

How to Convince Industry of AOP

Daniel Wiese, Uwe Hohenstein, Regine Meunier

Siemens AG

CT SE 2

Otto-Hahn-Ring 6

D-81730 München

Germany

<Firstname>.<Lastname>@siemens.com

Abstract

This paper presents a proposal for convincing industry

of aspect-orientation, as it has been applied within

Siemens. The proceeding stresses on the immediate

benefits and ease of usage. Starting with an existing

application, we show how to improve the performance

and how to extend the behavior with only a few code

modifications by bringing aspect-orientation into the

game. An adequate infrastructure helps to use aspects

easily within IDEs such as Eclipse.

1. Introduction

Aspect-Orientation (AO) is not a brand-new

technology. Nevertheless its usage in industry is not

wide-spread and often covers only use cases such as

logging and tracing. That is, dissemination has not been

as successful as it should be.

[JST06] provides an analysis of how Moore’s work

[Mo91] on adoption of new technologies applies to

aspect-oriented software development (AOSD). The

authors conclude that Moore’s model can be considered

as an optimistic approximation of AOSD adoption. A

recent study of adoption of AOP within non-academic

projects indicates that the majority of the interviewed

developers were “early adopters” of this technology

[Du06]. We can acknowledge the same for the use of

AOP within Siemens. The current stage of adoption is

that occasionally developers learn the AO concepts and

try to apply them in non-critical phases of development

projects. Very rarely the project management

deliberately decides to use AO technologies in a

project.

We encountered the following problems when

trying to bring AO into business projects:

• Industry is often afraid of AO: AO mechanisms

change code, e.g., by means of interception or byte-

code modification; this has a touch of being obscure

and dangerous.

• Furthermore, the better concerns are decoupled, the

harder it is to understand their run-time interactions.

Software developers experienced the same when

moving from procedural programming to object-

oriented programming. AO allows modularizing a

system even better, which results in good

comprehensibility for single concerns, but has the

effect that the overall interactions between the

concerns at run-time are harder to evaluate. For

example, it is hard to see where a pointcut is

applicable or how the context between a pointcut

and an advice is exchanged. A recent paper by Mik

Kersten et al. [Ke06] shows that AspectJ

development is heavily depending on tool support in

contrast to OOP languages, which can be

successfully used with plain text editors.

Meanwhile, this tool support is available for some

AOP approaches.

• There is a lack of success stories, which keeps one

of the obstinate myths living: “AO is good only for

logging/tracing” [La06]. Some evangelists are using

AO in industrial projects, but unfortunately, little

experience about success or problems encountered

is reported to a broader audience. [BF06], [CC04]

and [Le06] report on experience with AO in

industrial settings. [Bo05] and [GN+06] implement

a tool for monitoring and a tool for performance

management using AO techniques, respectively.

This is exciting work that benefits from AO a lot,

but often not enough to prove a broad acceptance of

the technology.

We see a kind of a vicious circle here: Industry needs

large scale success stories to be convinced. But, to

produce such success stories you have to apply AO in

industrial projects. Two additional options are

suggested in the AO community to convince managers

of applying AO in projects:

• One possibility is to provide concrete

measurements about benefit and success in terms

of modularity, reusability, LOC, development time

etc. in real applications that already exist.

• Ron Bodkin and others [Bo06, Ki05] describe

several stages for AOP adoption. These stages

guide single developers who want to get familiar

with AO in several steps. This will work if a

critical mass of developers can be convinced,

which then in turn influences decisions of their

management.

The proposal we present here suggests an additional

path of dissemination. Our approach is to provide

support for using AOP with low effort and high benefit,

and to demonstrate the ease of use and the benefit by

means of a demonstrator to interested groups of

developers and managers.

The support for making AO easy to use consists of

the following:

• Use a programming language that provides

extended IDE support such as AspectJ.

• Provide an overall AO infrastructure, based on

Eclipse and Maven, which eases the application of

AO without spending time for setting up a

programming environment.

• Make reusable aspects available, easy to apply by

everybody without knowing much about AO.

• Provide an adequate infrastructure that supports

aspect reusability, namely an Eclipse plug-in,

called Aspect Manager, which allows for an easy

and immediate application of aspects.

The demonstration of AO techniques and the provided

support follows a schema we found very effective:

• Gather a group of developers and managers

interested in AO.

• Explain the benefits of AO and the support and

infrastructure we provide.

• Show a live demo: Improve the performance of an

existing application dramatically by using AO and

add additional behavior quickly.

The remainder of the paper is organized as follows. We

recapitulate the well-known stages of AOP adoption in

Section 2. In Section 3 we present our path of AOP

adoption by describing a problematic application in

detail, which can be improved by reusable aspects.

Furthermore, we discuss the infrastructure that supports

aspect reusability effectively. In Section 4 we conclude

and present our future work.

2. Stages of AOP Adoption

It is known that aspects are handy for logging and

instrumentation, and it is promised that they can be

applied to more complex problems as well.

Bodkin [Bo06] presents practical guidelines for

taking the next step with AOP after having just started

out with simple aspects. Most are unsure of how to

apply it to their daily development practices or to

convince decision-makers in an organization to adopt it.

He presents practical guidelines for taking that next

step with aspects. He introduces different stages of

AOP adoption and offers examples of learning

applications and guidelines for success at each stage:

• Stage 1. Learning and experimenting

• Stage 2. Solving real problems

• Stage 3. Integrating aspects into core development

Throughout the stages of adoption, a few key principles

apply:

• Adopt incrementally: Learn to use aspects a little bit

at a time. Start with "development aspects" that do

not put your production system at risk. Then apply

them to advantage. Finally, expand from there. At

each stage, it's important to build on what has

already worked and to find new opportunities.

• Reuse, and then create: Configuring pre-built

components is a great way to benefit from the power

of aspects, just as it was a great way to benefit from

the power of objects. As you gain experience, you

will want to customize and ultimately create your

own reusable components.

• Invest in pleasant surprises: Provide no-cost

examples of how aspects can solve the thorny

problems in your system before asking colleagues or

higher-ups to commit to aspects.

Naturally, becoming more experienced with AOP, one

will gain the skills needed to use it for more interesting

solutions, with correspondingly greater benefits. This

can mean using aspects more broadly or more deeply.

As awareness of AOP grows within the

organization, other developers naturally learn more and

start writing their own aspects.

3. A New Path of AOP Adoption

The previous proposal will work if a critical mass of

developers can be convinced, which then in turn

influences decisions of their management. Our

approach does not rely on this assumption.

Our suggested path for AOP adoption consists of

two elements. On the one hand, we provide a technical

solution easing the use of aspects. The aim is to enable

even AO newcomers to immediately apply the

technology. The solution consists of:

• reusable aspects

• use of annotations (avoiding a pointcut language)

• Aspect Manager and other infrastructure

• support and training

On the other hand, we provide an effective presentation

of our solution and support. This consists of

• an adequate application to show the benefits of the

AO solution;

• a live demonstration showing how easily and

effectively the application can be improved.

3.1 A problematic application

Before dwelling on the technical solution, we shortly

present the application. The aim of the application is to

manage personal data for employees working in a

department. Figure 1 shows a screenshot of this

application marking the problematic areas of the

application.

Figure 1: Personal data application

The left hand side displays all employees working in

one department. If a user selects a person, details will

be displayed on the right side. Every employee can

have multiple address records.

The performance of this application was quite poor.

For instance, every time, when an employee was

selected, the user had to wait several seconds until he

could continue his work.

In a nutshell, the major performance problems of

this application were:

1. Loading all cities of a country takes a lot of time.

Especially every time when a person record was

displayed, all countries and all cities of this country

(displayed in a drop down box) were loaded from

the database again and again.

2. Similarly, storing modified addresses to the

database is time-consuming and blocks further

operations.

3. There is a very unstable Undo/Redo management

present in the system because of the complexity to

implement it.

This application could be improved by:

1. Caching: Country and city names are quite stable

and do not need to be fetched from the database

every time a person record is loaded. Instead, it is

enough to fetch the addresses only once for further

accesses.

2. Storing asynchronously: Saving addresses can be

done asynchronously in order to not block other

operations any longer.

3. Stable and tested out of the box undo/redo

management for changing person and address

records.

All these features can be implemented by means of

aspects. Of course, other techniques such as design

patterns [BM+96] are applicable, too. However, the use

of pre-defined aspects is convincing because it shows

how easy the additional functionality can be added by

means of a few annotations.

But even if the benefits of using AO are high, we

found that the right infrastructure is a very critical issue

to convince managers and developers.

3.2 Aspect Manager and infrastructure

AO promises modularity and reusability of software.

These properties count in the long run. The importance

of a good infrastructure for developers in industrial

projects should not be underestimated if you want to

achieve high adoption of a new technology. Developers

are not willing to pay for modularity and reusability by

loosing the comfortable features of IDEs in their daily

work. Therefore, the extra benefits promised by AO

technology will only be accepted if it is delivered with

an infrastructure that is not inferior to the current state-

of-the-art.

Infrastructure for using aspects is already available

in some common IDEs. We essentially base the

discussion on Eclipse and AspectJ, but the basic ideas

can also be adapted to other environments.

The basic block of our infrastructure consists of a

central download site with all relevant plug-ins for

different Eclipse versions. This central plug-in bundling

infrastructure enables project teams to setup their IDE´s

for AO usage in a few minutes. Currently we are

providing the following plug-ins:

1. An Eclipse plug-in, called AJDT, allows to compile

AspectJ code within Eclipse. Moreover, there is full

IDE support for AspectJ: Graphical support helps to

select the joinpoints where an aspect is changing

behavior. The other way around, when selecting a

method, all aspects that affect that method are

immediately visible.

2. Another plug-in allows for an easy integration of

build tools such as Ant or Maven. They enable the

definition and automation of the build process.

Particularly, Maven is useful due to its dependency

management concept: A user can define

dependencies to required JARs in a pom.xml file.

Maven is then automatically downloading the JARs

in specified versions from a list of servers that can

be defined; one of them is certainly our download

site. Furthermore, it can be defined into which JARs

aspects should be woven.

3. The Siemens Aspect Manager is the central

component of our infrastructure. It is also the seam

to connect the AJDT plug-in and the external build

system Maven, when using predefined aspects

(AJDT and Maven have different build approaches).

The first two plug-ins already exist, and we just added

the download mechanism. Unfortunately, both plug-ins

have some deficiencies: AJDT support is not really

given – although it seems so. Building an application

takes place in Maven in addition to Eclipse compilation.

If Maven is downloading an aspect given as a JAR, then

the Maven compiler will be aware of applying aspects,

but the Eclipse compiler is not. This will confuse

developers because there is no graphical visualization

of join points. Furthermore, the developer has to change

the pom.xml file in order to achieve the weaving of

aspects.

The Siemens Aspect Manager is an Eclipse plug-in

that makes the configuration task much easier and

supports the reuse of predefined aspect libraries

effectively. The Aspect Manager uses an aspect

repository server from which aspects can be queried

and imported. This aspect repository hosts several

aspects in form of JARs. Then, the Aspect Manager

contacts the server and gets knowledge of all available

reusable aspects. The Aspect Manager displays all

available Java projects in the Eclipse workspace. By

right-clicking on a project, all available aspect libraries

in the repository (such as “Caching method

invocations”, “Asynchronous method invocation” or

“Jndi and Remoting”) will be displayed to the

programmer. The programmer can then select aspects to

be included in his project. This is the only task he has to

perform; all other work is done internally by the plug-

in, e.g., to maintain the Maven dependency to the aspect

libraries in the pom.xml, to let the compiler weave in

aspects that are defined in a different JAR to his Java

project, and to let Eclipse become aware of

instrumented code. Now, aspects become immediately

usable.

Figure 2 presents a screenshot of the Aspect

Manager.

Figure 2: Siemens Aspect Manager

If the user selects one of the predefined aspects such as

“Caching method invocations”, then the Aspect Manger

will perform the following operations:

• The Caching aspect will automatically be

downloaded from the repository server as a JAR; the

JAR is then installed on the local developer

machine.

• The Maven pom.xml file is automatically adjusted

so that other build systems (like Continuum) can

automatically build the application including the

caching functionality. This means that the Aspect

Manager handles the dependencies to the aspect

library, and allows AspectJ to weave in

dependencies.

• All pointcut definitions in the aspect are exposed to

the AspectJ weaver. The AspectJ weaver is

triggered by the Aspect Manager and weaves the

selected functionality into the current application, in

this example, the caching functionality. Join points

are visible in Eclipse just as the other AJDT support

is provided.

3.3 Easy usage
As already stated in [La05], Java-5 annotations are

great when starting with AO. Even completely

inexperienced AO programmers can benefit from the

technology.

In the previous section, we have already described

how predefined aspects can be included into projects

using the Siemens Aspect Manager. To apply pre-

defined aspects, the concept of Java-5 annotations is

used:

@Cached

void loadAddresses(...)

@Asynchronous

void saveAddresses(...)

@Cached and @Asynchronous annotations are used to

mark methods for applying the corresponding aspect.

The specific caching and asynchronous behavior is

implicitly added. The effect is immediately visible: The

application performs faster, and the only thing to be

done is to use the Aspect Manager to import these

aspects into an existing Eclipse project.

This means that the user can directly apply the

@Cached annotation to his code without caring about

the Eclipse configuration, Maven, and their relationship

to AspectJ.

3.4 A Collection of aspects

Pre-built library aspects are relatively new on the scene,

although some good aspect-oriented applications are

now becoming available, including the Glassbox

Inspector [Bo05], the JBoss Cache, and the GoF

patterns library [HK02]. However, these are coarse-

grained implementations that could be used directly

without seeing AO.

We want to start fine-grained by offering smaller

useful aspect libraries, which are a good way to start

learning and applying them in projects. We

implemented the following aspects to this end:

• Asynchronous method invocation

• Caching

• Undo/Redo management

and others not explained in this paper such as

Remoting, Transactions or Failover. Figure 4 and 5 at

the end of the paper present the major part of coding.

Caching
The idea is to trap any method that has been annotated

with @Cached. In this case, the caching aspect will

return, if available, the cached value of the method

instead of invoking the original method again. The

principle can be illustrated by an example:

@Cached

public List method(String param1,

 int param2) {...}

Let us assume, this example method performs a long

running operation. If the method is invoked twice with

the same parameter values, then the cached value

should be returned for the second invocation.

This idea can be implemented very nicely using

aspect orientation. The following pointcut traps any

method that has been annotated with @Cached:

pointcut execCachableOperation() :

 call(@Cached * *(..))

 && !within(@Cached *);

Using an around advice, we can check whether the

method has already been invoked for the given

parameter values instead of executing the original

method immediately:

Object around():execCachableOperation(){

Object[] args = thisJoinPoint.getArgs();

MethodSignature m = (MethodSignature)

 thisJoinPoint.getSignature();

Object key= MethodBodyCacheEntry.

 generateKey(m.getMethod(), args);

If the key is inside the cache, return

the cached entry, else invoke the

method and put the key and result to

the cache;

}

Please note that !within(@Cached *) is required in

the execCachableOperation pointcut to exclude the

call of the cached operation in the advice from being

trapped.

The problem now is how to detect whether a method

is called twice with the same parameter values. To

perform such a check, we are using a key generator

(MethodBodyCacheEntry.generateKey(...))

which guarantees that:

• key(f(x1, .., xn)) = key(g(y1, .., yn))

 => f=g ∧ x1=y1 ∧ x2=y2 ... ∧ xn=yn

• f!=g ∨ x1!=y1 ∨ ... ∨ xn!=yn

 => key(f(…)) != key(g(…))

The key will be equal if the method and the set of

parameters are equal; the keys are unequal otherwise.

The key is generated by the following static

method, which just returns an instance of

MethodBodyKey:

public static Object generateKey(

 Method method, Object[] args) {

 return new MethodBodyKey(method, args);

}

The class MethodBodyKey uses Java hashCode() and

equals() contracts to guarantee the conditions above:

public int hashCode() {

 final HashCodeBuilder hcb =

 new HashCodeBuilder();

 hcb.append(this.method);

 hcb.append(this.args);

 return hcb.toHashCode();

}

public boolean equals(Object obj) {

 ...

 final EqualsBuilder eqb =

 new EqualsBuilder();

 eqb.append(this.method, obj.method);

 eqb.append(this.args, obj.args);

 return eqb.isEquals();

}

We use the MethodBodyKey to check if the same key

is already inside the cache. If the key does not exist in

our cache, we invoke the original method by using

proceed() and put the result into the cache.

Otherwise, we return the cached entry.

The cache itself is pluggable; we use the EHCache

(for example, used in Hibernate), but any other cache

implementation can also be plugged in.

Asynchronous method invocation

The idea of the asynchronous invocation aspect is to

invoke methods asynchronously. Here, we only handle

methods without return values. The principle is the

same as for caching: A pointcut traps all methods

annotated with @Asynchronous, and an around advice

cares about the asynchronous execution:

pointcut invokeAsynchronously() :

 call(@Asynchronous * *(..))

 && !within(@Asynchronous *);

An around advice extracts the relevant parameters such

as the object on which the method should be invoked,

the method itself and the parameters:

void around() : invokeAsynchronously() {

 Object[] args = thisJoinPoint.getArgs();

 MethodSignature m = (MethodSignature)

 thisJoinPoint.getSignature();

 Object target =

 thisJoinPoint.getTarget();

 AsynchMethodInvoker.execute(

 m.getMethod(),target, args);

}

The class AsynchMethodInvoker provides a static

method executeAsynchronously which puts the

methods to be invoked asynchronously in a thread pool:

ExecutorService threadPool =

 Executors.newFixedThreadPool(LIMIT);

public static void executeAsynchronously

 (Method m, Object obj, Object[] args) {

 final MethodExecuter toExecute =

 new MethodExecuter(m,obj,args);

 synchronized (threadPool) {

 threadPool.execute(toExecute);

 }

}

The class MethodExecuter is just a container which

implements the Runnable interface and invokes the

method asynchronously via reflection inside the thread

pool:

public void run() {

 if (!this.method.isAccessible()) {

 method.setAccessible(true);

 }

 try {

 method.invoke(onObject, arguments);

 } catch(...){...}

}

Furthermore, we have to take into account that the

thread pool must be shut down at the end of the

application. An annotation @Shutdown is used to define

the place where to shut down. An after advice performs

this job. A possible place for the @Shutdown

annotation can be the main() method of an application.

Undo/Redo

A lot of applications, especially UI applications, need a

reliable undo/redo management. That is why we

provide an aspect that supports software developers to

realize undo/redo management on object graphs. From

our experience, a lot of developers find it challenging to

implement such functionality every time from scratch.

But why it is difficult to implement an Undo

management?

Assume Person is an “undoable” class, for which

possible changes on a Person object can be reverted

or the reverted changes can be restored:

Person p = new Person();

List<Address> l = p.getAddresses();

l.add(new Address(...));

p.setAddresses(l);

To implement such functionality, we have to detect any

modification of a Person object. For simple attribute

value changes, we can augment the implementation of

setter methods (if there are any) by some notification

mechanism. Changes in sets or lists such as

l.add(new Address(...)) above are more difficult

to handle, since we have no direct access to their

implementations. A possible but cumbersome solution

is to subclass Collection classes, to add the

notification behavior, and to restrict the usage of

collections to those subclasses.

In any case, if we add a new class to the application,

we need to enhance that class with such a monitoring

functionality: We need to monitor every change of

every attribute for every “undoable” class. However,

the monitoring is certainly crosscutting!

A software developer, who wants to automatically

prepare all domain objects in a package for undo/redo

management, can use the following pointcut to annotate

all domain classes with an @Undoable annotation, e.g.,

all the classes in package some.package:

declare @type: ((some.package..*) :

 @Undoable;

With AOP, it is now easy to monitor field modifications

in any class annotated with @Undoable by using the

set pointcut:

pointcut fieldModification() :

set(* *.*) && within(@Undoable *);

Moreover, list modifications can also be monitored

easily for all Collection subclasses:

pointcut listModification() :

 call(* Collection+.add(..))

&& within(@Undoable *);

The next step consists of extending the @Undoable

classes with the corresponding behavior (undo(),

redo(), ...). This can be done by intertype declarations

in the following manner:

declare parents : (@Undoable *)

 implements com.siemens.UndoHandler;

declare parents : (@Undoable *)

 extends com.siemens.UndoHandlerImpl;

Undoable classes are now implementing an Undo-

Handler interface by extending a predefined class

UndoHandlerImpl. The interface UndoHandler pro-

vides the signatures which are implemented by Undo-

HandlerImpl, and the latter implements the complete

Undo/Redo functionality: It adds the methods undo(),

redo() and markUnit() to undoable classes. Figure 3

illustrates the semantics of these methods.

undo();

redo();

markUnit();

Person

@Undoable

markUnit() markUnit() markUnit()

setName(„B“)

setAge(34)

setX(C)

undo()undo()undo()

redo() redo() redo()

setAge(30)

setName(„A“)

undo();

redo();

markUnit();

undo();

redo();

markUnit();

Person

@Undoable

markUnit() markUnit() markUnit()

setName(„B“)

setAge(34)

setX(C)

undo()undo()undo()

redo() redo() redo()

setAge(30)

setName(„A“)

Figure 3 : Undo management

markUnit() can be used to mark several changes on

an object graph as one unit of work. markUnit() can

for instance be called whenever a save button is pushed.

The undo() operation reverts all changes on the object

graph until the last unit of work marker (or the initial

object state).

The field changes are trapped by the pointcuts

fieldModification and listModification, as

described before. Every modification is monitored

using the command pattern. The UndoHandlerImpl

uses this command list to revert or restore changes, by

applying the list of commands to the object. Every

command object has an undo() and a redo() method

which apply/revert the atomic change represented by

the command, e.g., restore the old value of a field or

revert the field by setting the previous value.

This technical stuff runs in the aspect internally. An

application developer just has to use the undo/redo

methods that are added by UndoHandlerImpl to any

undoable class, e.g., implementing Undo/Redo buttons..

3.5 Description of live demo

For us, the value of the technical solution described in

the last two paragraphs is twofold. On the one hand, we

can deliver the aspect library, the Aspect Manager and

the additional infrastructure for use in projects. On the

other hand, the personal data application together with

the available AO support is an excellent means to

present the benefits of AO technology. Our presentation

proceeds along the following lines:

• We demonstrate the problematic application and

identify the bad performance because of retrieving

addresses unnecessarily from the database. Well, we

can certainly hire a database specialist to improve

the performance, but it is obvious that we can

benefit from caching here. Such a cache can be

implemented in a couple of days by software

developers, or in a minute using the predefined

Caching aspect. We select this aspect with the

Aspect Manager and use its functionality just by

annotating the relevant methods with @Cached. The

audience will see that this small code modification

is faster than even the compilation, and performance

will be much better. Using the Aspect Manager, just

compilation is necessary, nothing else.

• Then, we identify the bad performance because of

synchronous database storage. Again, we select an

aspect with the Aspect Manager, the Asynchronous

aspect, and apply it for asynchronous method

invocation.

• Finally, we solve the missing Undo/Redo

functionality by importing the Undo/Redo aspect

and using the functionality..

This presentation shows how a developer with no AOP

programming experience can improve an application

radically by using pre-defined aspects in only twenty

minutes, which is quite convincing!

4. Conclusions and Future Work

We presented in this paper a holistic way already

applied at Siemens of convincing industry of aspect-

orientation.

The key to success consists of several building

blocks: At first, we provide an Eclipse plug-in that

allows the selection of pre-defined aspects that are

available at a repository server; we can apply these

aspects directly in our Eclipse project without caring

about build tools and enabling the weaving process.

Second, we make our pre-defined aspects easily

usable without specifying complex pointcuts: The

aspects define Java-5 annotations that can immediately

be applied.

And finally, we used an existing, ordinary Java

application in order to show the potential and benefit of

AO: Using aspects that perform caching and

asynchronous method execution behavior, we can

improve the performance of that application with only a

very few code changes. Similarly, we can easily add an

Undo/Redo behavior by using aspects.

A demonstration shows in twenty minutes how

useful aspect-orientation (AO) is, without claiming for

a better code structure or the avoidance of code

scattering and tangling [EFB01].

However, this is only the first step of our

dissemination strategy. With our support and the

demonstration, we gain partners in Siemens business

units who are interested in applying AO in their

projects. They can serve as cells of AO knowledge in

their business units and one or the other AO-based

implementation will emerge. Having such AO-based

implementations, we could and should show the benefit

of AO, e.g., a smarter implementation, a smaller

amount of implementation work, a better flexibility,

adaptability, customization, configurability, and so on

to convince more managers and developers.

Possible candidates for larger AO implementations

are commonly accepted and widely used tools such as

EJB containers, Object Request Brokers,

Object/Relational (O/R) Mapping Tools such as JDO

tools, or database systems, which are implemented in a

conventional manner recently. If such tools are

implemented with AO, it becomes easier to convince

industry. The book of Rashid [Ra04] already addresses

Aspect-Oriented Databases. It gives an overview about

ongoing research and discusses all facets of AO in the

context of databases: AO to implement database

systems in a more modularized manner, persistence for

aspects, and some ideas on a persistence framework.

We want to continue our work with not

implementing just only persistence, but the whole EJB

stack [EJB3] including dependency injection, stateful

and stateless session beans, remoting, transactional

behavior etc.

References

[AJ06] AspectJ: Aspect-oriented Programming in Java,

http://www.aspectj.org

[AW06] AspectWerkz home page: http://aspectwerkz.

codehaus.org/index.html

[BM+96] Buschmann, F., Meunier, R., Rohnert, H.,

Sommerlad, P., Stal, M.: Pattern-Oriented Software

Architecture – A System of Patterns, John Wiley

and Sons, 1996

[Bo04] J. Bonér: What are the Key Issues for Commercial

AOP Use: How does AspectWerkz address them?

In Proc. 3rd Conf. on Aspect-Oriented Software

Development, AOSD 2004, Lancaster, ACM Press

[Bo05] R. Bodkin: AOP@Work: Performance monitoring

with AspectJ. http://www-128.ibm.com/developer

works/java/library/j-aopwork10/index.html

[Bo06] R. Bodkin: AOP@Work: Next Steps with Aspects.

http://www-128.ibm.com/developerworks/java/

library/j-aopwork16

[Bu05] B. Burke: Implementing Middleware Using AOP;

in Proc. 4th Conf. on Aspect-Oriented Software

Development; AOSD 2005, Chicago, ACM Press

[BF06] R. Bodkin, J. Furlong: Gathering Feedback on User

Behaviour using AspectJ; in [CVK06]

[CC04] A. Colyer, A. Clement: Large-scale AOSD for

Middleware. In Proc. 3rd Conf. on Aspect-Oriented

Software Development, AOSD 2004, Lancaster,

ACM Press

[CG04] T. Cohen, J. Gil: AspectJ2EE=AOP+J2EE –

Towards an Aspect Based, Programmable and

Extensible Middleware Framework. In Proc. 18th

European Conf. on Object-Oriented Programming,

ECOOP 2004, Oslo

[CVK06] M. Chapman, A. Vasseur, G. Kniesel (eds.): Proc.

Of Industry Track 3rd Conf. on Aspect-Oriented

Software Development, AOSD 2006, Bonn, ACM

Press

 [Du06] A. Duck: Implementation of AOP in Non-Academic

Projects; in [CVK06]

[EJB3] The EJB3 Specification (JSR 220): http://jcp.org

/aboutJava/communityprocess/pfd/jsr220/index.htm

l

[GN+06] K. Govindraj, S. Narayanan et al.: On Using AOP

for Application Performance Management. In

[CVK06]

[JST06] W. Joosen, F. Sanen, E. Truyen, Dissemination of

AOSD expertise – support documentation; AOSD-

Europe Project Deliverable No.: AOSD-Europe-

KUL–8, Mar. 06

[HK02] J. Hannemann and G. Kiczales. Design Pattern

Implementation in Java and AspectJ, Proc. of the

17th Annual ACM conference on Object-Oriented

Programming, Systems, Languages, and

Applications, OOPSLA 2002, Seattle

[Ho05] U. Hohenstein: Using Aspect-Orientation to Add

Persistency to Applications. Proc. of

Datenbanksysteme in Business, Technologie und

Web (BTW), Karlsruhe 2005

[Ke06] M. Kersten, M. Chapman, A. Clement, A. Colyer:

Lessons Learned building tool support for AspectJ,

in [CVK06]

[Ki05] G. Kiczales: Adopting AOP; in Proc. 4th Conf. on

Aspect-Oriented Software Development; AOSD

2005, Chicago, ACM Press

[La05] R. Laddad: AOP@Work: AOP and Metadata: A

Perfect Match. http://www-128.ibm.com/

developerworks/java/library/j-aopwork3

[La06] R. Laddad: AOP@Work: Myths about AOP.

http://www-128.ibm.com/developerworks/java/

library/j-aopwork15

[Le06] N. Lesiecki; Applying AspectJ to J2EE Application

Development. IEEE Software, January/February

2006

[Mo91] G. Moore: Crossing the Chasm. HarperBusiness,

1991

[RC03] A: Rashid, R. Chitchyan: Persistence as an Aspect.

In M. Aksit (ed.): 2nd Int. Conf. on Aspect-Oriented

Software Development, AOSD 2003, Boston, ACM

Press

[SB05] S. Soares, P. Borba: Implementing Modular and

Reusable Aspect-Oriented Concurrency Control

with AspectJ; in WASP05, Uberlândia, Brazil

[Ta05] D. Teare: Quick Start Guide to Enterprise AOP with

Aspectwerkz 2.0, 2005, http://dev2dev.bea.com

/pub/a/2005/04/enterprise_aop.html

public aspect CachingAspect issingleton() {

 pointcut execCachableOperation() : call(@Cached * *(..)) && !within(@Cached *);

 // create a CacheManager using defaults

 private final CacheManager manager = CacheManager.create();

 Object around() : execCachableOperation(){

 //extract the method and the target

 Object[] args = thisJoinPoint.getArgs();

 MethodSignature method = (MethodSignature)thisJoinPoint.getSignature();

 final Object key = MethodBodyCacheEntry.generateKey(method.getMethod(), args);

 final Cache myCache = manager.getCache(CacheProvider.EH-CACHE, "defaultConfig.xml");

 // check if the object is inside the cache

 Element cachedBack=myCache.get(key);

 Object back=null;

 // lets look if the return value is already chached

 if (cachedBack==null){

 Object backFromMethod = proceed();

 Element element = new Element(key, backFromMethod);

 myCache.put(element);

 back=backFromMethod;

 } else {

 back=cachedBack.getObjectValue();

 }

 return back;

 }

}

public aspect AsynchAspect {

 pointcut invokeAsynchronously() : call(@Asynchronous * *(..))

 && !within(@Asynchronous *);

 pointcut applicationTerminate() : execution(@Shutdown * *(..));

 void around() : invokeAsynchronous() {

 Object[] args = thisJoinPoint.getArgs();

 MethodSignature m =(MethodSignature)thisJoinPoint.getSignature();

 Object target = thisJoinPoint.getTarget();

 AsynchMethodInvoker.executeAsynchronously(m.getMethod(), target, args);

 }

after() : applicationTerminate() {

 AsynchMethodInvoker.terminateThreadPool();

 }

}

 Figure 4: Caching and Asynchronous Method Execution Aspect

public aspect RecordCollectionModifications {

 /** Call to an undoable object */

 pointcut undoableObject() : within(@Undoable *);

 pointcut addToList(Object o, Object newValue) :

 args(newValue) && this(o) && call(* java.util.Collection+.add(..));

 pointcut removeFromList(Object o, Object newValue) :

 args(newValue) && this(o) && call(* java.util.Collection+.remove(..));

 pointcut clearList(Object o) : this(o) && call(* java.util.Collection+.remove(..));

 /**

 * Advice to any field modification caused by the execution of a field.

 * Stores the new value and the old value as a Modification on the Command.

 */

 before(Object o, Object newValue) : addToList(o, newValue) && undoableObject() {

 try {

 final Collection coll = (Collection) thisJoinPoint.getTarget();

 final Command cmd = CollectionModificationCommand.addModification

 (coll, newValue, CollectionModificationType.ADD);

 List<Command> list = CommandRepository.getCommandList(o);

 list.add(cmd);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 /**

 * Advice to any field modification caused by the execution of a field.

 * Stores the new value and the old value as a Modification on the Command.

 */

 before(Object o, Object newValue) : removeFromList(o, newValue) && undoableObject() {

 try {

 final Collection coll = (Collection) thisJoinPoint.getTarget();

 final Command cmd = CollectionModificationCommand.addModification

 (coll, newValue, CollectionModificationType.REMOVE);

 List<Command> list = CommandRepository.getCommandList(o);

 list.add(cmd);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 /**

 * Advice to any field modification caused by the execution of a field.

 * Stores the new value and the old value as a Modification on the Command.

 */

 before(Object o) : clearList(o) && undoableObject() {

 try {

 final Collection coll = (Collection) thisJoinPoint.getTarget();

 final Command cmd = CollectionModificationCommand.addModification

 (coll, null, CollectionModificationType.REMOVE);

 List<Command> list = CommandRepository.getCommandList(o);

 list.add(cmd);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

public aspect UndoInterfaceDeclaration {

 declare parents : (@Undoable *) implements com.siemens.ct.undo.UndoHandler;

 declare parents : (@Undoable *) extends

 com.siemens.ct.undo.impl.UndoHandlerImpl;

}

Figure 5: Undo/Redo Aspect

