Refactoring Idiomatic Exception Handling in C++: Throwing and
Catching Exceptions with Aspects

Michael Mortensen

Hewlett-Packard, Colorado State Univeristy
mortense@cs.colostate.edu

Abstract

Aspect-oriented programming can be used to modularize cross-
cutting concerns to improve the maintainability of large systems.
Exceptions cross-cut legacy applications and are often imple-
mented in idioms which cannot be globally enforced. We describe
an aspect-oriented approach for throwing exceptions in place of
the “return code idiom”, and discuss using aspects to handle those
exceptions in a modular way. We also describe challenges we en-
countered in implementing some exception-handling control flow
strategies.

1. Introduction

We are investigating the use of aspects to modularize scattered
code for detecting and handling errors in system calls, such as
fopen. Aspects can modularize cross-cutting concerns that cannot
be easily modularized by traditional object-oriented or procedural
approaches [8].

Older programming languages, such as C, do not explicitly sup-
port exceptions. Instead they typically rely on an idiomatic ap-
proach for signaling and handling exceptions. One common id-
iomatic approach is the “return code idiom” [1], in which a spe-
cial return code signals an exception has occurred. Even though
C++ supports exceptions, C++ code may rely on legacy code and
libraries that are written in C and use the return code idiom.

Bruntink, van Deursen, and Tourwe [1] describe several poten-
tial faults associated with the return code idiom. First, if the system
does not check the return code of that function, the exception is
ignored with potentially unpredictable behavior beyond that point.
Second, the error code may need to be propagated up the call stack
so that a series of calling functions must correctly check and sig-
nal exceptions through return values. Third, contextual information
may need to be passed from the location of the exception to the
function that should handle it. Such information is often managed
through global variables and log files and may not be consistently
implemented throughout an application.

Lippert and Lopes [11] discuss using aspects to convert er-
rors in library functions and contracts for data types to excep-
tions. Spinczyk, Lohmann, and Urban [15] use AspectC++ to de-
tect error-related return codes from MS Windows API functions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. .. $5.00

Sudipto Ghosh

Computer Science Department, Colorado State
University

ghosh@cs.colostate.edu

Throwing an exception whenever a special return code is detected
benefits a system because exceptions can no longer be accidentally
ignored: failure to handle an exception causes program termina-
tion. Filho, Rubira and Garcia [4] implement exception handling
with aspects for applications that already use exceptions.

Although exception throwing can be modularized as a single as-
pect, if try/catch blocks are added to the original code, then these
blocks are still just as scattered as checking the return code was.
Since the code in the scattered catch blocks may be implement-
ing the same or similar error-handling code, we modularize error
signaling and error-handling with aspects. The legacy application
we are refactoring, however, implements five different strategies
for handling return code errors. Thus, exception handling requires
multiple disjoint aspects, each with slightly different requirements.

We examine the benefits of our approach over the idiomatic
approach and also highlight two challenges. The first challenge
is that since there are different ways that exceptions need to be
handled in the code, we cannot modularize exception handling as
a single aspect. Second, some of the aspects use pointcuts that
enumerate all associated functions. Although such an approach
does modularize the exception handling code for each exception
handling strategy, such pointcuts are fragile and could lead to errors
during evolution [10].

The rest of the paper is organized as follows. In Section 2 we de-
scribe the application-specific return code idiom we are refactoring,
including a single aspect for converting return codes to exceptions.
Section 3 describes the different exception-handling strategies used
by the application and how aspects can implement them. Potential
extensions to AspectC++ that could better address the challenges
we encountered are described in Section 4. Related work is de-
scribed in Section 5, followed by our conclusions in Section 6.

2. Replacing the Return Code Idiom

We are refactoring a CAD tool, the PowerAnalyzer, used for
estimating circuit power. It consists of about 12,000 lines of C++
code. The PowerAnalyzer contains a function that is similar to
the standard C fopen function. Like fopen, this function uses the
return code idiom, signalling failure by returning a NULL pointer.
The type of error is indicated through a global variable, errno,
which can be accessed by modules that include the errno . h header
file. Because our function behaves like fopen, we will describe the
problem in terms of fopen in the remainder of this paper.

2.1 Converting return codes to exceptions

Detecting a failed fopen and converting it to an exception is simple
in AspectC++. We define a struct for the object to be thrown and
then have an aspect that uses after advice to check the return value
of fopen, as shown below.

// The exception object
struct FileNotFound {
char name[2048];

char mode[5];

int code;

FileNotFound(const char *filename,
const char *file_mode)

{
strcpy(name, filename);
strcpy (mode, file_mode);

}

};

//Aspect to check fopen result
aspect Excepter {
pointcut FOpen()=call("} fopen(...)");
advice FOpen() : after() {
//get the result of the fopen call
void *ptr = *tjp->result();
if (ptr==NULL) {
const char *filename =
*((const char **) tjp->arg(0));
const char *mode =
*((const char **) tjp->arg(l));
throw FileNotFound(filename,mode) ;
}
}
}

The Excepter advice defines after advice which uses the As-
pectC++ function tjp->result() to inspect the return value of
fopen. The aspect throws a FileNotFound exception anytime
fopen returns NULL.

The exception throwing code is contained in a single advice
body, and its pointcut is based on a single function name (fopen).
The aspect provides a modular way of adding exceptions using a
pointcut that is easy to specify and maintain since it is based only
on the name of the function (fopen) that triggers the error.

3. Aspectualizing the Exception Handling
Strategies
3.1 Scattered exception handling

The calls to the fopen-like function and accompanying error-
handling code are scattered across 19 different call sites. The
PowerAnalyzer opens many different types of files: design data
files, user configuration files, output results files, optional debug
files, and so forth.

Some of these files are essential for the program to run, while
others are optional or only used in certain modes. Because of these
different file types, the PowerAnalyzer implements 5 different
strategies for handling return code errors.

The strategy used within each function that calls fopen (re-
ferred to as the caller or calling function) represents a design deci-
sion, since the strategy depends on the type of file being opened and
the algorithmic step being performed by the program. Each strategy
has one of three control flow semantics. These control flow seman-
tics are exiting from the program, returning from the function that
calls fopen, and continuing past the failed fopen call.

The five strategies implemented in the PowerAnalyzer are
based on the control flow they implement. These strategies are:

1. Exit program due to fatal error.

2. Warn user; return from caller.

3. Check for user configuration; either warn and return from caller
or exit program.

4. Return from caller.

5. Warn user but continue inside caller.

We describe each below, and discuss how an aspect can replace the
existing implementation.

3.2 Exit program due to fatal error

Fatal errors are idiomatically handled by calling a function, FatalError,

that prints a message and exits the program.

fp = fopen(file, "r");
if(1fp) {

FatalError("Could not open", file);
}

The code that calls FatalError when the return value (£p)
is NULL can be aspectualized by adding a try/catch block in the
highest level function of the program (main). In addition, an aspect
can use around advice that encloses main in a try/catch block:

aspect CallCatcher {
pointcut Main() =
execution("% main(...)");
advice Main() : around()
{
try {
tjp->proceed();

catch (FileNotFound e) {
std::cerr << "Error opening file: "
<< e.name << " in mode: " << e.mode
<< " from "<<JoinPoint::signature()
<< std::endl;
exit(1);
}
}
s

Analysis. Using an aspect around main does not reduce code
scattering since main occurs only once in any program. However,
because we can add the advice in the CallCatcher aspect to the
aspect that also throws exceptions, we can modularize throwing and
handling exceptions as a single aspect.

The aspect-oriented approach for the fatal error strategy enables
removing the error-handling code from each call to fopen. Both
the advice for catching and throwing exceptions are each based
on a single function name: fopen for throwing exceptions, and
main for catching them. Thus, aspects provide a modular way of
implementing this strategy using pointcuts that are easy to specify
and maintain.

3.3 Warn user; return from caller

This strategy prints a warning to the user and returns from the
caller. The functionality of the caller is skipped, but the program
does not exit. Typically, the code is structured like this:

void caller()

{

fp = fopen(config_file, "r");

if(1fp) {
Logger ("Warning, could not open ",config file);
return;

}

//rest of caller...

}

The Excepter aspect from Section 2.1 will throw an exception
if fopen returns a NULL pointer. In order to continue as if only a
return had happened from inside the caller, the exception must be
caught immediately outside the caller. If the exception is not caught
or is caught in main, the program will terminate.

We can use an aspect to catch this exception and return from the
calling function, but to do so requires specifying the name of the
caller. If the calling functions have a common naming convention,
then the pointcut can use a regular expression to match them.
However, in the PowerAnalyzer, exception handling is scattered
across many functions with different naming conventions. This
requires that we enumerate all of them as a list. For example, if
the callers are a, b, and c, then the WarnAndReturn aspect below
implements the warn and return strategy:

aspect WarnAndReturn {
pointcut throwing_funcs() =
execution("} a(...)")
|| execution("¥% b(...)
|l execution("}% c(...)
advice throwing_funcs()
{
try {
tjp->proceed();

||)
")

around ()

catch (myFileNotFound e) {
std::cerr << "Error opening file: "
<< e.name << " in mode: " << e.mode
<< " from "<<JoinPoint::signature()
<< std::endl;
}
}
}

Analysis. The warn and return aspect modularizes the fopen
error handling code to one location. If the strategy itself needed
changes, the WarnAndReturn aspect’s advice could be updated in
one place, rather than modifying all the callers that implement this
strategy.

Unfortunately, the pointcut, throwing funcs, is fragile: all
functions using the strategy must be enumerated using the point-
cut. If a function name is changed or if a new function is added, we
must remember to update the aspect. Koppen and Stoerzer [10] de-
fine fragile pointcuts as those that have high name-based coupling
between aspects and core concerns and may be broken by non-
local changes during evolution. In the PowerAnalyzer, the frag-
ile pointcut introduces a risk that the exception may not be caught.
This would result in an incorrect strategy being used: the excep-
tion would be caught by outermost block assocated with main as
described in Section 3.2.

3.4 Check user configuration, warn and return or exit

The PowerAnalyzer allows users to specify that some errors
should not result in program termination. This strategy checks for
the user configuration; if the user has specified continuing in the
presence of issues, then the caller emits a warning and returns (2nd
strategy). Otherwise, the program exits (first strategy).

If the user did not specify to continue in spite of errors then
the aspect for this strategy can print a message and call exit to
terminate the program. If the user did specify continuing past these
errors, then the control flow is the same as the strategy described in
section 3.3.

Thus, the new aspect, ReturnOrExit, is very similar to that of
Section 3.3 but adds configuration checking and a branch that calls
exit. Whether or not the user specified continuing past errors is

represented below as the variable user_config_continue. Here
is the ReturnOrExit aspect:

aspect ReturnOrExit {
pointcut throwing_funcs() =
execution("% x(...)")
|| execution("% y(...0")
|| execution("% z(...)");
advice throwing_funcs() around ()
{
try {
tjp->proceed();

catch (myFileNotFound e) {
if (user_config_continue) {
std::cerr << "(WARNING) Could not open file: "
<< e.name << " in mode: " << e.mode
<< " from "<<JoinPoint::signature()
<< std::endl;

}

else {

std::cerr << "Error opening file: "
<< e.name << " in mode: " << e.mode

<< " from "<<JoinPoint::signature()
<< std::endl;
exit(1);

}
}
};

Analysis. This aspect is more complex than the WarnAndReturn
aspect from Section 3.3 since its advice catches the exception and
then either emits a warning message (outside the caller, being
equivalent to a return) or calls exit. In terms of maintainability, it
has the same problem: it requires a pointcut that is a list of functions
(shown in the aspect above as x, y, and z) so that it can catch the
exception just outside the function. Thus, while the aspect does
modularize scattered code into a single advice body, the pointcut
itself may be difficult to maintain.

3.5 No warning, error indicated through return value.

This strategy does not warn the user about failures and is used when
a large set of files is being processed. Success or failure reading the
file is only indicated by the return value, and no warning is emitted.
The basic code structure is:

int caller(char *file)
{
fp = fopen(file, "r");
if (fp) {
//process file...
return 0; //no error
}
else
return 1; //error opening file
}
}

Like the WarnAndReturn aspect from Section 3.3, we need
around advice just outside the caller. The key difference is that the
advice uses thisJoinPoint->result() to get a pointer to the
retun value (result), which is used to change the return value if
the file cannot be opened. The CatchAndReturn aspect, like the
WarnAndReturn aspect, catches the exception so that the program
continues execution after the caller.

aspect CatchAndReturn {
pointcut throwing_funcs() =
execution("int read_circuits(...)")
|| execution("int process_config files(...)");

advice throwing_funcs() : around()

{

int *result = (int*) thisJoinPoint->result();
try {

tjp->proceed(); //just call what we caught...

catch (myFileNotFound e) {
std::cerr << "(WARNING) Could not open file: "
<< e.name << " in mode: " << e.mode
<< " from "<<JoinPoint::signature()
<< std::endl;
xresult = 1; //return 1(error) using result ptr
}
}
};

Analysis. This strategy has the same weakness as the strategy of
Section 3.3: the pointcut is a list of all calling functions. In addition,
if the PowerAnalyzer had functions that used different return
values to indicate errors in the caller of fopen (e.g. return O in
one caller and return -1 in another), then separate pointcuts would
be needed, each enumerating a list of function calls. Handling a
group of functions that have different return types would also add
complexity, although advice in AspectC++ can use C++ templates
so that code is generated for each different type at compile time
[13].

3.6 'Warn user; continue inside caller

For this strategy, we want to emit a warning but continue inside
the caller. One approach would be to use aspects to throw the
exception, but to enclose calls to fopen in a try/catch block inside
each calling function:

void caller()

{

try {
fp =
}
catch (FileNotFound e) {

Logger ("Warning, could not open ",
e.name());

fopen(config _file, "r");

}
//Keep going after exception

However, the exception handling code is still scattered in all
the callers. Lippert and Lopes [11] also describe this problem:
“Aspect] 0.4 does not provide support for capturing the catching
of exceptions inside method boundaries.” Exceptions caught by
around advice are caught after the intercepted method body since
the pointcuts available in Aspect] and AspectC++ are method calls
rather than code blocks within the methods.

However, we can continue inside the caller if we catch the
exception around the call to fopen instead of around the caller,
using the cflow mechanism of AspectC++ (which Aspect] also
has) to select the functions that should implement this strategy.
The advice would be the same as in the WarnAndReturn aspect,
but the pointcut would be defined differently using cflow with
the name of the caller. An example pointcut definition for the
InnerCallCatcher aspect is shown below:

aspect InnerCallCatcher {

pointcut Fopen() = call("}% fopen(...)");
pointcut local_catch() = Fopen()
&& cflow(execution(" d(void)"));

The local_catch pointcut of the InnerCallCatcher aspect can
wrap calls to fopen that occur within the execution of the function
d. By catching the exception around fopen, the rest of the function
d continues execution after the catch block in the advice executes.

Analysis. Unfortunately, this pointcut approach again becomes
difficult to maintain as more functions need to be specified. For
example, to add an extra caller, e, again requires a list of pointcuts:

pointcut Fopen() = call("\% fopen(...)");
pointcut local_catchl() = Fopen()

&& cflow(execution("\% d()"));
pointcut local_catch2() = Fopen()

&& cflow(execution("\% e(0"));
pointcut local_catches() = local_catchl()
|| local_catch2();

The cflow construct introduces some run-time overhead [12].
In addition, the cflow pointcut matches any call to fopen that hap-
pens below the specified caller (d). Using the within construct
would limit the pointcut to calls that occur immediately within the
named functions. This would improve performance and limit the
scope to just fopen calls within the specified function, but still re-
quires a fragile list of pointcuts. The cf1low approach would help if
d called several functions that called fopen since we could specify
just the top-most level (d) instead of the intermediate functions. In
Section 3.7 below, we describe a better solution for this strategy.

3.7 Using a facade to implement the ‘“Warn user; continue
inside caller” strategy

We can avoid the list of functions and use of cflow for the “Warn
user; continue inside caller” strategy. Instead, we can create a
facade function, fopen_continue, that wraps the call to fopen.

FILEx fopen_continue(
const charx filename,
const char* mode) {
return fopen(filename, mode);

In functions that implement this strategy, we replace the call
to fopen with a call to the facade, fopen_continue. We can
now implement an aspect that uses around advice so that a
try/catch block exists around the fopen_continue function. Thus,
an exception thrown from a failed fopen call is caught and han-
dled inside fopen_continue, allowing the function that calls
fopen_continue to continue execution. This does require chang-
ing all calls to fopen in functions that implement the third strategy,
but it makes the strategy explicit and avoids the fragile pointcut.

Unfortunately, using a facade for fopen does not help with the
strategies described in Sections 3.2, 3.3, and 3.4 where we want
to return from the function that calls fopen. That is because the
catch block needs to happen outside the caller so that the upper
scope (above the caller) continues. Functions that need to return
after fopen fails need this try/catch structure:

upper_scope ()

try {
caller()
{
fopen(...);
}
catch {
//do something but don’t exit, so

//that we continue in upper_scope
}
//rest of upper_scope
}

Analysis. Using a facade around fopen helps us catch exceptions
inside the caller, but not around the caller. Thus, it is a better
solution than Section 3.6, but does not provide a better solution
for the strategies of Section 3.2, Section 3.3, or Section 3.4. In our
refactoring, we elected to use the facade/aspect approach for the
third strategy because of the simpler pointcut.

If a facade-based approach could be used for all strategies, an
additional benefit would be that each strategy would be explicitly
declared by use of the facade, with the aspect providing the mod-
ular implementation of each strategy. Using facades in this way
requires changing all calls to fopen to an fopen facade. Since we
had to make changes at each callsite to remove obsolete error han-
dling code when aspectualizing the PowerAnalyzer, we did not
consider changing calls from fopen to use the facade to be a sig-
nificant burden.

3.8 PowerAnalyzer Refactoring

We manually refactored the PowerAnalyzer to use aspects for
throwing and catching exceptions. The results of our technique are
shown below in Table 1. The exception strategy is shown in the
first column, and the number of occurrences of each strategy are
given in the second column (#Occ). The pointcut column contains
‘Simple’ if the strategy in the first column was implemented as a
single pointcut or contains ‘List’ if the pointcut was a fragile, list-
based pointcut.

Table 1. PowerAnalyzer exception strategies
Strategy # Occ | Pointcut
1. Fatal error, exit 7 | Simple
2. Warn user, return 2 | List
3. Check config, return/exit 5 | List

3
2

4. Indicate with return val List
5. Warn user, continue Simple

In total, there were 19 calls to fopen, with each having 3-5
lines of code after the call to implement handling fopen errors.
Using aspects for fopen error-handling replaced about 80 lines
of code with 6 aspects, for a total code reduction of 40 lines.
Having to implement 5 different strategies with aspects limited
the code reduction. Filho, Rubira and Garcia [4] also found that
complex applications with multiple exception-handling strategies
limited code reduction. Even with the code reduction, a drawback
is that three of the five aspect-based strategies were implemented
with a fragile pointcut.

In spite of the pointcut maintenance issue, one benefit of aspects
is that the aspects throw exceptions that will result in program
termination if the pointcuts are not correct. Although this is an
abrupt result, it avoids accidentally ignoring fopen-related errors,
which is a common fault with the return code idiom.

One way to validate the pointcuts in our exception-related ad-
vice would be to use statement coverage of regression tests to en-
sure that all fopen-related errors were tested. This is often difficult
in practice, since testing typically focuses on primary application
functionality rather than code related to exceptions and since many
root causes of exceptions are difficult to generate [1].

4. Annotations and Pointcut Extensions

In this section we describe two extensions to AspectC++ that would
enable an aspect-oriented solution that did not use fragile pointcuts.
The first approach, annotation-based weaving, is currently available

in Aspect] [9]. The second approach utilizes pointcut expressions
based on more complex program flow analysis.

4.1 Annotations

Although not currently available in AspectC++, annotations and
annotation-based weaving could be used to replace the pointcut
lists. Annotations do not allow us to modularize the specification
of all the join points in one location: each location in the code of
a particular pattern will require an annotation. However, renaming
methods to match an aspect’s pointcut has the same limitation and
may also cause name clashes if a method is to be advised by
multiple aspects that all want to use name-based pointcuts. Even
though the annotations are scattered in the code, annotations are
preferable to a pointcut implemented as a list of functions. Using
a facade in Section 3.7 is equivalent to annotation-based weaving
since the facade name is being used as the weave target for a
specific aspect strategy. Like the facade, annotations document the
code intent. In addition, name changes to the advised function will
not accidentally break the aspect’s pointcut.

Were annotations to be supported, the method that calls fopen
could be annotated to indicate the aspect that will provide the
exception strategy. The aspect could then provide around advice for
the caller of fopen by advising at the annotation. If fopen throws
an exception, it would be caught immediately outside the annotated
caller. The aspects in Section 3 that used fragile lists of pointcuts
could be implemented with a single annotation-based pointcut.

4.2 Complex control flow pointcuts

More powerful control-flow pointcut specifications are an alterna-
tive to annotations. For example, we could specify that we want to
have advice around all methods that call fopen without enumerat-
ing them in a fragile pointcut list. Cazzola, Pini, and Ancona [2]
proposed higher level pointcuts, such as ‘all methods that are set-
ters’ rather than relying on naming conventions for name-based
pointcuts for setters, in order to have aspects that are more robust
during evolution.

If we had a more expressive pointcut that specified all callers
of fopen in this application, we could avoid pointcut lists. Since,
however, there are multiple strategies for exceptions present in this
application, we must still distinguish between when to exit due to a
fatal error, when to warn and continue, and so forth. One approach
would be to rename the fopen calls based on the exception strategy
for that call (i.e. fopen_or_exit, fopen_or_warn) so that we
could select all callers of fopen_or_exit with a single pointcut.
While this is more modular than list-based pointcuts, the end result
is similar to annotation-based weaving, since we must still make a
change in the fopen callsite.

5. Related Work
5.1 Checked and unchecked exceptions

C++ and AspectC++ do not have checked exceptions like Aspect].
Aspect] and Java perform static checking of exceptions to ensure
that method calls that can result in exceptions either catch those
exceptions or declare that the methods may throw them. To allow
an aspect to throw an exception not declared by the method, an
aspect in AspectJ can specify that an exception “if thrown at a join
point, should bypass Java’s usual static exception checking system
and instead be thrown as a org.aspectj.lang.SoftException,
which is subtype of RuntimeException and thus does not need to
be declared.” '.

"http://www.eclipse.org/aspectj/doc/released/progguide/
semantics-declare.html#softened-exceptions

In C++, exceptions do not have to be declared by each function
or method and are not checked by the compiler [16]. This allows
aspects in AspectC++ to throw an exception that was not originally
thrown by the function, and allows changing where exceptions are
caught.

5.2 Contracts and Obliviousness

Some might argue that we have changed the contract of fopen
since it now throws an exception in the aspectualized program.
Anytime fopen is called, either an aspect or the calling code will
need to catch an exception or the program will terminate. Java
has three types of exception-handling blocks: try-catch, try-catch-
finally, and try-finally. Filho, Rubira and Garcia [4] reported that
handling all three increased the number of aspects required when
aspectualizing exception handling.

A related issue to the notion of the contract of fopen is oblivi-
ousness. An aspect that throws exceptions when fopen fails to open
a file is introducing a change that the fopen code is oblivious to,
but which must be handled by the callers of fopen or else the ex-
ception will not be caught, resulting in program termination. While
obliviousness has been discussed as a potential benefit of aspect-
oriented programming [5], in this case developers need to be aware
of the new exceptions being introduced in order to implement an
exception handling strategy. Using exceptions improves error han-
dling by avoiding accidental ignoring of failures, but at the cost of
mandating exception handling and risking program termination if
some cases are not caught.

Griswold et al. [6] report that developing aspects and core con-
cerns that were oblivious to one another led to “programs that were
unnecessarily hard to develop, understand, and change.” One rea-
son they reached this conclusion was that changes to the code base
that seemed harmless could change what join points matched. Our
aspects that create pointcuts as lists of function names would simi-
larly be affected by changes in the code base.

5.3 Aspect-oriented exception approaches

Lippert and Lopes [11] use aspects for exceptions, but focus on
throwing exceptions, both for library functions, which are like our
fopen example, and also for contracts. They note that handling
exceptions can be difficult because exceptions thrown by aspects
must happen at method boundaries, while existing try/catch blocks
may exist within method boundaries.

Spinczyk, Lohmann and Urban [13, 15] focus on using template-
based advice so that a single aspect can detect an exception sig-
nalled by the return code idiom across a group of methods with
different return data types. Their code works by detecting such
things as NULL pointers, false values from bool functions, and so
forth. They do not focus on catching the exceptions, leaving that to
the application code.

Filho, Rubira and Garcia [3, 4] implement exception-handling
in Aspect]. They remove existing try/catch blocks from a system
that already throws exceptions in the core Java code. They also
found that existing legacy systems tend to have many non-uniform
complex strategies, which makes moving them to modular aspects
more difficult. Our work differs from theirs by using aspects for
both throwing and catching exceptions. In addition, we are refac-
toring legacy code that did not use exceptions, but instead used the
return code idiom.

6. Conclusions and Future Work

We have demonstrated how the return code idiom for exceptions
can be refactored with aspects to use exceptions. Aspects can be
used not only to replace return code with thrown exceptions, but
also to manage how and where those exceptions are caught and

dealt with. We found that the aspect-oriented approach reduces
source code size and modularizes the scattered code for implement-
ing each exception strategy into an aspect.

The major drawback to our aspect-oriented approach is that
some strategies required the use of pointcuts that were lists of
functions. While this approach does work, it may be viewed as
fragile for long term maintenance since changing function names
or creating new functions that should be in these lists can result in
incorrect exception behavior [10].

In addition to AspectC++ language extensions described in Sec-
tion 4, another approach would be to use naming conventions for
the functions that were part of pointcut lists. Although this ap-
proach would work in isolation, we did not pursue it because we
are already using a naming convention for a Timer aspect [14].
Since functions that are advised by the Timer aspect could also use
fopen, this would result in functions needing a name that matches
both pointcut naming patterns. Clearly, as more aspects are added
to this application, such a name-based solution becomes difficult or
impossible. Tourwé, Brichau and Gybels[17] describe this problem
as part of the AOSD-evolution paradox.

References

[1] M. Bruntink, A. van Deursen, and T. Tourwé. Discovering faults in
idiom-based exception handling. In ICSE "06: Proceeding of the 28th
International Conference on Software Engineering, pages 242-251,
New York, NY, USA, 2006. ACM Press.

[2] W. Cazzola, S. Pini, and M. Ancona. Design-Based Pointcuts
Robustness Against Software Evolution. In W. Cazzola, S. Chiba,
Y. Coady, and G. Saake, editors, Proceedings of the 3rd ECOOP
Workshop on Reflection, AOP and Meta-Data for Software Evolution
(RAM-SE’06), in 20th European Conference on Object-Oriented
Programming (ECOOP’06), pages 35-45, 2006.

[3] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhao, A. Garcia, and
C. M. F. Rubira. Exceptions and aspects: the devil is in the details.
In SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
pages 152-162, New York, NY, USA, 2006. ACM Press.

F. C. Filho, C. M. F. Rubira, and A. Garcia. A quantitative study
on the aspectization of exception handling. In In ECOOP’2005
Workshop on Exception Handling in Object-Oriented Systems, pages
137-149, July 2005.

[5] R. E. Filman and D. P. Friedman. Aspect-oriented programming
is quantification and obliviousness. In P. Tarr, L. Bergmans,
M. Griss, and H. Ossher, editors, Workshop on Advanced Separation
of Concerns (OOPSLA 2000), Oct. 2000.

[6] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai,
and H. Rajan. Modular software design with crosscutting interfaces.
IEEE Software, 23(1):51-60, 2006.

K. Gybels, S. Hanenberg, S. Herrmann, and J. Wloka, editors.
European Interactive Workshop on Aspects in Software (EIWAS),
Sept. 2004.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. Technical
Report SPL97-008 P9710042, Xerox PARC, Feb. 1997.

[9] G. Kiczales and M. Mezini. Separation of concerns with procedures,
annotations, advice and pointcuts. In ECOOP, pages 195-213, 2005.

[10] C. Koppen and M. Storzer. PCDiff: Attacking the fragile pointcut
problem. In Gybels et al. [7].

[4

=

[7

—

[8

—

[11] M. Lippert and C. V. Lopes. A study on exception detecton and
handling using aspect-oriented programming. In Proceedings of
the 22nd International Conference on Software Engineering, pages
418-427. ACM Press, 2000.

[12] D. Lohmann, E. Scheler, R. Tartler, O. Spinczyk, and W. Schrder-
Preikschat. A Quantitative Analysis of Aspects in the eCos Kernel.
In Proceedings of EuroSys "06, April 2006.

[13] D. Lohmann and O. Spinczyk. On typesafe aspect implementations
in C++. In Gybels et al. [7].

[14] M. Mortensen and S. Ghosh. Using aspects with object-oriented
frameworks. In AOSD ’06: 5th International Conference on Aspect-
oriented Software Development Industry Track, pages 9-17, March
2006.

[15] O. Spinczyk, D. Lohmann, and M. Urban. AspectC++: An AOP
extension for C++. In Software Developers Journal, number 7, pages
68-74. Software-Sydawnicto Sp. z 0.0.

[16] B. Stroustup. The Design and Evolution of C++. Addison Wesley,
April 1994.

[17] T. Tourwé, J. Brichau, and K. Gybels. the existence of the AOSD-
evolution paradox. In L. Bergmans, J. Brichau, P. Tarr, and E. Ernst,
editors, SPLAT: Software Engineering Properties of Languages for
Aspect Technologies, Mar 2003.

