
Aspect-Oriented Design Principles:
Lessons from Object-Oriented Design

 Dean Wampler
Object Mentor, Inc.
objectmentor.com

dean@objectmentor.com

ABSTRACT
For aspect-oriented design (AOD) to become mainstream,
appropriate design principles are needed to guide its use in real,
evolving systems. The principles should tell us what types of
coupling are appropriate between aspects and the software entities
they advise, how to use non-invasiveness effectively, how to
preserve correct behavior in the advised entities, and how to use
aspects with other design constructs. I examine these topics using
several object-oriented design (OOD) principles, considered from
an AOD perspective. I demonstrate how AOD contributes design
solutions to satisfy these principles, while it also introduces
nuances in their interpretations. I also derive several AOD-
specific principles from the OOD principles.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented
Programming, Aspect-Oriented Programming.

General Terms
Design, Theory.

Keywords
Aspect-oriented programming, object-oriented programming,
software design principles.

1. INTRODUCTION
Aspect-Oriented Software Development (AOSD) is an effective
technique for modularizing crosscutting concerns [1,3], but
effective design principles are needed to create aspect systems
that support long-term maintenance and evolution [2].

To date, aspects have mostly been used to modularize
“nonfunctional” concerns like persistence, security, logging,
caching, etc., in contrast to the domain logic, specified by the
functional requirements.

Aspects for a nonfunctional concern usually require no
modifications of the target modules1, because the concern’s
problem domain is usually orthogonal to the modules’ domains.
Hence, the advised modules are oblivious [4].

However, partitioning the domain logic itself into aspects is more
likely to introduce logic conflicts, since they are no longer
orthogonal. Obliviousness by itself does not address this design
issue. Some aspect systems, e.g., Hyper/J [5] and Composition
Filters [6], handle this problem by composing applications from
aspects, using merging heuristics to resolve potential conflicts.

1 I sometimes use the term “module” generically for classes,

aspects, etc.

However, general design principles are needed to address this
problem for all aspect systems.

Also, for reasons of program correctness, security, performance,
etc., a module may need to control access to its join points and
prohibit some types of advice and introductions.

Real, successful systems evolve over time. Tourwé, et al. [2]
showed that aspects written with early AOSD approaches tended
to be tightly coupled to the rest of the application logic, leading to
an AOSD-Evolution Paradox. While the initial version of an
aspect-based application has better modularity than a comparable
object-based implementation, tight coupling of the aspects to the
rest of the application makes evolution harder. This coupling
occurs when pointcuts refer to concrete program structure, like
class and package names, that tend to be volatile. While the
advised modules are oblivious to the aspects, the aspects are not at
all oblivious to the modules they advise. This paradox has been a
practical barrier to AOSD adoption, but it can be resolved by
adherence to several of the dependency principles discussed in
this paper.

The term noninvasiveness (See, e.g., [7]) is now used to retain the
notion of advice insertion without direct module modification, but
with the recognition that techniques of control are sometimes
required and naïve obliviousness is not adequate for all design
problems.

Mezini and Kiczales [8] analyzed aspect-aware interfaces, a
module's true interface to the system, which can only be known
after accounting for all the aspects present in the system that
might affect the module. Hence, reasoning about a module
requires understanding the system context. However, AOP makes
this explicit and provides tools for modular reasoning.

Sullivan, et al. [9-11] and Lopes and Bajracharya [12] examined
the value of aspects that are constrained by “Design Rules” vs. the
openness of obliviousness. They showed how such constraints
actually improve the quality of the software, using a net-options
value (NOV) model.

This paper addresses design problems, like those caused by a
naïve application of obliviousness, in terms of well known Object-
Oriented Design principles cataloged by Martin, et al. [13],
adapted for aspects. The analysis complements the work of other
authors who have examined a few of these principles [17], as well
as design patterns [14] from an AO perspective [15-17].

2. Principles of Object-Oriented Design
Martin, et al. [13] cataloged eleven principles of OO module
design and packaging that promote reduced coupling
(dependencies) and improved cohesion, leading to software that is
more adaptable to changing requirements. The first five deal
specifically with class and interface design as they affect

evolution, reuse, and stability. Three more cover package
cohesion and three cover package coupling. They are summarized
in Table 1.

In this section, I describe the principles and their AOD
implications. The names, acronyms and definitions are adapted
from [13]. Since aspects are class-like modules in many ways, all
the principles also apply to them. Aspects also provide new
techniques for supporting the principles and aspects introduce
nuances into their interpretations.
The discussion is based on an example “shapes” hierarchy.
Inessential details are elided for brevity, such as file names,
public keywords, constructors and comparison methods2.

package shapes; // for all the classes…
interface Shape {
 double getArea();
 void draw();
}

class Point {
 double getX() {…}
 double getY() {…}
}

abstract class Polygon implements Shape {
 Point getVertex(index i) {…}
 void draw() {…}
 String toString() {…}
}

class Triangle extends Polygon {
 double getArea() {…}
}

abstract class NinetyDegreeParallelogram
extends Polygon {
 double getArea() {…}
}

class Square extends NinetyDegreeParallelogram {…}

class Rectangle
extends NinetyDegreeParallelogram {…}

abstract class ClosedCurve implements Shape {…}

class Circle extends ClosedCurve {
 double getRadius() {…}
 Point getCenter() {…}
 double getArea() {…}
 void draw() {…}
 String toString() {…}
}

class Ellipse extends ClosedCurve {
 double getApogeeRadius() {…}
 double getPerigeeRadius() {…}
 Point getFocus1() {…}
 Point getFocus2() {…}
 Point getCenter() {…}
 double getArea() {…}
 void draw() {…}
 String toString() {…}
}

2 A complete version of the example is available at

http://www.aspectprogramming.com/papers/aosd2007/

Listing 1

Each Shape can return its area, draw itself, and return a string
representation. The objects are read-only at this point. Each shape
is either a Polygon or a ClosedCurve. Concrete Polygons
include Squares, Rectangles, and Triangles, while
Circles and Ellipses are concrete ClosedCurves. Some
methods are implemented in abstract helper classes, while others
are implemented in the concrete classes, as indicated. Note that
Squares and Circles are not subclasses of Rectangles and
Ellipses, respectively. This is discussed later in the Liskov
Substitution Principle section.

For a simple example like this, a pure object-oriented design
would be adequate in most practical cases. However, the AOP
techniques discussed will be most valuable in larger design
problems with long-term maintenance, reuse, and enhancement
needs. Also, while the example is for Java and AspectJ, the
principles should be valid for most AOP systems.

2.1 The OOD Design Principles
2.1.1 The Single Responsibility Principle (SRP)

A class or aspect should have only one reason to change.

A class that mixes multiple concerns, each of which is an axis of
potential change, effectively couples the concerns. If the class
needs to evolve along one concern axis, the changes often
compromise the class’s ability to support the other concerns, even
when they remain fixed. Changing one concern also imposes
accidental changes on clients of the class which don't depend on
that concern. Hence, it is difficult to modify the class, making it
rigid and reuse is compromised in applications where a dependent
is forced to accept changes in features that it doesn’t need. Note
that the definition emphasizes change; a tangled module that
never needs to change poses no practical problems.

The SRP is the OOD solution to the classic “separation-of-
concerns” problem. The SRP splits orthogonal state and behavior
into separate classes, but it usually isn’t sufficient when a
crosscutting concern interacts with other concerns in fine-grained
ways.

The shapes example exhibits a common SRP problem, while
drawing shapes and converting to string formats is useful, it is
incidental to the “true nature” of shapes. Hence, it is cross-cutting,
especially since the details of these operations can vary depending
on the context. String representations could be in XML or another
format, for example. Drawing depends on the graphics libraries in
use. As shown, using a typical non-aspect approach, one variant
of each concern is implemented in an invasive way. An alternative
approach would be to use a design pattern like Visitor [14]. I will
demonstrate an AOP alternative shortly.

2.1.2 The Open-Closed Principle (OCP)
Software entities (classes, aspects, modules, functions, etc.) should
be open for extension, but closed for modification.

If a change in one location causes a cascade of changes to other
points in the system, those cascades result in brittle systems,
because it is hard to find all those points where changes are
required. This situation is another form of rigidity.

The OCP is a design strategy that minimizes this problem. An
entity should be closed for modification, meaning its code cannot

be changed, yet open for extension, through subclassing or
composition. The OCP reduces rigidity and brittleness because
preventing change in the original entity reduces a cascade of
changes in dependents.

An example OCP violation is conditional logic that switches on
the known classes in a hierarchy (or a “type code”), where a
unique action is taken for each case. Introduction of a new class
forces updates to all such code blocks. Instead, overloaded
methods should be added to the class hierarchy that implement the
variant behaviors (e.g., draw()in the example). The conditional
logic collapses to a single polymorphic method invocation.
However, what if the behavior is actually crosscutting and doesn't
really belong in the hierarchy?

A related technique that supports the OCP is the Template Method
pattern [14], where a base class implements a concrete method
that defines a protocol and which calls one or more abstract
methods to complete the details. Subclasses implement the
abstract methods to fill in the appropriate behaviors.

However, as discussed in [13], the OCP still has one limitation; it
is not possible to anticipate all changes that clients might want. A
new client requirement might not be satisfied by the existing
abstraction. This will force the abstraction to change, which will
probably cause a cascade of client changes.

Even if we could anticipate all possible changes, it would not be
desirable to design the original module for all such contingencies,
as this could lead to SRP violations, overly-complicated
interfaces, bloated and inefficient code, and increased
implementation effort, all to support options for change that might
never be used.

Let us return to the example and use aspects to refactor it in ways
that better support both the SRP and the OCP.

As it stands now, the Shape hierarchy satisfies the OCP because
we can easily add new shapes without modifying any existing
code3. Still, let us refactor the design to extract the crosscutting
toString() and draw() “features”. For brevity, unchanged
classes are omitted.
package shapes;
interface Shape { // draw() removed
 double getArea();
}

abstract class Polygon implements Shape {
 Point getVertex(index i) {…}
}

class Circle extends ClosedCurve {
 double getRadius() {…}
 Point getCenter() {…}
 double getArea() {…}
}

class Circle extends ClosedCurve {
 double getApogeeRadius() {…}
 double getPerigeeRadius() {…}
 Point getFocus1() {…}
 Point getFocus2() {…}
 Point getCenter() {…}

3 The exceptions are the places where decisions are made about

which shapes to instantiate, e.g., Factories [14].

 double getArea() {…}
}

<X>ToString.aj files: // separate aspect files
package shapes.tostring; // for all “toString()”…
aspect PolygonToString {
 String Polygon.toString() {
 StringBuffer buff = new StringBuffer();
 buff.append(getClass().getName());
 … append name and area fields …
 … append each line, as “from” and “to” points
 return buff.toString();
 }
}

aspect CircleToString {
 String Circle.toString() {...}
}

aspect EllipseToString {
 String Ellipse.toString() {...}
}

Drawable.java:
package drawing;
interface Drawable {
 void draw();
}

Drawable<X>.aj files: // separate aspect files
package shapes.drawing; // for all “draw()”…
import drawing.Drawable;
abstract aspect DrawableShape {
 declare parents: Shape implements Drawable;

 void Shape.draw () {
 String drawCommand = makeDrawCommand();
 // send command to graphics engine...
 }
 String Shape.makeDrawCommand() {
 return getClass().getName() + “\n” +
 makeDetails("\t");
 }
 abstract String
 Shape.makeDetails (String indent);
}

aspect DrawablePolygon extends DrawableShape {
 String Polygon.makeDetails (String indent){…}
}

aspect DrawableCircle extends DrawableShape {
 String Circle.makeDetails (String indent){…}
}

aspect DrawableEllipse extends DrawableShape {
 String Ellipse. makeDetails (String indent){…}
}

DrawLogger.aj:
package drawing.logging;
aspect DrawLogger {
 after (Drawable d):
 call (void Drawable+.draw()) && target(d) {
 // log the draw operation
 }
}

Listing 2

The toString() and draw() methods have been moved to
separate aspects, where intertype declarations (ITD’s) are used to
extend the shape classes with the new methods.

The Polygon.toString() method is sufficient for all of
Polygon's subclasses. Separate implementations are needed for
Circle.toString() and Ellipse.toString()
(details not shown).

For the draw() method, I introduce a Drawable interface and
make Shape implement it4. The interface provides an important
benefit; if we write pointcuts that reference only narrow
abstractions like this one, we greatly reduce the fragile coupling
caused by the AOSD-Evolution Paradox. Notice that the
DrawLogger aspect depends only on the Drawable
abstraction. It has no dependency on the Shape hierarchy and
therefore it requires no modifications when the Shape hierarchy
changes, thereby satisfying the OCP.

The draw() method is implemented using Template Method
[14].

Having separate aspects for these methods looks similar to the
Visitor pattern [14]. However, unlike Visitor, no modifications to
the original class hierarchy are required to “accept” visitor
objects.

Hence, aspects give us a powerful tool for supporting the OCP.
We can extend the behavior without modification of the original
classes. Even though intertype declarations (ITD’s) are used to
introduce new methods into the classes, we don't manually modify
the shapes code itself. Hence, ITD’s are not OCP-violating
modifications.

The Single Responsibility Principle (SRP) is better supported by
this refactoring because the shapes classes are now concerned
only with their essential structural properties and behaviors; they
are closer to pure domain objects. They could be reused in a wider
variety of contexts, with aspects and ITD’s used to add new
context-dependent state and behaviors, as needed, to support
implementation concerns. Also, the overall application structure is
more cohesive, because each concern is better localized.

The drawback of this approach is that state and behavior for a
particular class are no longer defined in a single place. Indeed,
this approach is somewhat radical for statically-typed languages.
Hence, good tooling is helpful to understand a module’s behavior
as modified by the aspects in the system [8].

However, developers using languages that allow classes to be
reopened for modification (Ruby is a recent and popular
example), routinely implement concerns in separate “modules”
and reopen classes to incorporate those modules and to make
other modifications to the classes.

How do you decide when to put state and behavior in the class
definition vs. in separate modules, using aspects or other
mechanisms? The Common Closure Principle (CCP) provides
guidance, which I will discuss later. For now, note that
excessively fine-grained modularization spreads information too
thin, compromising cohesion and comprehension.

4 No “Stringable” interface is used because Object already

defines the toString() method.

2.1.3 The Interface Segregation Principle (ISP)
Clients should not be forced to depend upon methods that they do
not use. Interfaces belong to clients, not to hierarchies.

There is a tendency for services to offer fat interfaces with
clusters of methods, each of which serves a particular type of
client. Any one client will ignore the other method clusters.
However, changes to the interface force unwanted changes on
clients who aren’t using the affected methods.

The solution is for a client to only depend on the narrowest,
possible interface that meets its needs. The best way to define that
interface is for the client to define it, since the client understands
its needs best.

This segregation of fat interfaces is the interface analog of the
SRP for classes and aspects. Pointcuts that only depend on such
interfaces are less affected by the AOSD-Evolution Paradox. The
Drawable interface is a good example of a minimal interface.

2.1.4 The Liskov Substitution Principle (LSP)
Subtypes must be substitutable for their base types.

If a program P depends on the behavior defined by a base class B
and D is considered a derived class of B, then instances of D must
not alter the behavior defined by B in ways that break P. The LSP
says that, under these circumstances, instances of D are
substitutable for instances of B. This is a more precise definition
of inheritance than the vague “is a” relationship. Note that
substitutability is context dependent. In another program P2, D
objects may not be substitutable for B objects.

Also, substitutability is primarily a behavioral trait, not a
structural one. To see this, recall that the example does not treat
Square as a subclass of Rectangle nor Circle as a subclass
of Ellipse, even though informally the “is a” relationship
seems valid in these two cases. Currently, since none of the
shapes allow modification (they are immutable), once you have a
Square, you can use it anywhere you need a Rectangle.
However, consider what happens when we extend the shapes to be
mutable.
package shapes;
class InvalidPointException {…}

class Polygon {
 list<Point> getVertices(); // package private
 …
}

Mutable<X>.aj files:
package shapes; // SAME package; see discussion
import shapes.Point;
import shapes.InvalidPointException;
import shapes.Polygon;

aspect MutablePolygon {
 void Polygon.setVertex(int i, Point v)
 throws IndexOutOfBoundsException,
 InvalidPointException {
 if (v == null)
 throw new InvalidPointException();
 this.getVertices().set(i, v);
 }
}

Listing 3

We use an aspect to add a setter method to Polygon. This forces
a few other refactorings. In AspectJ, methods introduced into a
class must obey the same scoping rules that apply to other
methods in the system, by default5. In other words, the introduced
methods can only access public or package private members in the
class and only the latter if the class and aspect are in the same
package. In this case, the Mutable aspects must be added to the
shapes package, not a different package as we did for the other
aspects. Also, so the aspect can modify the vertices, a package
private6 Polygon.getVertices() method is added so the
aspect can modify the vertices, without exposing this method to
clients of Polygon outside the package.

So, the mutability enhancement is an example where the OCP
doesn't quite succeed, but only a small, backwards-compatible
modification to an existing class is necessary. This characteristic
of AspectJ suggests that, when the OCP and aspect-aware class
design issues are considered we should consider making all
private members package private instead, especially if we expect
to use ITD’s.

Other details of this enhancement are omitted for brevity, such as
the details of the mutability enhancement for Ellipses and
Circles and the requirement that changing one vertex in a
Square or Rectangle requires others to change so the angles
remain 90 degrees!

With the enhancement defined, let us return to the LSP. Now
consider the following unit test for Rectangles.

public class RectangleTest extends TestCase {
 public void testPerpendicularSideLengths(){
 Point zerozero = new Point(0,0);
 Point zerotwo = new Point(0,2);
 Point fivezero = new Point(5,0);
 Point fivetwo = new Point(5,2);
 // C’tor arguments are the vertices
 Rectangle r = new Rectangle(
 zerozero, zerozero, zerozero, zerozero);
 assertEquals(0, r.getArea());

 r.setVertex(1, zerotwo); // change them
 r.setVertex(2, fivetwo);
 r.setVertex(3, fivezero);
 assertEquals(zerozero, r.getVertex(0));
 assertEquals(zerotwo, r.getVertex(1));
 assertEquals(fivetwo, r.getVertex(2));
 assertEquals(fivezero, r.getVertex(3));
 assertEquals(10, r.getArea());
}

Listing 4

What if the test instantiates a Square instead of a Rectangle?
The test will now fail. In the context of the test, where
modifications are expected, the LSP says that a Square is not a
valid substitute for a Rectangle and hence not a subclass.

While some potential LSP violations are prevented by language
restrictions, others are not. A common example is switching on
object type, mentioned previously when discussing the OCP.

5 Unless you use the privileged keyword, which should be

used with caution, as it bypasses Java’s access protection model
6 As indicated by a comment in the source; recall that I have

been suppressing the public keyword

Suppose a method m takes a parameter of type B and it has
conditional logic to perform different work based on the actual
class of the parameter. Introducing a new derived class D' of B
would break this method, unless it is suitably modified.

The LSP is the primary theoretical basis for Design by Contract
(DbC) [18], a technique for defining an executable form of a
module’s contract of use. DbC is one way of quantifying
substitutability. (Unit tests are another, as I demonstrated above
for Rectangles vs. Squares.)

Design by Contract stipulates three characteristics of a contract.

• Preconditions for a method must be true before it can
execute, i.e., constraints on the method parameters, object
state, and global data. They define what the method requires
in order to work successfully.

• Postconditions must be true when the method returns, i.e.,
what the method guarantees to accomplish, assuming the
preconditions were met.

• Invariants define state invariants satisfied by the object
within the atomicity of calls to the visible methods.

The contract also has interesting properties under inheritance. As
stated by Meyer [18],

A routine redeclaration [in a derivative] may only replace the
original precondition by one equal or weaker, and the original
postcondition by one equal or stronger7.

A redeclaration can weaken the precondition or strengthen the
postcondition because neither change violates the LSP. The new
“routine” is still substitutable for the original routine.

Aspects modify this picture. The effective contract of an object
combines the object’s contract in isolation and the effects of the
aspects that advice it or make intertype declarations into it. This is
another way of discussing modular reasoning for aspect-aware
interfaces [8].

Hence, when adding aspects to an existing system, the aspects
must obey the contracts of the objects they affect or else the
aspects will break the program8. Hence, the aspects+object must
behave exactly like instances of subclasses of the object’s class. I
will revisit this topic in Section 3, when I discuss aspect-specific
principles.

Finally, notice that before advice can be used to test
preconditions, after advice can be used to test postconditions,
and around advice can be used to test invariants. While a
contract is an integral part of a module, how it is used is
sometimes a crosscutting concern. In fact, aspects are an excellent
tool for testing and enforcing contracts (See, e.g., [19-21]).

2.1.5 The Dependency Inversion Principle (DIP)
(i) High-level modules should not depend on low-level modules. Both
should depend on abstractions.

7 As [13] also remarks, “weaker” means that the derivation can

choose not to enforce all the original preconditions. However it
can add new ones

8 For a new application, there is no such constraint on the
contract

(ii) Abstractions should not depend upon details. Details should
depend upon abstractions.

The last principle in this section covers a common flaw seen, e.g.,
in layered architectures, where classes in the upper layers depend
directly on the details of classes in the layers below them. These
dependencies are transitive; if A depends on B and B depends on
C, then A depends on C. This means the high-level application
and context-setting modules are fragile because they depend on
volatile details and they can’t be reused easily with different lower
layers.

The solution is for both layers to depend on an abstraction, as
shown in Figure 4, adapted from [13].

Figure 1

Note that the Service interface is defined in the Client layer, not
the Services layer, as is usually the case. This has two benefits.
First, it allows the client to define exactly the abstraction it needs,
nothing more or less (the Interface Segregation Principle).
Second, each layer is completely portable, as long as a
replacement subordinate layer implements the client-defined
interface.

If the layer dependency is actually a tangled concern, then it can
be factored out of the top layer completely into an aspect. For
example, if the Client needs to persist state to a database provided
by the Services layer, then the dependency is actually a tangled
concern that may be refactored as shown in the left-hand diagram
in Figure 2.

Figure 2

The Client is now decoupled completely from the Services. The
aspect observes state changes in the Client and persists the
changes. The aspect also defines the abstraction (not shown) that a
particular persistence service needs to implement. Hence, the
Services dependencies are structurally the same, but the Client is
more modular and decoupled.

A different approach is shown in the right-hand diagram in Figure
2. The Services layer no longer implements a “client” interface.

Instead, the aspect advices and invokes the Services directly. This
variation is more like an aspect implementation of the Adapter
pattern [14].

Technically, this approach has recreated the DIP violation, this
time in the aspect. However, the violation is likely much more
localized and hence maintainable, which may be sufficient for real
projects.

This approach may also violate the Stable Dependencies Principle
(see below), which states that modules should only depend on
more stable modules (because an unstable dependency introduces
instability into the dependent). This can be avoided if the aspect
depends only on stable, generic abstractions in both layers.

Package Cohesion and Coupling Principles
In addition to the five principles just discussed, there is a set of
three principles for package cohesion (internal structure) and three
for package coupling (inter-package structure) [13].

Most have straightforward implications for aspects and aspects
help implement the principles. All the principles are summarized
in Table 1. Here, I discuss only the packaging principles with
nontrivial aspect implications. (See also the discussion in [17])

In general, because some aspects have pervasive scope, consider
carefully how to package them with respect to the modules they
advise. On the other hand, as the examples in the previous section
demonstrate, aspects can reduce coupling, often by making
dependencies more localized, and aspects can make modules and
packages more granular.

2.1.6 The Common Closure Principle (CCP)
The classes in a package should be closed together against the same
kinds of changes. A change that affects a closed package affects all
the classes in that package and no other packages.

The CCP is the package analog of the Single Responsibility
Principle (SRP). Since systems evolve, localizing related changes
to a single package and making that package cohesive enough that
it has only one concern will make it easier to change and to
release an updated version when needed. The “closure” part of the
CCP relates to the Open-Closed Principle (OCP). Closing a
module to modification is not always possible when unanticipated
requirements emerge. However, if the changes are isolated, then
the impact of change is reduced.

Since aspects make it easier to support the SRP and the OCP, they
support the CCP. Also, packages tend to be smaller and more
cohesive, as demonstrated by the shapes example.

Earlier, I asked when should functionality be defined in the class
declaration vs. in separate aspects, using ITD’s? The CCP
suggests that the latter approach can yield higher cohesion and
lower coupling. The potential trade-off is reduced comprehension
as the class members are less localized.

2.1.7 The Stable Dependencies Principle (SDP)
Depend in the direction of stability.

Since changes to dependencies cause a ripple effect to clients,
dependencies should point from less stable to more stable
packages. Similarly, a package that depends on many other
packages is inherently unstable because it is susceptible to change
any time one of its dependencies changes.

Client

Client

Services

Service

Service

Client

Client

Service
s

«aspect»
Persistent

Client

Service

Client

Client

Service
s

«aspect»
Persistent

Client

Service

Note that a package of aspects with pervasive scope can break this
principle and the CCP if the aspects are coupled too closely to
concrete and volatile details in other packages. This suggests that,
the more pervasive the scope of an aspect, the more abstract its
dependencies should be. Failure to do this is another source of the
AOSD-Evolution Paradox [2].

2.1.8 The Stable Abstractions Principle (SAP)
A package should be as abstract as it is stable.

The SDP tells us to depend in the direction of stability. What if we
need flexibility in the stable packages? The solution is the Open-
Closed Principle (OCP). We design classes and aspects that allow
extension without modification. Stability is achieved by putting
the stable abstractions in separate packages from the
implementations, which are less stable. Any dependencies point
only to the stable abstraction packages. Factories [14] or other
mechanisms are used to satisfy the dependencies with actual
implementations, but the clients only know about the abstractions.

Abstract aspects that other aspects extend should also depend only
on abstractions and they should be packaged with other stable
abstractions.

3. Aspect-Oriented Design
In the previous sections, I summarized the OOD principles from
[13] and how they are supported by AOD. Now I return to AOD
itself and discuss further how the OOD principles lead us to some
aspect-specific design principles. I then discuss noninvasiveness
from the perspective of what we have learned.

3.1 Principles of Good AOD
First, AOD refines several of the OOD principles.

3.1.1 The Updated Open-Closed Principle (OCP’)9
Software entities (classes, aspects, modules, functions, etc.) should
be open for extension, but closed for source and contract
modification

Through intertype declarations (ITD) and advice, aspects actually
modify “entities”, but in a controlled way. Ad hoc manual editing
is still discouraged. Because a form of modification still occurs,
the principle also emphasizes that the original contract of the
entity must be preserved, even though this requirement is really
covered by the LSP’.

3.1.2 The Updated Liskov Substitution Principle
(LSP')

Subtypes must be substitutable for their base types.

Aspects plus base types must be substitutable for the base types.

As far as the LSP is concerned, a base type modified by an aspect
must obey the same contract rules as a subtype of the base type.
This means that the preconditions can be relaxed, the
postconditions can be strengthened, but the invariants must be
preserved.

So, the OCP’ and the LSP' constrain aspects to maintain the
invariance of the module’s contract. This leads us to a set of
AOD-specific subordinate principles that clarify the LSP' for
aspects.

9 “OCP prime”

3.1.3 The Advice Substitution Principle (ASP)
Before advice must support the same or weaker preconditions of the
join point it advices.

After advice must support the same or stronger postconditions of the
join point it advices.

Around advice must support the same or weaker preconditions of the
join point it advices and the same or stronger postconditions of the
join point.

All advice must support the invariants of the join point.

The ASP clarifies the second part of the LSP', which implies that
advice and introductions are effectively a derivation (in the
subtyping sense) at a join point. Specifically, before advice is a
derivation that can change the “initial” behavior, but not the
“final” behavior, while the opposite is true of after advice. Both
behaviors are potentially affected by around advice.

Note that the after advice principle also applies for exception
handling cases, because the thrown exception is also part of the
postcondition contract, albeit for abnormal termination.

What about multiple modifications introduced simultaneously? A
tricky issue with aspects is avoiding aspect collisions, caused by
mutually incompatible advices or introductions. Two or more
superimposed aspects that are orthogonal should have no affect on
each other. Each must separately obey the ASP.

In the general case of superimpositions, most aspect systems
provide a precedence mechanism to eliminate arbitrary execution
order. The ASP rules follow the precedence rules. If aspect A has
higher precedence than Aspect B and both advise join point J,
before advice for A is executed first, followed by before
advice for B, followed by J. To satisfy the ASP and hence the
LSP', the preconditions of A’s before advice must support the
preconditions of B’s before advice or weaker preconditions,
which must be equal to or weaker than J’s preconditions. Also,
A’s advice must satisfy B’s invariants, which must satisfy J’s
invariants.

Similarly for after advice, J is executed first, followed by
after advice for B, followed by after advice for A. Hence,
the postconditions of A’s after advice must support the
postconditions of B’s after advice or stronger postconditions,
which must be equal to or stronger than J’s postconditions.

The rules for around advice combine the rules for before
advice and after advice.

Finally, note that most non-functional concerns are often
orthogonal to the domain logic and therefore tend to obey the ASP
by default. It is when overlapping concerns are discussed, such as
the partitioning of domain logic, that the ASP becomes more
important.

3.1.4 The Introduction Substitution Principle
(ISP210)

An Introduction must conform to the contract of the advised module
and, if called by advice, it must conform to the ASP of the advice.

This is a corollary to the ASP for introductions, which have an
interesting nuance. If an introduction doesn’t affect existing join

10 “ISP2”, since “ISP” is already taken.

points, i.e., it represents orthogonal state and behavior, it only
needs to satisfy the invariants of the advised module11. However,
if an introduction is invoked from an advice that modifies a join
point, then it implicitly affects the join point and therefore the
introduction is subject to the same contract as the advice in which
it is used.

3.1.5 The Pointcut Inversion Principle (PIP - DIP
for Aspects)

Pointcuts should not depend on concrete details; they should depend
on abstractions.

This extension of the DIP recognizes that pointcuts are a form of
dependency and therefore they should only use abstractions.

Most pointcut languages use regular-expression or similar “query-
like” formalisms. This is problematic, because a method name
change, for example, requires a more sophisticated analysis to
find any affected pointcuts. Tool support for this analysis is
limited.
A number of approaches are being investigated for expressing
pointcuts in more abstract ways, including logic meta
programming (see e.g., [23]) and logical query languages (e.g.,
[24]).

Until join point abstraction mechanisms mature, several pragmatic
solutions help. One solution is to isolate and localize the “bad”
coupling and thereby make it more manageable.

A better solution is to write join points that refer only to existing
abstraction conventions, e.g., Java interfaces and annotations
(Java 5). It may be necessary to refactor existing target code to
make pointcuts easier to specify using abstractions. This may
appear to violate obliviousness, but refactoring is already an
integral part of “agile” development processes, because it
promotes adaptable and reusable software, in general.

Indeed, “aspect awareness” is now seen as important for good
design [8-12] and aspects should be regarded as first-class design
constructs along with classes and interfaces.

3.1.6 The Pointcut Scope Principle (PSP)
The more pervasive the scope of a pointcut, the more abstract it
should be.

Leaving the LSP’, this PSP is a practical consequence of the CCP
and the SDP. A pointcut with pervasive scope must be abstract.
Otherwise, the package it contains is too volatile because it
depends on too many volatile details in other packages.

3.2 Noninvasiveness
In general, modern languages and frameworks impose controls to
prevent unauthorized or ill-advised use of modules. For example,
most OO languages have scoping and protection constructs to
control access to state information and to restrict behavior, while
supporting extension through derivation and composition. Many
application frameworks provide security mechanisms to prevent
unauthorized activity, intentional or accidental. To achieve
mainstream adoption, aspect systems have to evolve beyond naïve
obliviousness for the same reasons. The idea of noninvasiveness

11 This is one reason it is often easier to use introductions, rather

than advice, to extend entity behavior without violating the
OCP.

was developed to allow aspect weaving without code modification
while permitting access controls and general “awareness”.

Since advice and introductions must obey the contracts of the join
points they advise, the contracts must be explicit enough to
constrain the behavior of potential advice and ITD’s. A necessary
extension is for contracts to be able to define access restrictions
on allowed join points [11]. Hence, contract specification, in the
generic sense, is an important characteristic of aspect-awareness.

AspectJ follows the protection model of Java, although the
privileged keyword allows bypassing the access restrictions.
It should be used only in carefully controlled circumstances. The
language access protection helps, but it is insufficient; I may wish
to prevent any advice inside a “critical” method for performance
or other reasons, for example.

When restricting the types of advice and introductions, the hardest
conditions to specify are those that involve detailed or subjective
information about the context of the join point. Furthermore, it is
of course not possible to anticipate all conceivable aspects that
might be used, so the constraints need to be general enough to
affect a reasonably large set of known and potential types of
advice.

4. Further Work
While the general principles discussed here are universal, the
details probably reflect some Java/AspectJ biases. Further analysis
of these ideas for general AOP theory and in other language
contexts would be useful. For example, I have only briefly
considered symmetric AOP systems, e.g., [5].

More work is required to understand the roles of contracts in
aspect interfaces, how they should constrain allowed advice and
ITD's, and how to define them in a practical, yet effective ways
[11]. The discussion of contracts, the OCP’ and the LSP' only
partially address this topic.

Finally, while I discussed how aspects influence the principles and
are constrained by them, I have not explored what these principles
say about aspect typing theory itself. More investigation is
needed.

5. Conclusions
By examining some well-known principles of good object-
oriented design, I demonstrated how aspects support and refine
them. I also discussed what these principles tell us about good
aspect-oriented design. In particular, I discussed the role of
contracts as constraints on how aspects are used in order to
preserve program correctness, security, etc., thereby supporting
the goals of noninvasiveness. Along the way I examined
weaknesses in some common aspect design techniques, which
lead to problems such as the AOSD-Evolution Paradox.

6. ACKNOWLEDGMENTS
My thanks to my colleagues at Object Mentor, New Aspects of
Software, and the contributors on “aosd-discuss” for stimulating
discussions.

7. REFERENCES
[1] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,

C., Loingtier, J. and Irwin, J., Aspect-oriented programming.

European Conference on Object-Oriented Programming
(ECOOP), 1997, 220-242.

[2] Tom Tourwé, Johan Brichau and Kris Gybels, On the
Existence of the AOSD-Evolution Paradox, AOSD 2003
Workshop on Software-engineering Properties of Languages
for Aspect Technologies (Boston, Massachusetts, USA,
March 17-21, 2003).

[3] AspectJ. http://www.aspectj.org/.

[4] R. Filman and D. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Workshop on Advanced
Separation of Concerns, OOPSLA 2000, 2000.

[5] Ossher, H. and Tarr. P. Multi-Dimensional Separation of
Concerns and the Hyperspace Approach. Proceedings of the
Symposium on Software Architectures and Component
Technology. Kluwer, 2000.

[6] Bergmans, L. and Aksit, M. Composing Crosscutting
Concerns Using Composition Filters. Communications of the
ACM, 44(10:51-57, October 2001.

[7] “Obliviousness Principle in Aspect-Oriented Software
Development,” aosd-discuss thread,
http://server2.hostvalu.com/pipermail/discuss_aosd.net/2003-
August/000617.html.

[8] G. Kiczales and M. Mezini. Aspect-oriented programming
and modular reasoning. In ICSE ’05: Proceedings of the 27th
international conference on software engineering, 2005.

[9] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The
structure and value of modularity in software design.
SIGSOFT Softw. Eng. Notes, 26(5):99–108, 2001.

[10] K. J. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle,
N. Tewari, H. Rajan. On the criteria to be used in
decomposing systems into aspects. In ESEC/FSE’05:
Proceedings of the Joint 10th European Software
Engineering Conference and 13th ACM SIGSOFT
Symposium on the Foundations of Software Engineering.

[11] Griswold, W.G., K. Sullivan, Y. Song, M. Shonle, N.
Tewari, Y. Cai and H. Rajan, Modular Software Design with
Crosscutting Interfaces, IEEE Software, Special Issue on
Aspect-Oriented Programming, January/February, Volume
23, Number 1, 2006, pp. 51-60.

[12] C. V. Lopes and S. K. Bajracharya, An analysis of
modularity in aspect oriented design. In Proceedings of
AOSD 2005 (Chicago, IL, USA, March 14-18, 2005). ACM
Press, New York, NY , 2005, pp. 15–26.

[13] Martin, R., Newkirk, J., and Koss, R. Agile Software
Development, Principles, Patterns, and Practices. Prentice
Hall, Upper Saddle River, NJ, 2003.

[14] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns; Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[15] Hannemann, J. and Kiczales, G. Design Pattern
Implementation in Java and AspectJ. In Proceedings of
OOPSLA ’02 (Seattle, Washington, USA, November 4-8,
2002). ACM Press, New York, NY, 2002, 161-173.

[16] Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U.,
Lucena, C., and von Staa, A., Modularizing Design Patterns
with Aspects: A Quantitative Study, Proceedings of AOSD
2005 (Chicago, IL, USA, March 14-18, 2005). ACM Press,
New York, NY , 2005, pp. 3-14.

[17] Nordberg, M. E. Aspect-Oriented Dependency Inversion.
OOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, 2001.

[18] Meyer, B., Object-Oriented Software Construction, 2nd
edition. Prentice Hall, Saddle River, NJ, 1997.

[19] Contract4J: Design by Contract for Java.
http://contract4j.org.

[20] Skotiniotis, T. and Lorenz, D. Cona -- Aspects for Contracts
and Contracts for Aspects.
http://www.oopsla.org/2004/ShowEvent.do?id=594.

[21] Barter – Beyond Design by Contract.
http://barter.sourceforge.net/.

[22] De Volder, K. and D'Hondt, T. Aspect-Oriented Logic Meta
Programming, Proceedings of Meta-Level Architectures and
Reflection, Second International Conference, Reflection'99.
LNCS 1616. Springer-Verlag, 1999, pp. 250-272.

[23] JQuery, a Query-Based Code Browser.
http://jquery.cs.ubc.ca/.

[24] Larochelle, D., Scheidt, K. and Sullivan, K. Join Point
Encapsulation.
http://www.cs.virginia.edu/~eos/papers/encapsulation.pdf.

Name Definition† AOD Perspective

Single
Responsibility
Principle (SRP)

A class or aspect should have only one
reason for change. (I.e., it should do only
one thing.)

Tangling of concerns is a common source of SRP violations, e.g., an
“entity” class that also handles its own persistence and transactional
behavior. Aspects provide additional tools for supporting the SRP.

Open-Closed
Principle (OCP)

Classes and aspects should be open for
extension, but closed for modification.

The word “closed” is refined to mean closed for manual source
modification. Aspects modify the entity in a controlled way, but they
must obey the join-points’ contract. This is easier for “orthogonal” state
and behavior changes.

Liskov
Substitution
Principle (LSP)

Subtypes must be substitutable for their
base types. (LSP is the basis for Design
by Contract [18])

Factoring out crosscutting concerns reduces the likelihood of LSP
violations. Aspects must preserve the contract expected by existing
clients of the module.

Interface
Segregation
Principle (ISP)

Clients should only depend upon methods
that they use. Interfaces belong to clients.
(SRP for interfaces.)

Aspects provide additional ways to integrate services with clients.

Dependency
Inversion
Principle (DIP)

(i) High-level modules should not depend
on low-level modules. Both should
depend on abstractions.

(ii) Abstractions should not depend on
details. Details should depend on
abstractions.

DIP violations are the biggest contributor to the AOSD-Evolution
Paradox problem, when pointcuts use concrete join point details. Hence,
pointcuts should only reference abstractions.

For dependencies that are concerns not related to the domain logic,
extraction into aspects localizes the coupling to the aspects themselves.

Release-Reuse
Equivalency
Principle (REP)

The granule of reuse is the granule of
release.

Aspects that are closely coupled to packages may need to be part of the
release “granule”. Special care is required when packaging aspects with
pervasive scope.

Common Reuse
Principle (CRP)

The classes and aspects in a package are
reused together. If you reuse one of them
in a package, you reuse them all.

Aspects promote the “SRP for packages”, but also require careful
packaging due to dependencies on other packages.

Common Closure
Principle (CCP)

The classes and aspects in a package
should be closed together against the
same kinds of changes. A change that
affects a closed package affects all the
classes and aspects in that package and
no other packages.

Aspects promote having packages with one concern. An AOSD system
will tend to have more packages, but they will be smaller, more cohesive,
and with less coupling between them.

Acyclic
Dependencies
Principle (ADP)

Allow no cycles in the package
dependency graph.

Aspects are one tool for breaking cycles, e.g., by supporting the DIP.

Stable
Dependencies
Principle (SDP)

Depend in the direction of stability. Aspects that don’t depend on abstractions contribute to the AOSD-
Evolution Paradox.

Stable
Abstractions
Principle (SAP)

A package should be as abstract as it is
stable.

The SAP applies to aspects, too.

†Adapted from [13]. The definitions reflect enhancements for aspects. Note that the first 5 form an acronym: SOLID.

Title 1: Object-Oriented Design Principles [13], extended for Aspects

