before then create and return the clustered 
instance, else always return the same clustered instance.  

4.3 Configuration 
In the previous section we introduced the @Root annotation as a 
configuration element. Before we continue the discussion, we 
need to introduce one additional configuration element; the 
@Clustered annotation. This annotation identifies classes that 
access, modify, or can potentially join, the distributed object 
graph that is referenced from a Root field. It should be used to not 
only identify classes whose state (i.e. instance fields) should be 
distributed, but also on classes that can access distributed objects 
and needs to preserve the semantics of the JMM across the cluster, 
including synchronization and wait/notify calls. Here we apply the 
class level @Clustered annotation to the Counter class. 
 
  @Clustered 
  public class Counter {  
    @Root 
    public final static Counter soleInstance = new Counter(); 



      ... 
    } 

 

All the pointcuts are completely generalized and rely only on 
these annotations. As mentioned earlier, both annotations can be 
used either explicitly in the source code or they can be injected 
using an ITD. AspectJ allows the annotation ITDs to be defined 
using patterns, which is something that simplifies this style of 
configuration. 
Note: our use of Java annotations will require using Java 1.5 or 
above, however this is not a limitation of the original Terracotta 
runtime, which is using XML descriptors  

4.4 Maintaining Java’s pass-by-reference 
semantics 
Now, when we have identified the Root of the distributed object 
graph and all the classes that can access, modify or potentially 
join the distributed object graph we have all mechanisms in place 
in order to detect when a new instance is attached to a distributed 
object graph. This allows us to maintain a cluster-wide identity for 
each shared instance. 
For convenience, we will define isClustered() pointcut that will be 
used in several other advice: 
 
  pointcut isClustered() : @within(Clustered); 
 

Now, we need to define a pointcut that picks out all join points 
where a field on an object that is already attached to the 
distributed object graph, is modified (starting from the root).  
When any of these join points are executed, we need to dispatch 
to an advice that notifies the ClusterManager about the field 
change, passing in the object instance, field name and the new 
value. The ClusterManager would delegate to the object manager 
subsystem to propagate these changes to other nodes. 
If the field is not of type literal (a Terracotta term which means 
that it is a primitive or in some cases an immutable object, see 
below), but a regular object instance then the ClusterManager 
records that this object has joined the object graph for this specific 
Root. However, if it is a literal then the ClusterManager will 
record the data (the bytes that have changed in the Java heap) for 
this literal, along with the name of the field and the id for its 
enclosing object instance, in the Unit of Work for this specific 
critical section (synchronized block).  
If it is a newly created object that has not yet been distributed, the 
object manager would have to send the bytes allocated for the 
entire object, along with its unique id, to the Coordinator.  
In some cases, immutable objects (such as java.lang.String) can 
be treated as primitive types. Terracotta is using the term literal 
for those special cases. However those implementation details are 
out of the scope of this paper.  
Similarly, on field access, we need to make sure that the field 
always holds the most recent, up-to-date, value. That excludes the 
Root fields handled by the advice discussed in the previous 
section. 
   
  pointcut isClusteredTarget(Transparent o) : 
      isClustered() &&  
      @target(Clustered) &&  
      target(o); 

 
  pointcut setClusteredField(Object o) :  
      isClusteredTarget(o) &&  
      set(!@Root * *.*); 
 
  before(Object o, Object value) :  
      setClusteredField(o) && args(value) { 
    String name = thisJoinPointStaticPart 
        .getSignature().toLongString(); 
    ClusterManager.fieldChange(o, name, value); 
  } 
 
It won’t be efficient enough to do reconciliation on every field 
access but all we need to do is to update all changed fields at 
once, in one atomic operation. In order to enable that, we define a 
TransparentAccess interface that we will introduce (using an ITD) 
on every class annotated with the @Clustered annotation. This 
interface has two methods - getFields() and setFields() which 
retrieves or writes a set of field values in one single atomic 
operation: 
 
  declare parents :  
     (@Clustered *) implements TransparentAccess; 
 
  public void TransparentAccess.setFields(Map values) { 
    ClusterManager.setFields(this, values); 
  } 
   
  public Map TransparentAccess.getFields() { 
    return ClusterManager.getFields(this); 
  } 
 
The implementation above is good for illustration purposes and is 
the best you can achieve with AspectJ, but it is obviously not the 
most performant one. To solve this in Terracotta we have used a 
special type of ITD, which generates a class specific, optimized 
implementation of the getFields() and setFields() methods that 
does not use Java Reflection [18] to access or modify instance 
fields. This can not be efficiently done in AspectJ because it needs 
to know actual field names for the target class. Method setFields() 
takes java.util.Map of field values and sets them to the 
corresponding fields. Method getFields() does the opposite and 
returns a java.util.Map with the current values for the clustered 
fields. 
Now we can write a generic pointcut and advice for field access 
which retrieves clustered state: 
 
 pointcut getClusteredField(TransparentAccess o):   
     isClusteredTarget(o) &&  
     get(!@Root * *.*); 
 
 before(TransparentAccess o) :  
     getClusteredField(o) { 
   String name = thisJoinPointStaticPart.getSignature().toLongString(); 
   Map fields = ClusterManager.reconcile(o,name); 
   o.setFields(fields); 
 } 
 
This gives us both very fine-grained control of the object state 
changes, as well the ability to batch change deltas before sending 
them to the remote nodes. This ensures both good performance 
(on a single node) as well as allowing the Coordinator to optimize 
the communication between different nodes in the cluster. For 



instance, it can bring data locally, or collect usage statistics and 
predict ahead of time what data will be needed locally.  
In our Counter sample class, this would mean that the 
ClusterManager will detect that the only change that has occurred 
in the object graph that is reachable from the Counter.soleInstance 
static field (that we marked as being Root) is the Counter.value 
member field, and will make sure that only this integer of four 
bytes is sent to the Coordinator.  

4.5 Object identity 
The different advice that we have discussed in the previous 
section relies heavily on some sort of cluster-wide object identity. 
For example, the fieldChange() method in the ClusterManager 
needs to have a way to uniquely identify the modified instances 
when committing the changes made to the local heap, to the 
Coordinator. I.e., it needs to be able to map a specific change set 
to a specific object identity. The same object identity is then used 
by the Coordinator when the change set is replicated to the 
different nodes in the cluster, as well as in the reconcile() method 
in the ClusterManager when this data in the change set is merged 
back into the local heap on the specific nodes. This task is 
challenging, because object identity should be reproducible on any 
node in the cluster and should guarantee object uniqueness for the 
entire cluster. These are challenges that we are facing when 
implementing the object manager and garbage collection 
subsystems, but since their implementations are out of scope of 
this paper, we will only discuss them briefly. 

4.5.1 Class loader identity 
Java’s flexible and in some sense complex class loading 
architecture makes it hard to identify the ClassLoader that has 
loaded a specific instance. For example, if you have the same 
class instantiated in two different class loaders then you will get 
two distinct instances. We need to be able to uniquely identify 
each one of those. In some cases it is possible to use information 
from the application container. For example, each Java Enterprise 
Edition (JEE) [8] bundle (WAR or EAR module) has its own class 
loader associated with the application name. But solving the 
problem generically is harder. 

4.5.2 Managed components 
JEE application servers and Dependency Injection (DI) [10] 
containers such as The Spring Framework [11] introduce another 
class of objects, a.k.a. components, in which the instances are not 
created by the user, but their creation is delegated to a container 
which takes care of injecting all of its necessary dependencies. 
Maintaining a cluster-wide identity for these components requires 
special support, in order for the semantics of the component’s life 
cycle to be preserved. 

4.6 Virtual heap 
As we have seen in previous sections, the ClusterManager has 
full control over the state in each clustered object instance, 
something that allows it to enrich the regular semantics of Java 
memory management.  
It can for example bookkeep memory access, e.g. keep a record of 
how often a specific object instance, including all its references, 
has been accessed. This allows it to detect if a specific sub-tree of 
a distributed object graph has not been used for a certain amount 
of time and it can then decide to page out all the memory 
allocated on the Java heap for this specific sub-graph, to the 
Coordinator (L2 state server). This is done by setting all the fields 

in the top level object in the sub-graph to null using the 
TransparentAccess.setFields(Map) ITD.  
If some object later is trying to access a paged-out sub-graph 
(with a top level field set to null) then this access operation will be 
guarded by the ClusterManager which will make sure that all the 
necessary state is first retrieved from the Coordinator and paged 
back into the local Java heap before it hands out a reference to the 
sub-graph to be used.  
This feature allows an application to work with a virtual heap that 
is much larger (sometimes orders of magnitude larger) than the 
actual physical heap that JVM provides, but still have acceptable 
performance. 

4.6.1 Distributed garbage collection 
Heap virtualization also affects the garbage collection. To allow 
garbage collection of the local objects, Terracotta is using 
java.lang.ref.WeakReferences and monitors when referenced 
objects are collected using a java.lang.ref.ReferenceQueue. This 
way the Coordinator always knows if nodes have local references 
even for distributed objects that are detached from the distributed 
object graph.  
To collect the objects eligible for garbage collection from the 
virtual heap, the Coordinator runs a special process that gets the 
set of objects currently in the shared graph. Then it removes 
objects that are held by all nodes and then traverses the distributed 
object graph from the root, removing all reachable objects. After 
that, anything that left in the set can be deleted from the virtual 
heap. 

5. THREAD COORDINATION 
The JMM determines what values can be read at every point in the 
program. In multi-threaded environments it also allows complete 
prediction of the values that are seen by each thread. We already 
saw how object reads and writes can be made transparent on the 
cluster. However, to preserve the semantics of the JMM, we also 
need to support locking for both synchronized statements and 
synchronized methods. 

5.1 Locking and synchronization 
In AspectJ, join points matching critical sections, in Java called 
synchronized blocks, can be picked out by the lock and unlock 
Pointcut Designators (PCD), which match the 
MONITOR_ENTER and the MONITOR_EXIT bytecode 
instructions, respectively.  
Note: this is currently an experimental feature which can be 
enabled using the -Xjoinpoints:synchronization AspectJ compiler 
flag. 
Here are the two pointcuts that pick out all the critical sections 
(entry and exit) where a clusterable instance is being locked on 
(and most likely a shared instance is being modified): 
 
 private pointcut clusteredMonitorEnter(Object o): 
     isClustered() &&  
     lock() && 
     @args(Clustered) &&  
     args(o); 
 
 private pointcut clusteredMonitorExit(Object o) : 
     isClustered() &&  
     unlock() && 
     @args(Clustered) &&  
     args(o); 



 
Then we can write a before and after advice that will delegate to 
the monitorEnter() and monitorExit() methods in the 
ClusterManager: 
 
 before(Object o) : clusteredMonitorEnter(o) { 
   ClusterManager.monitorEnter(o); 
 }  
   
 after(Object o) : clusteredMonitorExit(o) { 
   ClusterManager.monitorExit(o); 
 } 
   
These calls will be delegated to the lock manager in the 
Coordinator, which will use the object identity of the pointcut 
argument instance to acquire (or release) a distributed cluster-
wide lock on the instance. 
In our Counter sample class, this would mean capturing the 
execution of the MONITOR_ENTER and MONITOR_EXIT join 
points, e.g. the synchronized blocks that are guarding ‘this’, in the 
increment() and waitFor(int) methods. 

5.2 Locking and Unit of Work  
It is worth mentioning that locking allows implementing certain 
optimizations. For example, the lock manager can be coordinated 
with the object manager and can use synchronization boundaries 
to create a Unit of Work. Then the object manager can batch all 
the field modifications that happen within the specific Unit of 
Work and propagate them to the other nodes in the cluster when 
the Unit of Work is completed upon distributed and local lock 
release. 
We can define several lock types with different semantics: 

• Write lock has the same semantics as regular Java 
synchronization and allows at most one single thread to 
acquire a lock. 

• Read lock reconciles object changes but does not require 
blocking of the execution, e.g. multiple threads can 
acquire the same lock.  

• Concurrent lock is a looser form of write lock. Multiple 
threads can be inside a concurrent lock at the same time, 
and can all write to the data, but, only the changes made 
by the last thread to exit the block actually take effect. 
This is nondeterministic and thus is generally used only 
with considerable caution. 

Locks can be configured using the same configuration 
mechanisms as Roots and Clustered objects.  
The lock manager could apply several optimizations, such as 
escape analysis and reentrant locking. In a distributed system, 
greedy locking can give significant performance advantages. In 
this case, the lock is owned by the particular node until it is 
requested by another node and then it is transferred to that node. 
This allows us to reduce the number of calls to the lock manager. 

5.3 Wait/Notify 
Apart from locking (synchronized), the two most important 
primitives that are missing from the JMM, are wait (waiting for a 
lock to be released) and notify/notifyAll (wake up other threads to 
contend for a lock that was being held). The semantics of these 
primitives also need to be maintained across the cluster.  

In order to make this transparent for the target application we can 
define the following advice that will use the ClusterManager to 
delegate to the lock manager that is implementing the necessary 
execution semantics. 
 
  void around(Object o) :  
      isClusteredTarget(o) &&  
      call(void Object.wait()) { 
    ClusterManager.objectWait(o); 
  } 
   
  void around(Object o, long t) :  
      isClusteredTarget(o) &&  
      call(void Object.wait(long)) &&  
      args(t) { 
    ClusterManager.objectWait(o, t); 
  } 
   
  void around(Object o, long t, int n) : 
      isClusteredTarget(o) &&  
      call(void Object.wait(long,int)) &&  
      args(t,n) { 
    ClusterManager.objectWait(o, t, n); 
  } 
   
  void around(Object o) :  
      isClusteredTarget(o) && 
      call(void Object.notify()) { 
    ClusterManager.objectNotify(o); 
  } 
   
  void around(Object o) :  
      isClusteredTarget(o) && 
      call(void Object.notifyAll()) { 
    ClusterManager.objectNotifyAll(o); 
  } 
 

5.4 Distributed Method Invocations  
In some cases, a distributed system does not have state to 
distribute, but may be required to distribute actions. One of the 
most common scenarios is when listeners (for example 
ActionListener in Java Swing [12]) or observers (for example in 
the Observer Pattern [13]) need to be notified when some event 
has been triggered. Because those events could happen anywhere 
in the cluster, listeners (or observers) need to be notified on every 
node. 
For these scenarios, Terracotta has introduced a special 
abstraction called Distributed Method Invocation (DMI). This 
simply means that if method, that is marked for DMI, is called on 
one cluster node, all other cluster nodes will also invoke the exact 
same method invocation (with the exact same parameters).  
Here we can mark such methods with special @DMI annotation. 
We can then write a pointcut that picks out all join points where 
one of these methods is executed and then finally bind an after 
advice, which delegates the invocation call to the object manager, 
to this pointcut. 
   
  pointcut distributedMethodInvocation(Object o) : 
      isClustered() &&  
      execution(@DMI * *.*(..)) &&  
      this(o); 
 
  after(Object o) : 
      distributedMethodInvocation(o) { 
    String name = thisJoinPointStaticPart.getSignature().toLongString(); 
    ClusterManager.distributedMethodInvocation( 



        o, name, thisJoinPoint.getArgs()); 
  } 
 
This could be further extended to allow different semantics. For 
example, the default semantics for a DMI is that they are invoked 
asynchronously, but it could also be useful to provide a 
synchronous implementation, or to maintain a Unit of Work and 
wait while all invocations are propagated before releasing the 
lock.   
It is important to understand that DMI has nothing to do with 
managing correctness and coherence of state in the cluster, but 
only to trigger a cluster-wide action (behavior). 

6. DISCUSSION 
So far we have only used standard AspectJ features, which have 
worked nicely for our simple Counter example. However, there 
are several limitations that prevent us from using a plain AspectJ-
based solution for real-world applications. We already mentioned 
the problems with the TransparentAccess ITD, that required us to 
generate custom code for each advised class, but at least we were 
able to work around it with reflection-based code.  
Other critical AspectJ limitations include restrictions on 
instrumenting java.* and javax.* classes and the absence of 
pointcuts for array creation and for access to the array elements. 
For the latter issue, there is experimental support for array 
creation (which can be enabled with -
Xjoinpoints:arrayconstruction compiler flag), but there is still no 
support for array access. 
It is also worth mentioning the load-time weaving overhead for 
AspectJ. In some of our tests, application startup time with 
AspectJ load-time weaving was from two to three times slower 
and memory overhead was about sixty times bigger (600% vs. 
10% overhead after JVM garbage collection), when comparing 
with similar transformations done with either the Terracotta 
runtime or the AspectWerkz AOP engine. 
7. CONCLUSIONS 
In this paper we have shown how AOP technology can be used to 
implement the cross-cutting concern of transparent clustering for 
any arbitrary Java code. The described approach has been initially 
implemented and proven on real applications in Terracotta’s 
Distributed Shared Objects (DSO) product. The use of AOP 
technology allowed us to focus on implementation details for the 
services used in the clustering runtime and transparently weave in 
the glue code into the application in order to get high-availability, 
scalability and failover.  
This approach to clustering provides great benefits to the end 
users, who can focus solely on implementing their business logic 
and still get the benefits of clustering without polluting their code 
with traditional API-based clustering. 
As we have shown, limitations of the existing AOP frameworks 
for the Java platform give enough justification to implement a 
hybrid solution, but we hope that in the future we might be able to 
use a general purpose AOP language, such as AspectJ. While 
being a great language and compiler, load-time weaving in 
AspectJ is still suffering from performance problems (at start-up 
time) and memory issues. These need to be addressed in future 
versions of AspectJ. Also, to completely cover scenarios like 
those described in this paper, AspectJ would have to support 
advising access to array elements and open up the instrumentation 

pipeline to allow plugging-in custom optimizations for inter-type 
declarations, e.g., based on code-generation. 
We believe that further evolution of the standard AOP tools would 
make it possible to implement reusable aspects for application 
clustering, failover and high-availability. 
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