
Modularity forModularity for
the Modern Worldthe Modern World

Mary ShawMary Shaw
Institute for Software ResearchInstitute for Software Research

Carnegie Mellon UniversityCarnegie Mellon University

Start with definitionsStart with definitions
Modularity (n) from "modular" +"ity“

 "ity" is a suffix used to form abstract nouns expressing
state or condition

 so modularity is the state of being modular

Start with definitionsStart with definitions
Modularity (n) from "modular" +"ity“

 "ity" is a suffix used to form abstract nouns expressing
state or condition

 so modularity is the state of being modular
Modular (adj)

 related to, or based on, a module or modules

Start with definitionsStart with definitions
Modularity (n) from "modular" +"ity“

 "ity" is a suffix used to form abstract nouns expressing
state or condition

 so modularity is the state of being modular
Modular (adj)

 related to, or based on, a module or modules
Module (n) from Latin “modulus”

 a standardized, often interchangeable, component of a
system that is designed for easy assembly or flexible use

 a self-contained component that is used in combination
with other components

Examples of modulesExamples of modules
Computer Science: A portion of a program that carries out a

specific function and may be combined with other modules to
form a program

Electronics: A self-contained assembly of electronic components
and circuitry that is installed as a unit

Education: A unit of instruction in which a small topic or a section
of a broad topic is studied for a given period of time

Manufacturing: A prefabricated self-contained standard unit than
can be combined with other modules to assemble a wide
range of end products

Astronautics: A self-contained unit that performs a specific task
in support of the major function of the craft

Architecture: The size of some one part taken as a unit of
measure to regulate the proportions of the composition

… … about the definition …about the definition …
Module is defined in terms of elements such as

component, unit, portion, part, assembly …
 … with the property that a module is intended to be

combined with other modules to build something
 … with constraints arising from intentions about its use
 The precise nature of the element depends on the

purpose and context of module (re)use
Modularity shows the use of divide-and-conquer

 The criteria for separating the modules is “divide”
 We also need rules for combining them (“conquer”)

My objective today is to
offer a framework for describing modules

– and hence modularity –
that will open a discussion about

modularity in general and
new opportunities for the AOSD community

Why modularize?Why modularize?
Intellectual control

 Localize representations to separate decisions
 Separate concerns to enhance understandability
 Use standard architecture to reuse design knowledge

Segmentation of work
 Localize decisions to separate responsibilities
 Match work assignments to skills
 Factor tasks to match bodies of knowledge

Evolution and reuse
 Localize decisions to simplify change
 Standardize units to support reuse and substitution
 Support market for reusable parts

Historical examplesHistorical examples
Interchangeable parts -- early mass production ~1800

 firearms (Blanc Whitney), sailing blocks (Brunel)
 modular >> facilitate mass production and repair
 not evidently intended to enable new arrangements

Natural language -- enable new compositions
 Minimal unit varies by language (letters to pictographs)
 Grammars provide rules for combining words
 Composition by concatenation or merger (“compose”+”tion”)

Money -- standard modular units of value
 Coins originally had intrinsic value (weight in silver)
 Notes originated in receipts for goods in a warehouse
 Value became abstract when banks or governments guaranteed

their value

Understanding modularityUnderstanding modularity
To understand a modularity strategy, identify …
Scope:

 domain, generality, homogeneity, abstraction
Content:

 what’s in a module
Criteria:

 how does the designer decide on module boundaries
Organization:

 how are the module definitions organized?
Composition:

 how are modules combined?

Examples of Traditional ModularityExamples of Traditional Modularity
General strategies

 Functions/subroutines
 Data abstraction/objects
 Concurrency
 Architectures

Problem-specific strategies
 Model-view-controller
 Scribe text formatter

Set up a basis for comparing modularity strategies

Traditional functions and subroutinesTraditional functions and subroutines
Scope :

 stateless functionality, general purpose, homogenous,
abstract definitions match concrete implementation

Content:
 algorithm, corresponding to code

Criteria:
 localize reusable algorithms, package common functions

Organization:
 hierarchical nested definitions

Composition:
 function/procedure call

Scope :
 stateless functionality, general purpose, homogenous,

abstract definitions match concrete implementation
Content:

 functionality (algorithm), corresponding to code
Criteria:

 localize reusable algorithms, package common functions
Organization:

 hierarchical nested definitions
Composition:

 function/procedure call

Traditional functions and subroutinesTraditional functions and subroutines

Intellectual control

Evolution/reuse Segmentation of work

Data abstractions, Data abstractions, objectsobjects
Scope :

 localize representation, general purpose, homogenous,
abstract definitions partly match concrete implementation

Content:
 representation and related operations

Criteria:
 localize data representation and related operations

• maximize cohesion and coupling

Organization:
 flat, independent definition space

Composition:
 function/procedure call

Data abstractionsData abstractions, objects, objects
Scope :

 localize representation, general purpose, homogenous,
abstract partially matching concrete, manage variations

Content:
 representation and related operations; relative definitions

Criteria:
 localize data representation and related operations

Organization:
 hierarchical inheritance

Composition:
 function/procedure call, dynamically bound
 inheritance (abstractly, it’s function call under the covers)

ConcurrencyConcurrency
Scope :

 asynchronous concurrency, general purpose,
homogenous, abstract matching concrete

Content:
 thread algorithm and synchronization

Criteria:
 separate tasks into threads; synchronize to avoid conflict

Organization:
 flat definition space with interactions between definitions

Composition:
 synchronization, data sharing with locks

ArchitecturesArchitectures
Scope :

 coarse-grained system organization, general purpose,
heterogeneous, abstract mostly matching concrete

Content:
 subsystems: databases, processes, data streams, servers

Criteria:
 identify large functional units and their relations

Organization:
 recognize different types of subsystems, flat within types

Composition:
 subsystem interaction (communication & data) protocols

Examples of Traditional ModularityExamples of Traditional Modularity
General strategies

 Functions/subroutines
 Data abstraction/objects
 Concurrency
 Architectures

Problem-specific strategies
 Model-view-controller
 Scribe text formatter

Set up a basis for comparing modularity strategies

Model-View-ControllerModel-View-Controller
Scope :

 user interface to interactive system, special purpose,
heterogeneous, abstract matching concrete

Content:
 M: algorithms for system; V: user interface; C: mapping

Criteria:
 separate concerns of underlying model and interaction

Organization:
 coordinated definitions

Composition:
 stylized: assigned roles to components

Text Markup (Scribe, 1981)Text Markup (Scribe, 1981)
Scope :

 document markup data, special purpose, heterogeneous,
interpretive

Content:
 document & markup; rendering (style), device properties

Criteria:
 separate document content and markup, formatting style,

printing device definition
Organization:

 independent text documents
Composition:

 interpreter applies style & device definitions to document

Issue: Structure clashesIssue: Structure clashes
Module definitions are often organized hierarchically

 This is a widespread and very useful approach
 Alas, a static document can have only one hierarchy

A system may have multiple distinct concerns, each
with a reasonable definition hierarchy
 Some language devices try to address structure clashes

• Aspects, multiple inheritance, flavors, etc
 “Cross-cutting concerns” recognize the problem
 Multiple hierarchies can sometimes coexist when concerns

are orthogonal

Exercise:
Describe aspects in this framework

Computing in the modern worldComputing in the modern world
Two significant trends …

End user development
 Professional software developers are vastly outnumbered

by developers whose principal expertise lies elsewhere
Ultra large scale systems

 The traditional model of discrete software projects with
managers and clear objectives is becoming obsolete

There are There are lotslots of end users of end users

C. Scaffidi, M. Shaw, and B. Myers. Estimating the Numbers of End Users
and End User Programmers. VL/HCC'05: Proc 2005 IEEE Symposium on
Visual Languages and Human-Centric Computing, pp. 207-214, 2005.

Using data from the Bureau of
Labor Statistics, we estimate
that over 90M Americans will
use computers at work in 2012.
Of these, only about 2.5M will
be professional programmers;
40.5M will be managers and
(non-software) professionals.

This does not include home
users or non-US users, so there
will be many more than 90M
total end users. Most of them
will “program” in some way.

They are not all alikeThey are not all alike

C. Scaffidi, Andrew Ko, B. Myers, and M. Shaw. Dimensions Characterizing
Programming Feature Usage by Information Workers. VL/HCC'06: Proc2006
IEEE Symp on Visual Languages and Human-Centric Computing, pp. 59-62,
2006.

Analysis of
web-based
survey of
Information
Week
readers

Internet resourcesInternet resources
Information: unstructured text, formatted text, databases, live

data feeds, images, maps, current status (e.g., inventory,
location)

Calculation: reusable software components, applications that
can be invoked remotely (e.g., services)

Communication: messages, social networking, streaming
media, synchronous communication, agent systems,
alert/notification services

Control: coordination for use of resources, access to
registration and subscription services

Services: simulation, editorial selection, evaluation, secondary
(derived) information, responsive experts, markets

Properties of internet resourcesProperties of internet resources
Autonomous

 Independently created and managed
 May change structure or format without notice

Heterogeneous
 Different packagings, output often for viewing only
 Different business objectives, conditions of use

Open affordances
 Independent systems, not dependent components
 Incidental effects may be useful
 Humans integral to some resources

Ultra-Large-Scale SystemsUltra-Large-Scale Systems
Large size on many dimensions

 Lines of code, amount of data, users, dependencies
among and complexity of components, etc

More than “systems of systems”
Characteristics

 Decentralized operation and control
 Conflicting, unknowable, diverse requirements
 Continuous evolution and deployment
 Heterogeneous, inconsistent, changing elements
 Indistinct people/system boundary
 Normal failures
 New forms of acquisition and policy

SEI. Ultra-Large-Scale Systems. 2006

Analogy: Cities and city planningAnalogy: Cities and city planning
Cities are complex systems

 Built of individual components chosen by individuals
 Constantly evolve
 Withstand failures and attacks

Cities are not centrally controlled
 Standards for infrastructures

• Building codes, highway standards
 Policies that allow individual action within constraints

• Zoning laws
 Regulations that govern individual action

• Enforcement after the fact, rather than prior constraint

“Wicked problems”

Modern modularity challengesModern modularity challenges
General strategies

 Cloud computing
 Web modularity
 Architectural integration

Problem-specific strategies
 Yahoo pipes
 Web page definitions
 Large-scale fine-grained parallelism

Set up a basis for comparing modularity strategies

Cloud computingCloud computing
Many providers offer commodity-grade computing

services over the internet
 distributed computing power
 storage
 applications
 “software as a service”

“The cloud” can be used in many ways; focus on
service-oriented computing

Service oriented computingService oriented computing
Scope :

 commodity services, general-purpose, architecturally
homogeneous, currently implementation-oriented

Content:
 coarse-grained interchangeable computation and storage

Criteria:
 independent units in support of business processes, usually

with service guarantees
Organization:

 distributed definitions with discovery services
Composition:

 orchestration: discover services, establish contracts,
marshal data; interact through defined protocols

Web modularityWeb modularity
Composing information from the web

 Add-ons, plug-ins, extensions for incrementing base system
 Mashups: opportunistic repurposing

• Currently lacks good modularity and other abstractions
 Smartphone apps
 Participatory web (Web 2.0): user-generated content,

interoperability, “network as platform”
• Social networking lacks good modularity and other abstractions

Annotating and merging data
 Semantic web (Web 3.0): annotated data and data fusion

Semantic webSemantic web
Scope :

 annotated data, general-purpose, homogeneous, aspires to
semantic abstraction

Content:
 data extensively annotated with metadata

Criteria:
 data is not restructured from its natural form; metadata

enables identification of matching elements
Organization:

 ontologies and metadata tags on data elements
Composition:

 interchange formats; matching tags used to establish
correspondence

Architectural integrationArchitectural integration
Software architecture has gone beyond standalone

systems to distributed compositions of existing
components, systems, and services

CONNECT project
 general integration of heterogeneous components

Medical informatics
 new initiatives in interoperability and integration

Modern modularity challengesModern modularity challenges
General strategies

 Cloud computing
 Web modularity
 Architectural integration

Problem-specific strategies
 Yahoo pipes
 Web page definitions
 Large-scale fine-grained parallelism

Set up a basis for comparing modularity strategies

Yahoo pipesYahoo pipes
Scope :

 aggregate data feeds, special-purpose, homogeneous,
abstract and concrete

Content:
 RSS data feeds and similar streams

Criteria:
 data is not restructured from its natural form, but only feeds

such as RSS feeds are supported
Organization:

 I have found it hard to find useful pipes
Composition:

 visual interface supports filtering, merging, and other
remixing of feeds; result is itself a feed

Web page definitionsWeb page definitions
Scribe criteria remain viable: separate document

definition into tagged document, style, & rendering
On the web

 the web page is the annotated document
 the CSS file, template, or content management system is the

style
 the browser is responsible for rendering

Opportunity: the web page itself incorporates document
markup, algorithm, state management, and structure
information
 structure (XML) is modular, but the others are mingled
 that is, the web page is mudular

Large-scale fine-grained parallelismLarge-scale fine-grained parallelism
MapReduce (tightly synchronized)

 automatically parallelize computations over large data
sets to run scalably and robustly on large clusters of
commodity machines

Grid computing with volunteered resources
 factor very large computations into independent

asynchronous units that can be delegated to diverse low-
end platforms; must be robust to individual failures

 for example SETI@home
 BOINC has 2.5M users, 6M hosts, >200 countries

Framework for discussing modularityFramework for discussing modularity
To understand a modularity strategy, identify …
Scope:

 domain, generality, homogeneity, abstraction
Content:

 what’s in a module
Criteria:

 how does the designer decide on module boundaries
Organization:

 how are the module definitions organized?
Composition:

 how are modules combined?

Types of module contentTypes of module content
Functionality (algorithm)
Representation
Relative definition (inheritance deltas)
Control (threads)
Subsystems
Document and markup, data plus metadata
Rendering
Device properties
Services
Connectors (protocols)
Invocation vs augmentation (function vs plugin)
Data feeds (e.g., RSS)

Types of compositionTypes of composition
Function, procedure, subroutine calls
Dynamically bound calls
Inheritance (for defining variants)
Synchronization
Subsystem interaction (communication & data) protocols
Interpretation
Stylized; assigned roles for components
Services orchestration (discovery, contracts, …)
Interchange language/protocol/representation
Filtering, merging, remixing
MapReduce
Plugin callback (for augmentation)

Types of compositionTypes of composition
Function, procedure, subroutine calls
Inheritance (for defining variants)
Synchronization
Interpretation
Stylized; assigned roles for components
Services orchestration (discovery, contracts, …)
Interchange language/protocol/representation
Filtering, merging, remixing
MapReduce
Plugin callback (for augmentation)
Weaving

Note:
These are
abstractions. In
current technology,
most are actually
implemented with
procedure calls

Status of this frameworkStatus of this framework
 Brooks proposed recognizing three kinds of results,

with individual criteria for quality:
 findings -- well-established scientific truths --

judged by truthfulness and rigor
 observations -- reports on actual phenomena --

judged by interestingness
 rules-of-thumb -- generalizations, signed by an author

 (but perhaps not fully supported by data) --
judged by usefulness

with freshness as criterion for all

This framework is certainly not a finding; I present it
as a rule-of-thumb and a basis for discussion

Frederick P. Brooks, Jr. Grasping Reality Through Illusion -- Interactive
Graphics Serving Science. Proc ACM SIGCHI Human Factors in
Computer Systems Conference, May 1988, pp. 1-11.

My objective today is to
offer a framework for describing modules

– and hence modularity –
that will open a discussion about

modularity in general and
new opportunities for the AOSD community

My objective today is to
offer a framework for describing modules

– and hence modularity –
that will open a discussion about

modularity in general and
new opportunities for the AOSD community

Particularly interesting opportunities go beyond
code to address problems of real users in the

real interactive, connected world

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

