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ABSTRACT

PUMA is a framework for the development of applications that an-
alyze and, optionally, transform C or C++ source code. It supports
ISO C and C++ as well as many language extensions of the GNU
Compiler Collection and Microsoft Visual C++. Aspects played an
important role during the design and implementation of the frame-
work. It is written in the AspectC++ language. By employing
AOSD concepts, we gained a clean separation of concerns and,
thereby, very good configurability and extensibility. All these -
ilities are of vital importance for our project, because the available
manpower for maintenance tasks is limited. This paper briefly de-
scribes the design principles behind PUMA.

Categories and Subject Descriptors

D.3.4 [Processors]: Parsing; D.2.2 [Design Tools and Techniques];
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures

General Terms

Languages, Design

Keywords

Aspect-Oriented Programming (AOP), Aspect-Oriented Design, As-
pectC++, PUMA

1. INTRODUCTION

PUMA has been developed by pure-systems GmbH, a company
located in Magdeburg, Germany, where it is applied in the devel-
opment of client-specific tools for the analysis/transformation of
C/C++ source code. For instance, one recent PUMA-based project
was a mutation testing tool for SystemC [13] code. With PUMA
the development of this tool could be simplified significantly. Even
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though PUMA is being used in commercial projects, it is also avail-
able under the GPL!. This is remarkable, because as far as we know
there are no other open-source parsers for C++ available that are as
feature complete as PUMA.

A well-known noncommercial application of PUMA is the As-
pectC++ weaver ac++. AspectC++ [12] is an aspect-oriented ex-
tension of C++ and, at the same time, the implementation language
of PUMA.

Figure 1 gives an overview of the features that PUMA provides
for its applications. As several features are configurable, we re-
gard PUMA not as a single framework but as a product line [3] of
frameworks.

With about 83,000 lines of code, PUMA is a complex piece of
software. In the following, we concentrate on the aspect-oriented
design principles applied in the construction of PUMA parsers, which
is — with respect to separation of concerns and extensibility — the
most interesting and challenging part of PUMA.

1.1 Crosscutting Concerns of C/C++ Parsers

A parser has to accomplish various tasks at the same time. Pri-
marily it has to read tokens (such as identifiers, keywords, or oper-
ator symbols) from an input stream and match them against a set of
grammar rules. The rules can either be implemented by (generated)
tables or by (hand written) functions. For performance and com-
plexity reasons, the latter is the common approach in the C/C++
domain. The GNU gcc/g++ parser, for instance, is a huge piece of
hand-written C code; all grammar rules are expressed by C func-
tions that call each other. However, besides the grammar imple-
mentation, there are many other concerns:

e Language extensions: Objective-C and OpenMP (implemented
by conditional code)

Construction of syntax tree nodes

“Tentative Parsing” (speculative parsing and backtracking)

e Connection to the semantic analysis

Error handling
e Specific look-ahead optimizations

In gec/g++, all these concerns are an integral part of the C/C++
grammar. The code is tangled, which probably makes it difficult to
maintain and especially extend the parser. Furthermore, there is no
re-use — even though parts of the C++ grammar are very similar to
the C grammar.

'PUMA is available as a part of the AspectC++ weaver ac++. It’s
latest version can be anonymously downloaded via subversion from
the URL https://svn.aspectc.org/repos/Puma/trunk.
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LOCs GNU gcc/g++ Puma
(¢} c-parser.c 8676 CSyntax.cc 1786
C++ cpp-parser.cc 22964 CCSyntax.cc 2802

Table 1: Comparison between the C/C++ syntax rule imple-
mentations in GNU gce/g++ and Puma

The aspect-oriented design approach taken in the development
of PUMA leads to much better maintainability and extensibility, as
indicated in Table 1 by the comparison of the lines of code taken
by the respective C and C++ grammar implementations.

1.2 Primary Goal: Extensibility

A primary design goal behind PUMA is its extensibility. We
have to deal with various language extensions and vendor-specific
dialects, such as AspectC++, GNU and MS Visual C++, as well
as with a number of different C and C++ standards, such as C99,
C++1x, and so on. Additionally, PUMA is intended to support
client-specific language extension. Therefore, the design must fo-
cus on extensibility as a key feature.

2. DESIGN METHODOLOGY

During the last eight years we have developed aspect-oriented
software product lines with AspectC++ for various purposes, in-
cluding operating systems [9] and resource-constrained embedded
systems [10]. Over the years the insights from these projects evolved
into the design methodology that has also been used for PUMA. In
the following, we briefly present its core ideas (for further details
see [8]).

2.1 Principles

The basic idea behind our design approach is the strict separa-
tion of concerns in the implementation. Each implementation unit
provides exactly one feature; its mere presence or absence in the
configured source tree decides on the inclusion of the particular
feature into the resulting system variant.

Technically, this comes down to a strict decoupling of policies
and mechanisms by using aspects as the primary composition tech-
nique: Mechanisms are glued together and extended by aspects;
they support aspects by ensuring that all relevant internal control-
flow transitions are available as unambiguous and statically evalu-
able join points.

We learned from this that the exposure of all relevant gluing
and extension points as statically evaluable and unambiguous join
points has to be understood as a primary design goal from the very
beginning. The key premise for such aspect awareness is a compo-
nent structure that makes it possible to influence the composition
and shape of components as well as all run-time control flows that
run through them by aspects. This led to the following design prin-
ciples for PUMA:

The principle of loose coupling. Make sure that aspects can hook
into all facets of the static and dynamic integration of system
components.

The principle of visible transitions. Make sure that aspects can
hook into all control flows that run through the system. All
control-flow transitions into, out of, and within the system
should be influenceable by aspects. For this they have to
be represented on the join-point level as statically evaluable,
unambiguous join points.

The principle of minimal extensions. Make sure that aspects can
extend all features provided by the system on a fine granular-
ity. System components and system abstractions should be
fine-grained, sparse, and extensible by aspects.

Aspect awareness, as described by these principles, means that we
moderate the AOP ideal of obliviousness, which is generally con-
sidered by the AOP community as a defining characteristic of AOP.
PUMA'’s system components and abstractions are not totally obliv-
ious to aspects — they are supposed to provide explicit support for
aspects and even depend on them for their integration.

2.2 Role and Types of Classes and Aspects

The relationship between aspects and classes is asymmetrical
in most AOP languages including AspectC++: Aspects augment
classes, but not vice versa. This gives rise to the question which
features are best to be implemented as classes and which as aspects
and how both should be applied to meet the above design princi-
ples.

The general rule we came up with in the development of PUMA
and other systems is to provide some feature as a class if — and
only if — it represents a distinguishable instantiable concept of the
system. Provided as classes are:

1. System Components, which are instantiated on behalf of
PUMA and manage its run-time state (such as the UnitManager,
which maintains a list of opened and scanned source code
files in PUMA).

2. System Abstractions, which are instantiated on behalf of the
application and represent a system object (such as the C or
C++ parser).

However, the classes for system components and system abstrac-
tions are sparse and to be further “filled” by extension slices. The
main purpose of these classes is to provide a distinct scope with un-
ambiguous join points for the aspects (that is, visible transitions).
All other features are implemented as aspects. During the devel-
opment of PUMA we came up with three idiomatic roles of aspects:

1. Extension Aspects add additional features to a system ab-
straction or component (minimal extensions), such as extend-
ing the preprocessor by GNU compiler-specific predefined
macros.

2. Policy Aspects “glue” otherwise unrelated system abstrac-
tions or components together to implement some policy (loose
coupling). For instance, handling syntax errors during the
parse process can very well be handled by glueing the com-
ponent that generates error messages with the appropriate
rules of the grammar by a policy aspect.

3. Upcall Aspects bind behavior defined by higher layers to
events produced in lower layers of the system, such as inter-
cepting the execution of the preprocessor configure func-
tion by the higher-level GNU extension.

One aspect in the implementation can fulfill multiple roles. The
effect of extension aspects typically becomes visible in the API of
the affected system component or abstraction. Policy aspects, in
contrast, lead to a different system behavior. We will see examples
for extension and policy aspects in the following section. Upcall
aspects do not contribute directly to a design principle, but have a
more technical purpose: they exploit advice-based binding and the
fact that AspectC++ inlines advice code at the respective join point
for flexible, yet very efficient, upcalls.
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Figure 1: PUMA’s feature model: Supported input languages are C and C++; AspectC++ is an optional extension. The Microsoft
Visual C++ and GNU gcc/g++ dialects are optional, too. Source code analyses consist of preprocessing (CPP) and parsing. The
parser already performs most of the semantic analysis. Additional semantic analyses are provided as an optional sub-feature. AST
Matching is a mechanism for searching syntactical patterns. Support for source code transformation is optional as well.

3. SEPARATION OF CONCERNS IN PUMA

This section briefly describes the design of the PUMA C and C++
parsers, which is following the design principles introduced in the
previous section. The design process led to clean separation of
all relevant parser concerns identified in Section 1.1. We present
the aspect-oriented implementations of the backtracking and the
syntax tree construction concerns as examples in order to illustrate
the three roles of aspects.

3.1 C and C++ Syntax

The syntax of C and C++ is precisely defined in the respective
ISO standards [5, 6]. As most other C/C++ parsers, the PUMA
parser is hand written and not generated. Because many of the
syntax rules of C are also used in C++ with only minor extensions,
we decided to avoid redundancy and, thus, expressed the C and
C++ syntax as classes with an inheritance relation (see Figure 2).

The base class Syntax provides the interface to the scanner via
the token() function. All implementations of grammar rules are
virtual functions in order to allow a derived grammar implemen-
tation to override the rule. This is done for literal() in our sim-
plified example grammar. All functions return a bool value that is
true if the input token stream matches the implemented rule and
false otherwise.

We regard this system structure as aspect-aware, because it obeys
the aforementioned design principles. For instance, grouping oper-
ations that are related to the same grammar rule in a common inner
class, e.g. CSyntax::Literal, is important for loose coupling and
visible transitions. All relevant events, such as the execution of a
grammar rule, the invocation of another rule, a base-class rule in-
vocation, or the dynamic dispatch, are accessible for aspects in an
unambiguous manner. The disadvantage of this implementation is
that some more source code has to be written. However, this is
the only disadvantage. It is purely mechanic work and was done
quickly. Thanks to function inlining by the C++ compiler, the ad-
ditional structuring does not cause any overhead on the machine
code level.

Based on the homogeneous structure of the implementation and
the unambiguous join points we can define a number of pointcuts
as members of the Syntax class. This is shown in Figure 3. The
pointcuts can be regarded as an explicit representation of an inter-

struct CSyntax : public Syntax {
struct Literal {
static bool check (CSyntax &s) { return s.literal (); }
static bool parse (CSyntax &s) { return s.token(ID); }
};

virtual bool literal () { return Literal::parse(xthis); }

struct Primary {
static bool check (CSyntax &s) { return s.primary(); }
static bool parse (CSyntax &s) {
return Literal ::check(s) ||
(s.token(’(’) &% Expr::check(s) & & s.token(’)’));
}
}:

virtual bool primary () { return Primary::parse(xthis); }

// ... struct Expr not shown here

N

class CCSyntax : public CSyntax {
struct Literal : public CSyntax::Literal {
static bool parse (CCSyntax &s) {
return CSyntax:: Literal ::parse(s) || s.token(TRUE) ||
s.token (FALSE);
}
Iy
virtual bool literal () { return Literal::parse(xthis); }

1

Figure 2: Aspect-aware implementation of the grammar rules.

class Syntax {

/7.

pointcut parse_fct() = "bool %::%::parse(%)";
pointcut check_fct() = "bool %::%::check(%)";
pointcut in_syntax() = within(derived("Syntax"));

// rule_exec: execution of a parse function

pointcut rule_exec() = execution(parse_fct()) && in_syntax();

// rule_call: call of a parse function after a dynamic dispatch

pointcut rule_call() = call(parse_fct()) &% in_syntax() &&
lwithin("%::...::%");

// rule_check: a rule checks a sub—rule (before dynamic dispatch)

pointcut rule_check() = execution(check_fct()) && in_syntax();

Figure 3: An explicit interface for aspects



advice Syntax::rule_call(): after () {
if (*tjp->result()) {
Tree *t = JoinPoint:: Target::build(*tjp->arg<0>());
if (t) tip->arg<0>()->push_node(t);
else *tjp->result () = false;

13

advice "CSyntax::Literal" : slice struct {
static CTree *build(CSyntax &s) {
return new CT_Literal(s.get_node(0));

advice "CSyntax::Primary" : slice struct {
static CTree *build(CSyntax &s) {
if (s.nodes() == 3)
return new CT_BracedExpr(s.get_node(0),
s.get_node(1), s.get_node(2));
else
return s.get_node(0);

h

advice for ...::parse() — control flow
redirection to introduced build() functions
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Figure 4: Aspects for syntax tree construction

aspect SyntaxState {

// intercept all calls of rules (after dynamic dispatch)

advice Syntax::rule_call() : around () {
Syntax &s = *tjp—arg<0>(); // get Oth argument (CSyntax obj.)
Syntax :: State state; // local variable to store the state
s.get_state (state); // save current parser state
tjip —proceed(); // perform the intercepted call
if (Ixtjp—>result()) // check whether result is false

s.set_state (state); // restore the state

Figure 5: Backtracking support implemented as an aspect

face for aspects, which need to be activated when events occur that
are related to the execution of the syntax rules.

3.2 Backtracking and Scanner State

The simple parser described so far only works correctly if the
token () function does not consume the current token in cases where
it does not match its argument and if the grammar is LL(1), which
means that one token look-ahead is sufficient to decide which pro-
duction of a grammar rule is the right one. For C and C++ the latter
precondition does not hold. Therefore, the parser has to deal with
backtracking, which means that the state of the scanner has to be
saved when a rule is entered and restored afterwards if the result
is false. Otherwise an alternative rule would not be tried with the
same input tokens as the first rule, which failed.

Because of the aspect-aware system structure (Figure 2) and the
aspect interface (Figure 3), this can be expressed easily as an as-
pect in AspectC++ (see Figure 5). The aspect SyntaxState is a
policy aspect, because it connects the syntax rules with the func-
tions to save and restore the parser state and decides under which
circumstances this should happen. For instance, a more sophis-
ticated implementation of this policy could avoid to retrieve and
copy the parser state if it has not changed since the last time it was
saved. As the aspect only relies on the aspect interface pointcut
Syntax::rule_call(), it is automatically open for future exten-
sions, namely aspects that extend the syntax classes by additional
rules.

The SyntaxState aspect is very closely connected with the syn-
tax classes. Other aspects and classes regard the syntax classes and

the SyntaxState aspects as a union. Therefore, it could be regarded
as a local aspect. Nevertheless, it implements a highly crosscutting
concern. In the C and C++ syntax it matches 104 and 118 grammar
rules, respectively.

3.3 Syntax Tree Construction

In PUMA, syntax tree construction is implemented by the two
extension aspects CBuilder and CCBuilder in combination with an
upcall aspect Builder. The extension aspects introduce a function
called build() into all classes that represent grammar rules. The
implementation of these functions is different for each rule, because
PUMA uses different C++ classes to represent the syntax tree nodes.
If we wanted to change this in order to perform the syntax tree
construction with a more generic aspect, this would merely require
to replace the CBuilder and CCBuilder extension aspects. Figure 4
gives an overview of this design.

The Builder aspect is fully generic. It could even be used with
syntax implementations of other languages than C or C++. It only
depends on the assumption that each class that represents a gram-
mar rule contains a static member function build (). This function
is called after each successful run of the corresponding parse()
function. The builder slices are higher-level code in the sense that
they are aware of the implementation of the syntax classes, but not
vice versa. Therefore, the Builder aspect falls into the upcall as-
pect category. The build() functions are introduced by the two
extension aspects CBuilder and CCBuilder. If the build() func-
tion returns a syntax tree and not NULL, a pointer to this tree is
pushed onto a stack, which has been introduced by the Builder
aspect into the Syntax class. At the same time, the syntax trees
that were pushed onto the stack by successfully parsed sub-rules
are removed from the stack.

4. RELATED WORK

Several researchers have explored the benefits of AOP for com-
piler developments: De Moor and colleagues wrote a paper on
“Aspect-Oriented Compilers” in 1999 [11]. However, while we
concentrate on the parser front-end, their paper focuses on the se-
mantic analysis with attribute grammars and the translation. Wu
and associates describe a few Aspect] idioms for compiler con-
struction [14]; however, their work also assumes that there is al-
ready a syntax tree. Also related is the design of aspect-oriented



compiler construction systems called JustAdd [4]. In contrast to
our design, which is centered around the grammar rules — which
we regard as very stable! — JustAdd is centered around the syntax
tree classes.

A very different direction has been taken by the very popular
C-++-based parser generator spirir2, which uses C++ template meta-
programming to generate the parser. Although the grammar rules
are written in C++, the description language looks like a DSL.
However, there is no C++ grammar implementation for spirit, yet.

Somewhat comparable to PUMA is DMS by Semantic Designs
[2, 1], a generic code transformation system that supports a number
of target languages including C and C++. However, the source code
of DMS is not available; hence, not many details about its parsing
process are known.

S. CONCLUSIONS AND FUTURE WORK

For the development of PUMA, aspect-oriented software devel-
opment and AspectC++ have worked well. Even though C++ is
one of the most complex programming languages, the parser is still
manageable. We achieved our key goals, which are configurabil-
ity and extensibility. Both properties are needed to develop client-
specific code analysis tools in very short time. Compared to GNU
gee/g++ the source code is quite small. The design is open for var-
ious kinds of extensions.

Concerning the future of PUMA we are very optimistic. It is the
best open source C++ code analysis and transformation framework
that we are aware of. At the moment the project is still a bit hidden
(the source code is part of AspectC++), but in the future we plan to
promote it more actively.

A challenging test case for the flexibility of our design will be the
integration of the next C++ standard (C++1X), which is currently
being finalized by the C++ standard committee. Most probably
introduced by this standard will be the new static_assert key-
word and feature [7], which provides for compile-time assertions
in C++. The feature proposal for static assertions also contains an
interesting statement about the estimated time for the integration of
this feature into an existing compiler:

“A compiler writer could certainly implement this fea-
ture, as specified, in two or three days ...”

Our integration into PUMA took us only a single day including
tests, documentation, and some additional effort, which was needed,
because it was the first C++1X feature that we integrated. Even
though we are aware that the integration of all C++1X features will
be a tremendous effort, we are optimistic that PUMA is well pre-
pared for the upcoming requirements.
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