
Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 1

Ultimate Agility: Let Your
Users Do Your Work!

Joseph W. Yoder

joe@refactory.com

http://www.refactory.com

Copyright 2011, Joseph W. Yoder & The Refactory, Inc.

Slide - 2

Agenda

Agility and architecture to support
change

Adaptive Object-Model (AOM) basics

An example: Unfolding the core
architecture

An AOM Pattern Language:

Case studies and conclusions

Evolved with Rebecca Wirfs-Brock

mailto:joe@refactory.com
http://www.google.com/imgres?imgurl=http://3.bp.blogspot.com/_3rNPTjX71t4/SGFh-Ok37OI/AAAAAAAAAKs/GcnG__q90lc/s400/P6240019.JPG&imgrefurl=http://vagos2008.blogspot.com/2008/06/hammer-time-so-joo-2008-porto.html&usg=__efXMxF4koiBQGzhMp64R-_5TyM4=&h=300&w=400&sz=22&hl=en&start=6&um=1&itbs=1&tbnid=UiLwHBVJb_XZgM:&tbnh=93&tbnw=124&prev=/images?q=porto+sao+joao+hammer&um=1&hl=en&sa=N&rls=com.microsoft:en-us&tbs=isch:1
http://www.google.com/imgres?imgurl=http://www.quirkyguide.com/wp-content/uploads/2008/05/rubber_hammers.jpg&imgrefurl=http://www.quirkyguide.com/quirky-portugal-st-john%E2%80%99s-festival.html&usg=__ZCiu0I4QxdGaK_I3fgCxyiTfyPw=&h=350&w=350&sz=23&hl=en&start=1&um=1&itbs=1&tbnid=vzAtw31Y7PUCXM:&tbnh=120&tbnw=120&prev=/images?q=porto+sao+joao+hammer&um=1&hl=en&sa=N&rls=com.microsoft:en-us&tbs=isch:1

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 2

Slide - 3

Motivation:
Need to Quickly Adapt to Change
Business Rules or Domain Elements are

changing quickly:

• New calculations for insurance policies and new
types of policies offered

• Online store catalog with new products and
services and rules applying to them

• New cell phone product and services…

Need a quick way to develop and adapt to
these changing requirements. Typical
way requires iterations, build-compile-
release, lots of testing and deployment
through change control!

Slide - 4

Motivation:
Design for easy change

Sometimes it pays to build systems so they
can be changed or extended without hand
coding all changes.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 3

Slide - 5

Contrasting: Two Ways to
Change a Working System

Traditional SW
Architecture

Adaptive Object-Model
Way

Who implements the change? A programmer after
understanding and
implementing a ―story‖ card.

A domain expert does, if it is
a domain object or business
rule change.

How are changes verified? Programmer writes tests, QA
writes and runs acceptance
tests,
end-user approves.

Still have to run all unit and
acceptance tests. But can also
build into end-user tool
checks that model changes
won’t ―break‖ the existing
working system.

How often can the system be
updated in production?

At the end of an iteration. Whenever changes are
verified. Not tied to dev cycle.

What’s the big deal? Still have to go through some
release cycle. Programming
and deployment can become
bottlenecks.

Significant changes can be
made by end-users. Releasing
can be as simple as updating
production metadata.

Slide - 6

Adaptive Object-Model
(Active|Dynamic Object-Model)

 An ADAPTIVE OBJECT-MODEL provides
meta information about the domain model
and business rules that is interpreted.

 Typically arise from domain-specific
frameworks refactored when they become
too complex.

 Allow systems to quickly adapt to
changing requirements.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 4

Slide - 7

Represent classes, attributes, behaviors and
relationships as metadata

Experts change the metadata (object model)
to reflect changes in the domain.

Object-Model stored in a database or in
files and interpreted (can be XML/XMI).

Adaptive Object-Model Basics

Consequently, the object model is adaptable without
writing code. When you change the metadata, the

system behavior changes.

Slide - 8

Adaptive Object-Model
General Design Principles

Identify what is changing at a
rapid pace.

Separate and isolate changing parts.

Build rapidly changing domain objects
or behaviors so they can be evolved
without recompiling code.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 5

Slide - 9

Stuart Brand’s Shearing Layers

Buildings are a set of components that
evolve in different timescales.

Layers: site, structure, skin, services,
space plan, stuff. Each layer has its own
value, and speed of change (pace).

Buildings adapt because
faster layers (services) are
not obstructed by slower
ones (structure).

—Stuart Brand, How Buildings Learn

Slide - 10

Yoder and Foote’s
Software Shearing Layers

―Factor your system so that artifacts that change at
similar rates are together.‖—Foote & Yoder, Ball of
Mud, PLoPD4

 The platform

 Infrastructure

 Data schema

 Standard frameworks and components

 Abstract classes and interfaces

 Classes

 Code

 Data

Layers

Slower

Faster

http://www.laputan.org/images/figures/shearing-layers.gif

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 6

Slide - 11

Agile Values

Core values:

 Design Simplicity

 Communication

 Teamwork

 Trust

 Satisfying stakeholder needs

Constant learning

Slide - 12

Can you be agile if you create
an AOM?

Yes, because it enables change.

But you must justify extra complexity.

And counteract arguments:

 How can anything that involves frameworks
or metadata ever be considered agile?

 An AOM isn’t simple design. And all we
should do is simple design.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 7

Slide - 13

Agile Myths

The goal is always simple design. So…
 never create frameworks.

 never write code that isn’t immediately
self-explanatory.

 if I don’t understand your code, your design
is too complex.

Simple solutions are always best.

Building in flexibility is always
over-engineering.

You can change the system fast!!!

Slide - 14

Our Agile Design Values

Respect your system’s shearing layers.
 Understand the rates of what changes.

Determine who should be able to make
changes, when, and at what cost.
 Support them.

Make what is too difficult, time consuming,
or tedious easier.
 Create tools, leverage design patterns,

use data to drive behavior…

Don’t overdesign!!!

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 8

Slide - 15

Allowing Systems to Adapt
Requirements change.

Business Rules often change rapidly.

Understanding of the domain changes, too.

Domain Experts know their domain best.

Applications have to quickly adapt to
new business requirements.

Agile development embraces changes to the
requirements, even late in the development!

One way to adapt is to refactor to support
new business requirements…

Slide - 16

Elements of
Adaptive Object Models

• Metadata

• TypeObject

• Properties

• Type Square

• Strategy/RuleObjects

• Entity-Relationship

• Interpreters/Builders

• Editors/GUIs

If you want something to change quickly,
push it into data and build tools geared towards

changemakers’ needs.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 9

Slide - 17

The Power of Metadata

Code is data, data is code. Everything is
data. And data can drive behavior.

Meta data simply describes other data.

―If something is going to vary in a
predictable way, store the description
of the variation in a database so that
it is easy to change‖—Ralph Johnson.

Slide - 18

Type-Object

Before
PLoPD3 - Johnson and Woolf

Symptom: Explosion of classes based on
minor attribute differences

Solution: Factor
common attributes
into ―type‖ classes

After

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 10

Slide - 19

Properties

Creating subclasses
for minor attribute
variations makes the
system static and
brittle.

Before

After

Allow instances of a given
class to have different
attributes. Factor each
attribute into a separate
Property associated with the
class.

Slide - 20

But this still isn’t flexible enough

Each time a property is added or changed
on its type, the code will need changing.

How do we define new types of properties?

How do we validate the proper types?

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 11

Slide - 21

Entity

Property

EntityType

PropertyType

-name : String

-type : Type

0..n type

0..nproperties

0..n type

0..n properties

TypeSquare

Example: Now it is easy to add different kinds of catalog items

 Sweaters (size=(S,M,L,XL), color=(red,green,blue,yellow,…)

 Canoes (length=float, width=float)

Constrains
possible
properties for
an entity

Constrains
type of a
property

Slide - 22

Type Square
(instance diagram)

anEntityType

<vinylAudioRec>

anAccountabilityType

<PARENT>
anEntity

Joe’s Garage

aPropertyType

<AudMedia(Str)>

aProperty

name <SuperFid>

aPropertyType

<RecSpeed (int)>

aProperty

name <45>

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 12

Slide - 23

TypeSquare Exercise

GROUP EXERCISE…

Slide - 24

Dealing with Behavior/Rules

Making methods that implement the different
algorithm for each Type or Property could
require a large case-statement and could be
impractical to maintain.

Instances for the similar types can have
different algorithm depending upon context.

• The model has to implements a defined set of

interchangeable algorithms that customize the

behavior of the system.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 13

Slide - 25

Strategies/RuleObjects Solution
(Behavior/Methods)

Design Patterns - GOF95

SomeStrategy

+sharedInterface()

-sharedAttributes : someType

Strategy1 Strategy2 StragegyN

...

Entity

+someOperations()

-specificAttribues : type

Strategy2.1 Strategy2.2

*

*

1

1

Slide - 26

Putting It All Together
(Very Common Structure)

Entity

Property

EntityType

PropertyType

-name : String

-type : Type

Rule

PrimRule CompositeRule

rule0..n type

0..nproperties

0..n type

0..n properties

0..n

ECOOP & OOPSLA 2001 Yoder, Balaguer, Johnson

Classes with
Attributes

Behavior

Operational Knowledge (meta)

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 14

Slide - 27

An AOM
Example…Refactoring

as We Go

Slide - 28

Newborn Screening
Refactoring Example

Mother, Infant

Hospital, Lab

Doctor, HealthProf.

Blood Specimen

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 15

Slide - 29

Medical Observation –
Basic OO Design Model

What happens when a new observation is required?

PhysicalMeasure

Blood

Observation Person

Measurement

 convertTo:

Trait

 traitValue
Quantity

 unit

 amount

 expressOnUnit:

expressOnUnits:

EyeColor

HairColor

Gender

Height

Weight

…

…

FeedingType

Hearing

Vision

*

Slide - 30

Observation Design
(1st Design)

Person

+address()

+phone()

+name()

Observation

+phenomenon()

-recordedDate : Date

-observedDate : Date

-duration : TimePeriod

Measurement

+observationValue()

Trait

+observationValue()

ObservationType

-phenomenon : Symbol

Quantity

+expressOnUnit(aUnit : Unit)

+expressOnUnits(unitCollection : Collection)

-unit : Unit

-amount : Number

* *1 1

1 1

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 16

Slide - 31

Name: John Smith
Mother: Sue Smith

Father:

Address:

Phone:

Height: 3 feet

Eyes Color: Blue

Observation Design
Example

Slide - 32

Observation Design
(instance diagram)

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 17

Slide - 33

Composing Observations

Observations can be more complex

Cholesterol

 Components: HDL, LDL

Blood Pressure

 Components: Systolic, Diastolic

Vision

 Components: Left Eye, Right Eye

Slide - 34

Composite Observation Design
(1st Refactoring)

Composite Pattern (GOF)

Make sure all tests still pass!

Person

+address()

+phone()

+name()

Observation

+phenomenon()

-recordedDate : Date

-observedDate : Date

-duration : TimePeriod

Measurement

+observationValue()

Trait

+observationValue()

ObservationType

-phenomenon : Symbol

Quantity

+expressOnUnit(aUnit : Unit)

+expressOnUnits(unitCollection : Collection)

-unit : Unit

-amount : Number

CompositeObservation

-observations : Collection

1..n

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 18

Slide - 35

Observation Design
Example

Name: John Smith
Mother: Sue Smith

Father:

Address:

Phone:

Height: 3 feet

Eyes Color: Blue

Blood Pressure:

 Systolic: 120 mmHg

 Diastolic: 80 mmHg

Slide - 36

Composite Observation Design
(instance diagram)

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 19

Slide - 37

Composite and Primitive
Observation Design
What we know about John?

Slide - 38

Validating Observations

Each Observation has its own set
of legal values:
 Baby’s Weight: [0..30] pounds

 HepatitisB: {positive, negative}

 Left/Right Vision: {normal, abnormal}

The GUI could enforce legal values
 but we prefer these business rules in

domain objects

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 20

Slide - 39

ObservationType

-phenomenon : Symbol

-validator : Validator

Validator

DiscreteValidator

-descriptorSet : Collection

NullValidator RangedValidator

-intervalSet : Collection

-validUnit : Unit

Validating Observations Design
(2nd Refactoring)

Slide - 40

Is everything an Observation?

How does the model specify the structure of the Composite?

What is the relationship between Trait and DiscreteValidator?

Overall Observation Design

First make sure original test cases pass and
then add new test cases for the validators!

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 21

Slide - 41

 ObservationType

 phenomenonType

 isValid: obsValue

Party

Primitive Observation

 observationValue
CompositeObservation

Observation

 recordedDate

 comments

 isValid

Validator

 validatorName

 isValid: obsValue

DiscreteValidator

 descriptorSet

RangedValidator

 intervalSet

 validUnit
PrimitiveObservation

Type

CompositeObservation

Type

NullValidator

Quantity

 unit

 quantity

 convertTo:

DiscreteValues

Extend the design by adding Composite to Type

Refactor the Metadata!

Observation Design

Slide - 42

Observation Design

 ObservationType

 phenomenonType

 isValid: obsValue

Party

Primitive Observation

 observationValue
CompositeObservation

Observation

 recordedDate

 comments

 isValid

Validator

 validatorName

 isValid: obsValue

DiscreteValidator

 descriptorSet

RangedValidator

 intervalSet

 validUnit
PrimitiveObservation

Type

CompositeObservation

Type

NullValidator

Quantity

 unit

 quantity

 convertTo:

DiscreteValuesOperational level

Extend the Design by adding Composite to Type

Refactor the Metadata!

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 22

Slide - 43

Observation Design

 ObservationType

 phenomenonType

 isValid: obsValue

Party

Primitive Observation

 observationValue
CompositeObservation

Observation

 recordedDate

 comments

 isValid

Validator

 validatorName

 isValid: obsValue

DiscreteValidator

 descriptorSet

RangedValidator

 intervalSet

 validUnit
PrimitiveObservation

Type

CompositeObservation

Type

NullValidator

Quantity

 unit

 quantity

 convertTo:

DiscreteValues

Knowledge level

Extend the design by adding Composite to Type

Refactor the Metadata

Slide - 44

Observation Design
(instance diagram)

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 23

Slide - 45

Observation Design
(instance diagram)

aRangedValidator

Slide - 46

Observations: TypeObject

TypeObject

1..* elements

1 descriptor

elements 1..*

1..*

instance

ObservationType

phenomenonType

isValid: obsValue

Primitive Observation

observationValue

CompositeObservation

Observation

recordedDate

comments

isValid

PrimitiveObservation

Type

CompositeObservation

Type

Quantity

unit

quantity

convertTo:

DiscreteValues

Operational level

value 1..*

dvalue 1..*

Knowledge level

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 24

Slide - 47

Observations: Properties

properties

1..*

elements 1..*

1..*

instance

Party

Primitive Observation

observationValue
CompositeObservation

Observation

recordedDate

comments

isValid

Quantity

unit

quantity

convertTo:

DiscreteValuesOperational level

value 1..*

dvalue 1..*

Knowledge level

Slide - 48

Observations: TypeSquare

contDescr 1

1 descriptor

1..* elements

1..* varType

elements 1..*

1..*

instance

ObservationType

phenomenonType

isValid: obsValue

Party

Primitive Observation

observationValue

CompositeObservation

Observation

recordedDate

comments

isValid

PrimitiveObservation

Type

CompositeObservation

Type

Quantity

unit

quantity

convertTo:

DiscreteValuesOperational level

PartyType

1 descriptor

properties

1..*

1..*

value 1..*

dvalue 1..*

Knowledge level

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 25

Slide - 49

Observations: Strategy

guard 1
ObservationType

phenomenonType

isValid: obsValue

Validator

validatorName

isValid: obsValue

DiscreteValidator

descriptorSet

RangedValidator

intervalSet

validUnit

PrimitiveObservation

Type

CompositeObservation

Type
NullValidator

Operational level

1..* elements

1..* type

Knowledge level

Slide - 50

Medical Observations Design

1 descriptor

elements 1..*

1..*

instance

ObservationType

phenomenonType

isValid: obsValue

Party

Primitive Observation

observationValue

CompositeObservation

Observation

recordedDate

comments

isValid

Validator

validatorName

isValid: obsValue

DiscreteValidator

descriptorSet

RangedValidator

intervalSet

validUnitPrimitiveObservation

Type

CompositeObservation

Type

NullValidator

Quantity

unit

quantity

convertTo:

DiscreteValuesOperational level

1..* elements

guard 11..* type

PartyType

1 descriptor

properties

1..*

1..*

value 1..*

dvalue 1..*

Knowledge level

1..* varType

contDescr 1
Entities

Attributes

Behavior

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 26

Slide - 51

Refactoring Leverage

Refactoring exploits Brooks’ ―promising attacks‖
from No Silver Bullet:
 grow don’t build software: software growth involves

restructuring (this is core to Agile);

 requirements refinements and rapid prototyping:
refactoring supports such design exploration, and
adapting to changing customer needs;

 support great designers: refactoring is yet another tool in
a designer’s tool chest.

Slide - 52

Extending our Example
to Include…

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 27

Slide - 53

Infants, Mothers and Doctors...

Entities and Relationships

Person

+name : String

-address : String

-phone : String

Infant

+gestetionalAge : Number

Mother Doctor LabTechnician

Slide - 54

Putting it all together

Newborn Screening

Person

+name : String

-address : String

-phone : String

Infant

+gestetionalAge : Number

Mother DoctorLabTechnician Hospital

Organization

+name : String

-address : String

-phone : String

Lab

n 1..1

n

n

n 1..1n n

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 28

Slide - 55

Analysis Patterns – Martin Fowler

Accountability Party

Accountability Type Party Type

0..n

1..nresponsible

0..n

1..ncommissioner

1..n

0..n

type

0..n

1..ntype

0..n

1..nlegal responsible

0..n

1..nlegal commissionersupertype supertype

Entity-Relationship Patterns

Slide - 56

Party and Accountability
Modeling relationships between entities

Sue Smith

John Smith

Sue is the mother of John

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 29

Slide - 57

aParty

name <Sue>

Party and Accountability
(instance diagram)

anAccountabilityType

<PARENT>

anAccountabilityType

<CHILD>

anAccountabilityType

<PARENT>

anAccountability aPartyType

<MOTHER>

anAccountabilityaParty

name <John>
aPartyType

<INFANT>

aPartyType

<PERSON>

Slide - 58

Entity

+valueUsing:()

Attribute

EntityType

+name

+type

AttributeType

-type

1 1

-attributes *

1

1

-type

*

-children *

1

-attributeTypes1

*

+valueUsing:()

Rule

TableLookup BinaryOperation

+value

Constant

1

-rules

*

1 *

*

*

1

*

CompositeRule

Accountability AccountabilityType-type

1 1

1

-children*-children *

1

-accountabilities1

* -children *

1

-accountabilitieTypes1

*

Putting it All Together: Adaptive
Object Model ―Core Architecture‖

Classes with
Attributes and
Relationships

Behavior

Operational Knowledge (meta)

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 30

Slide - 59

Different Types of Behavior

Behavior is very domain specific:

 Constraints on values, relationships, state
changes…(we’ve looked at some of these)

 Functional…(invoicing, insurance policies,…)

 Workflow…(docs through a school, PoD,…)

 Event based …(cancel order, exception,…)

Maybe can organize differently but most
Rules/Behaviors can be described above

Slide - 60

Strategies/Interpreters/RuleObjects
(Behavior/Methods)

Design Patterns - GOF95

Composite Strategies  Interpreter

SomeStrategy

+sharedInterface()

-sharedAttributes : someType

Strategy1 Strategy2 StragegyN

...

Entity

+someOperations()

-specificAttribues : type

Strategy2.1 Strategy2.2

*

*

1

1

RuleObject

PrimitiveRule CompositeRule

ANDCondition ORCondition NOTCondition

*

1

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 31

Slide - 61

Composite Strategies

Problem: Strategy leads to a big
class hierarchy, one class for
each kind of policy.

Solution: Make Composite
Strategies using Primitive
Operations.

=> Interpreter pattern

Slide - 62

What About Roles?

Problem: How do you deal with dynamic
behavior for an object? For example, a
person can be either a mother, child, or
doctor in our system.

Solution: Create a Role Object that defines
their behavior. A ―role‖ defines a
pluggable strategy.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 32

Slide - 63

Roles
(Parties, Accountabilities and Properties
is the Beginning of Roles)

Babies

 Have Mothers and Doctors

 Gestational Age,

 Hearing and Vision,

 Weight, Race, Ethnicity, DOB, ...

Mothers

 Have Babies and Doctors

 Hepatitus present at Birth (y/n),

 Languages, Race, Ethnicity, ...

Slide - 64

Roles
(Parties, Accountabilities and Properties
is the Beginning of Roles)

In our system, there are different types
of parties, relationships between them,
and properties on the parties, including
different observations.

The pluggable behavior (or different
roles) is defined for a given party by the
legal relationships it can have and the
set of properties that are allowed.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 33

Slide - 65

Roles
(an example)

Person

+baseBehavior()

PersonRole

ChildRole

+childBehavior()

DoctorRole

+doctorBehavior()

MotherRole

+motherBehavior()

0..n

PLoP 97 - Fowler

PLoPD4 - Baumer, Riehle, Siberski, Wulf

Slide - 66

Roles
(Parties, Accountabilities and Properties
is the Beginning of Roles)

anAccountabilityType

<CHILD>

aParty

name <Sue>

aPartyType

<MOTHER>

anAccountabilityType

<DOCTOR>

aParty

name <John>

anAccountabilityType

<PARENT>

aPartyType

<INFANT>

anAccountabilityType

<DOCTOR>

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 34

Slide - 67

We have examined
the “core” patterns

for the domain model

What else is there?

How do you interact
with the domain?

…

Slide - 68

We Have Only Shown Part of a
Larger AOM Pattern Language

Core Patterns: the basic implementation of AOM
domain objects.

Presentation Patterns: how to visually represent AOMs.

Creational: how to create instances of domain objects.

Behavioral: dynamically adding, removing or modifying
behavior (business rules).

Process Patterns: the process of creating AOMs. They
establish guidelines for evolving frameworks and boundaries
to avoid implementing meta beyond what’s necessary.

Miscellaneous: usage, control, and instrumentation of AOMs
and guidelines for non-functional requirements such as
performance or auditability.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 35

Slide - 69

OOPSLA 2007 Poster Session

Slide - 70

Other Issues

Metamodeling techniques

Persistence

Consistency (versions)

Dynamic GUIs

Managing Releases

Editors (Types and Rules)

Optimizers

…

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 36

Slide - 71

Metamodeling techniques
AOM is a specific kind of metamodeling
technique that focuses on describing a
domain model that will be reflected in a
running application.

Other metamodeling approaches focus on a
meta-model for generating yet another model
that can be generated, interpreted, executed,
or compiled.

Both of these techniques are commonly used
for describing a domain-specific language.

Slide - 72

Precautions

Avoid using the metadata for storing:

• Error and warning messages to the user.

• Relationships between classes of the model
(example: ObservationType-Validator).

• Attributes/ Variables that are inherent to
the design (example: RangeValidator-unit).

• Over design… everything doesn’t have to
be totally meta-described.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 37

Slide - 73

Persisting an AOM

The metadata is expressed with objects that
can be mapped to relational as well as object-
oriented databases.

And there’s increasing interest in defining
metadata in XML/XMI.

Slide - 74

Keeping consistency (versions)

Need to maintain consistency within the
metamodel when changing instances of
TypeObject or other objects associated with
them.
 Example: changing the legal range of a Validator

can make existing observations invalid.

May have to keep version of the metadata
available and apply the rules based upon the
timeframe the rule applies.

―Adaptive Object-Model Evolution Patterns‖, SugarLoaf PLoP 2010,
Atzmon Hen-Tov, Lena Nikolaev, Lior Schachter, Joseph Yoder,
Rebecca Wirfs-Brock

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 38

Slide - 75

Domain Specific Languages

DSLs can be a scripting language and work
by means of parameterization.

They don’t need to have a meta-level but
they often do.

They don’t need to have interpreters and
builders.

They both use solving similar patterns, they
just might do it in different ways.

AOMs can be a Domain Specific Language

but don’t have to be--and vice-versa

Slide - 76

Metamodel and GUI

The metadata can simplify building user
interfaces. Special GUI components can be
developed to use the metadata.
 Example: The Observation model includes widgets

that display list of values from the
DiscreteValidators and also EntryBoxes that use
RangeValidators.

A Mediator and Adaptor layer was developed
for managing the interactions between the
domain objects and the GUIs.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 39

Slide - 77

Metamodel and GUI

Slide - 78

AOM Rendering Patterns

Entity ViewProperty

Renderer

coordinates

several…

Dynamic Views
can use… can use…

PLoP 2007 –

L. Welicki,
J.Yoder,
R. Wirfs-Brock

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 40

Slide - 79

PartyType: Metadata-Editors

Slide - 80

Accountability: Metadata-Editors

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 41

Slide - 81

Observation: Metadata-Editors

Slide - 82

Observation: Metadata-Editors

Primitive Observation

Type Editor

Composite Observation

Type Editor

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 42

Slide - 83

Observation: Metadata-Editors

Slide - 84

Managing releases

The system has releases because of changes
in the metadata and the code.

Changes in the metadata should be checked
by running test cases.

Multiple versions of the metadata may have
to be supported.

May have effective dates for the rules which
are represented by the metadata.

―Adaptive Object-Model Metadata Evolver‖, PLoP 2010, Atzmon Hen-Tov,
David H. Lorenz, Lena Nikolaev, Lior Schachter, Rebecca Wirfs-Brock,
Joseph Yoder

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 43

Slide - 85

Interpreters / Builders: Problem

Creating methods in each class for
instantiating the required metadata
defeats flexibility goals.

The system has to be able to read the
metadata any time, and configure itself.

The metadata is based on the knowledge of
domain experts rather than developers.

Rules are based upon descriptive (meta)
information.

Slide - 86

Interpreters / Builders:
Context

Adaptive Object-Models need to
implement ways for describing the types
of entities, properties, and relationships
and create them from this description.

They also need to interpret the dynamic
behavior at runtime using strategies or
rules.

―Adaptive Object Model Builder‖, PLoP 2009, Leon Welicki, Rebecca Wirfs-
Brock & Joseph W. Yoder

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 44

Slide - 87

Interpreters / Builders
―Virtual Machine‖

Database

XML

Persistence

Mechanism

XML Parser
Interpreter/

Builder

Metadata

Repository/Namespace
Domain

Objects

Application

A

O

M

A

r

c

h

I

t

e

c

t

u

r

e

Slide - 88

Other Examples

Industrial (Manufacturing)

Medical (IDPH)

Insurance

Telephony Billing System

Pontis Telephony Marketing

Portugal System

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 45

Slide - 89

Manufacturing - Shared
Corporate Organization Data

~1,000,000 lines of COBOL code for editing
organization data.

Organization data shared by many systems.

Had a common UI editor for adding, and
updating this data. Editor was cloned and
modified many times…grew to 100+ copies.

Documentation and maintenance
cumbersome.

Slide - 90

Manufacturing - Shared
Corporate Organization Data

Rewrote in Java code ~ 40k LOC that
used XML to describe the mappings to
the organization data and generated
the GUI and SQL queries.

Documentation could be generated
easily from XML mappings.

Easy to change and release new
versions for new tables through
updates to the XML schema.

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 46

Slide - 91

User Defined Product
(insurance example)

New types of Policies require new
classes and attributes…and changes
to rules require updates to methods

Component

Wirfs-Brock’s
Policy*

Slide - 92

User Defined Product
(insurance example)

Component

+valueUsing:()

Attribute

ComponentType

+name

+type

AttributeType

-type

1 1

-attributes *

1

1

-type

*

1

-children*-children *

1

-attributes1

*

+valueUsing:()

Rule

TableLookup BinaryOperation

+value

Constant

1

-rules

*

1 *

*

*

1

*

CompositeRule

Core Architecture is TypeSquare
Could quickly adapt to new rules within weeks or less

http://st-www.cs.illinois.edu/users/johnson/papers/udp/

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 47

Slide - 93

Objectiva Business Entities
(telephony billing system example)

Originally took a few person years to build.
AOM implementation reduced this to few person months

Slide - 94

Objectiva Attributes
(telephony example)

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 48

Slide - 95

Objectiva Entity Relationships
(telephony example)

Slide - 96

How Objectiva Scaled

Initial AOM implementation could
handle ~1 million transactions per day

Not enough for larger installations…

 So, performance was tackled by adding
caching and other point
optimizations….increasing throughput
to over 10 million transactions

 Lesson: Meta Architectures can be tweaked
for performance…nothing magic here

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 49

Slide - 97

Medical Observations Design

1 descriptor

elements 1..*

1..*

instance

ObservationType

phenomenonType

isValid: obsValue

Party

Primitive Observation

observationValue

CompositeObservation

Observation

recordedDate

comments

isValid

Validator

validatorName

isValid: obsValue

DiscreteValidator

descriptorSet

RangedValidator

intervalSet

validUnitPrimitiveObservation

Type

CompositeObservation

Type

NullValidator

Quantity

unit

quantity

convertTo:

DiscreteValuesOperational level

1..* elements

guard 11..* type

PartyType

1 descriptor

properties

1..*

1..*

value 1..*

dvalue 1..*

Knowledge level

1..* varType

contDescr 1
Entities

Attributes

Behavior

Modelled100s of Entities with this core architecture.

Can add new entities or make changes to entities very quickly.

Slide - 98

PONTIS AOM ENGINEERS

Telephony Marketing System
Highly Flexible

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 50

Slide - 99

PONTIS WORKFLOW

―Adaptive Object-Model Metadata Evolver‖, PLoP 2010, Atzmon Hen-Tov, David
H. Lorenz, Lena Nikolaev, Lior Schachter, Rebecca Wirfs-Brock, Joseph Yoder

AOM EngineerDeveloper

Slide - 100

How the Pontis System Scales

Reduced deployment from 1 year
to 1 month

Updates every couple of weeks

Deployed to over 30 clients

Code base much smaller 500,000 LOC
vs 3,000,000 (previous implementation)

Fastest growing business award

 5,500 percent within five years

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 51

Slide - 101

Portuguese Historical
Artifacts Catalogue

Catalogue of historical artifacts

Mapping of site artifacts, relationships over
time, historical site evolution

2 years churning on requirements

Technical team finally made the decision to
support easy ways to change the
domain…metadata-driven software

1. Hugo Sereno Ferreira, Filipe Figueiredo Correia, Ademar Aguiar, and João Pascoal Faria. "Adaptive Object-Models: a Research Roadmap".

International Journal On Advances in Software, volume 3, numbers 1 and 2, 2010. ISSN: 1942-2628.

2. Hugo Sereno Ferreia, Filipe Figueiredo Correia, Ademar Aguiar. "Design for an Adaptive Object-Model Framework: An Overview". Proceedings

of the 4th International Workshop on Models@run.time. Co-located with the 12th International Conference on Model Driven Engineering Languages

and Systems. Denver, Colorado. USA.

3. Hugo Sereno Ferreira, Ademar Aguiar, João Pascoal Faria. "Adaptive Object Modelling: Patterns, Tools and Applications". 3rd Symposium

on Doctoral Students of Software Engineering. Proceedings of the 4th International Conference on Software Engineering Advances. Porto. Portugal.

Slide - 102

Project Timeline: Growth of
the System

metadata

code

4 months
to first
deployment

features
added
rapidly at
project end

mailto:Models@run.time

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 52

Slide - 103

Project Timeline: Release
Frequency

Once customers realized they could make
model changes, they made lots of changes.

The rate of deployment of new releases
increased, too.

Slide - 104

Successfully Used For:
(some can be found in papers)

www.adaptiveobjectmodel.com

Representing Insurance Policies

Telephone Billing Systems

Workflow Systems

Medical Observations

Banking and Trading

Validate Equipment Configuration

Documents Management System

Gauge Calibration Systems

Simulation Software

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 53

Slide - 105

Related Approaches
and Technologies

Generative Techniques

Black-box Frameworks

Metamodeling Techniques

Reflection Techniques

Domain Specific Languages

Table-driven Systems

UML Virtual Machine

Model Driven Architecture (OMG)

Slide - 106

When is an AOM a good solution?

High rate of business change

Great variability in domain

Desire to empower users and
leverage their domain expertise

Strong support for experimentation
and design evolution

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 54

Slide - 107

The Business Case for an
Adaptive Object-Model System

Higher overall ROI

Better domain flexibility

Fosters business innovation

Supports business ―ownership‖

Can be done incrementally via
prototyping and design evolution

Slide - 108

Requires infrastructure for storing,
building, and interpreting metadata.

Requires strong design skills to create.

Interpreting metadata can result in
lower performance.

Some Disadvantages of
Adaptive Object-Models

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 55

Slide - 109

Reasons to fail, even with
good intentions…

Inadequate bridge between business and
technology. You haven’t really addressed
who should extend the model and how.

Poor communication between domain
experts and programmers.

You underestimate or don’t provide good
support for operations and deployment.

Your domain experts aren’t good modelers.

Slide - 110

Agile Best Practices for
Developing Adaptive Systems

Develop iteratively and incrementally.

Get feedback early and often.

Create flexibility only when and
where needed.

Develop tests for both the
Object-Model and the Meta-Model.

Support those who make changes and learn
what they need (this may change over time).

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 56

Slide - 111

Adaptive Object-Models are built upon
domain expert knowledge and expose the
elements of the domain and business rules.

Best suited for systems that dynamically adapt
to a changing (business) environment.

Apply well-known design principles (e.g.
TypeObject, Properties, Entity Relationship,
and Strategies/RuleObjects).

Take time to develop but can have
enormous payoffs!

Summary

Slide - 112

Summary

Separate what changes quickly from
what changes slowly (hot-spots).

AOM objects constitute a domain
specific language.

Building languages out of objects can
be good…reflection guys say this!

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 57

Slide - 113

Summary

AOMs support agile development:
 Takes into account who changes

what, when, and where.

 Can be incrementally developed.
 Start with ―core‖ AOM, grow more as needed.

 Empowers domain experts and gives
them control over the system’s domain
evolution.

Agile supports AOM development.
 User scenarios to drive design.

 Don’t overdesign!

Slide - 114

Meta Collaborators
Ademar Aguiar

Francis Anderson

Ali Arsanjani

Jean Bezivin

Paulo Borba

Filipe Correia

Krzysztof Czarnecki

Ayla Dantas

Martine Devos

Hugo Ferreira

Brian Foote

Martin Fowler

Richard Gabriel

Atzmon Hen-Tov

Ralph Johnson

David H. Lorenz

Lena Nikolaev

Jeff Oaks

Reza Razavi

Nicolas Revault

Dirk Riehle

Lior Schachter

Dave Thomas

Michel Tilman

Leon Welicki

…

Joseph W. Yoder

Ultimate Agility: Let Your Users Do Your Work! Page - 58

Slide - 115

Resources

Adaptive Object Models

 www.adaptiveobjectmodel.com

Agile Software

 Agile Alliance: www.agilealliance.org

 The Agile Manifesto

 12 Principles of Agile Development

 Scrum Alliance: www.scrumalliance.org

 Refactoring www.refactory.com

Slide - 116

That’s All

http://www.adaptiveobjectmodel.com
http://www.agilealliance.org
http://www.scrumalliance.org/
http://www.refactory.com/

