
The “Theory” and Practice of
Modeling Language Design (for

Model-Based Software

© Copyright Malina Software

Model-Based Software
Engineering)

Bran Selić
Malina Software Corp.

Zeligsoft (2009) Ltd.
Simula Research Labs, Norway

University of Toronto,
Carleton University

selic@acm.org

From the “Harry PotterFrom the “Harry Potter ” School of Language Design” School of Language Design

Perhaps, a more appropriate title for this
tutorial is:

“The Modeling Language Designer’s Grimoire”??

© Copyright Malina Software2

Grimoire: noun a manual of black magic
(for invoking spirits and demons)

Tutorial OutlineTutorial Outline

� On Models and Model-Based Software Engineering

� The Key Dimensions of Modeling Language Design

� Defining a Modeling Language

� Case Study: UML

� Language Refinement: UML Profiles

© Copyright Malina Software3

� Language Refinement: UML Profiles

� Model Transformations

Example System: Aircraft Simulator SoftwareExample System: Aircraft Simulator Software

� Typical embedded
software system

� Software that must
interact with the physical
world in a timely fashion

Instructor StationInstructor Station

© Copyright Malina Software4

RealReal--Time ComputerTime Computer
SystemSystem

A/D converterA/D converter D/A converterD/A converter

Time-drivenTime-driven

Event-driven

(control)

Event-driven

(control)

The Logical Structure of the Software*The Logical Structure of the Software*

«block»«block»

:Instructor Station:Instructor Station

«block» «block»

:Airframe:Airframe

© Copyright Malina Software5

*(simplified representation)

«block»«block»

:Ground :Ground
ModelModel

«block»«block»

:Atmosphere:Atmosphere
ModelModel

«block»«block»

:Engine:Engine

«block»«block»

:Control:Control
SurfacesSurfaces

«block»«block»

:Pilot :Pilot
ControlsControls

Behaviour as SpecifiedBehaviour as Specified

Control behaviour
(event driven)

S1

S2 t5

t1

Physical simulation
(time driven)

vx(t) = vx(t-1) + ∆∆∆∆vx(t)

vy(t) = vy(t-1) + ∆∆∆∆vy(t)

vz(t) = vz(t-1) + ∆∆∆∆vz(t)

© Copyright Malina Software6

S3

S4

t2

t4

S5

t6

HS1

vz(t) = vz(t-1) + ∆∆∆∆vz(t)

∆∆∆∆vx(t) = (x(t) - x(t-1)) / ∆∆∆∆t

∆∆∆∆vy(t) = (y(t) - y(t-1)) / ∆∆∆∆t

∆∆∆∆vz(t) = (z(t) - z(t-1)) / ∆∆∆∆t

...
But, the implementation But, the implementation
code corresponding to
the behaviour and
structure looks very
different

Simulator Software: As ImplementedSimulator Software: As Implemented

� Behaviour sliced according to rate of change

� Structural relationships represented by references in code

AA BB AA AABB BB AA BBAA BB CC AADD BB CC DDA B C ED F G H

= 50 msec band

50msec

© Copyright Malina Software7

The semantic gap between the way we think about the
problem/solution and its realization in software adds significant
complexity and poses major impediments to design analysis and
software maintenance

= 50 msec band

= 100 msec band (2 parts: A and B)

= 200 msec band (4 parts: A, B, C, D)

= 400 msec band (8 parts: A, B, C, D, E, F, G, H)

«block»«block»

EngineEngine

On Types of ComplexityOn Types of Complexity

� Essential complexity

� Immanent to the problem

⇒ Cannot be eliminated by technology or technique

� e.g., solving the “traveling salesman” problem

� Accidental complexity

© Copyright Malina Software8

� Due to technology or methods chosen to solve the problem

� e.g., building a house without power tools

⇒ Complex problems require correspondingly powerful tool

The best we can do is to try and minimize accidental complexity!

Thesis: “Modern” mainstream programming languages (e.g., C++,
Java) abound in accidental complexity and are machine-centric

The Case of the Tandem Switches Tango…The Case of the Tandem Switches Tango…

� 1990: AT&T Long Distance Network (Northeastern
US)

CO

.

.

.

.
CO

.

.

.

tandem tandem

tandem

tandem

tandem

tandem

tandem

tandemtandemRecovery time: Recovery time:
1 day1 day

© Copyright Malina Software9

CO

. . .

tandem
tandem

tandemtandem

tandem
tandem

tandem

tandem

Cost: 100’s of Cost: 100’s of
millions of millions of

$’s$’s

The Hidden CulpritThe Hidden Culprit

� The (missing) “break” that
broke it

. . .;

switch (...) {

case a : ...;

break;

Wanted:

…and, it’s all HIS fault!

© Copyright Malina Software10

break;

case b :...;

break;

. . .

case m : ...;

case n : ...;

. . .

};
Ooops! Forgot
the “break”…

$1 billion

reward

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

A Bit of Modern Software…A Bit of Modern Software…

© Copyright Malina Software11

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

}

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

…and its (UML 2) Model…and its (UML 2) Model

«sc_slave»«sc_slave»

B1B1:consumer:consumer
«sc_method»«sc_method»

A1:A1:producerproducer
«sc_link_mp»

link1

© Copyright Malina Software12

B1B1:consumer:consumerA1:A1:producerproducer
start out1 in1

link1

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

Automatic Code Generation from ModelsAutomatic Code Generation from Models

© Copyright Malina Software13

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

}

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

«sc_slave»«sc_slave»

B1B1:consumer:consumer
«sc_method»«sc_method»

A1:A1:producerproducer
start out1 in1

«sc_link_mp»

link1

Engineering ModelsEngineering Models

� ENGINEERING MODEL: A selective representation
of some system that captures accurately and
concisely all of its essential properties of interest
for a given set of concerns

• We don’t see everything
at once

• What we do see is adjusted

© Copyright Malina Software14

• What we do see is adjusted
to human understanding

Why Do Engineers Build Models?Why Do Engineers Build Models?

� To understand

� …the interesting characteristics of an existing or desired
(complex) system and its environment

� To predict

� …the interesting characteristics of the system by analysing
its model(s)

© Copyright Malina Software15

its model(s)

� To communicate

� …their understanding and design intent (to others and to
oneself!)

� To specify

� ...the implementation of the system (models as blueprints)

Characteristics of Useful Engineering ModelsCharacteristics of Useful Engineering Models

� Purposeful:

� Constructed to address a specific set of concerns/audience

� Abstract

� Emphasize important aspects while removing irrelevant ones

� Understandable

� Expressed in a form that is readily understood by observers

� Accurate

Faithfully represents the modeled system

© Copyright Malina Software16

� Faithfully represents the modeled system

� Predictive

� Can be used to answer questions about the modeled system

� Cost effective

� Should be much cheaper and faster to construct than actual system

To be useful, engineering models must
satisfy at least these characteristics!

What’s a Software Model?What’s a Software Model?

� SOFTWARE MODEL: An engineering model of a
software system from one or more viewpoints
specified using one or more modeling languages

� E.g.:

B

left:B right:B

m1

© Copyright Malina Software17

B

A B
0..*

C

0..1
0..*

«import»

0..*

m1

m4

m2

m3

Structural viewStructural view

a : A

left:B right:B c : C

Execution viewExecution view

What’s a Modeling Language?What’s a Modeling Language?

� (SOFTWARE SYSTEM) MODELING LANGUAGE: A
computer language intended for constructing models
of software programs and the contexts in which
they operate

� Can range from very abstract to complete (“the map is the
territory”)

© Copyright Malina Software18

Modeling Modeling vsvs Programming LanguagesProgramming Languages

� The primary purpose and focus of programming
languages is implementation

� The ultimate form of specification

⇒ Implementation requires total precision and “full” detail

⇒ Takes precedence over understandability

� The purpose of modeling also includes

© Copyright Malina Software19

� The purpose of modeling also includes
communication, prediction, and understanding

� These generally require omission of “irrelevant” detail

� However...

The Unique Nature of SoftwareThe Unique Nature of Software

� Software is a unique in that a program and its
model share the same medium – the computer

⇒The two can be formally linked to each other

⇒This formal linkage can be realized by automated
transformations implemented on a computer

© Copyright Malina Software20

producer

Modern MBSE Development StyleModern MBSE Development Style

� Models can be refined continuously until the application
is fully specified ⇒⇒⇒⇒ in the extreme case the model can
become the system that it was modeling!

««sc_methodsc_method»»

producerproducer
start out1

void generate ()
{for (int i=0; i<10;
i++)
{out1 = i;}}

© Copyright Malina Software21

refinerefine

NotStarted

Started

start

NotStarted

Started

start

producer

St1 St2

/generate ()

But, if the Model is the System...But, if the Model is the System...

� ...are we not losing the key abstraction
characteristic of models?

producer

void generate ()
{for (int i=0; i<10;
i++)
{out1 = i;}}

• The computer offers a
uniquely
capable abstraction
device:

Software can be

producer

© Copyright Malina Software22

NotStarted

Started

start

St1 St2

/generate ()

Software can be
represented
from any desired
viewpoint and at
any desired level of
abstraction

The abstraction
resides within the
model and can be
extracted
automatically

NotStarted

Started

start
Model
Xform

A Unique Feature of SoftwareA Unique Feature of Software

Software has the unique property that it allows
us to directly evolve models into
implementations without fundamental
discontinuities in the expertise, tools, or

© Copyright Malina Software23

implementations without fundamental
discontinuities in the expertise, tools, or
methods!

⇒⇒⇒⇒ High probability that key design
decisions will be preserved in the
implementation and that the results of
prior analyses will be valid

The ModelThe Model--Based Engineering (MBE) ApproachBased Engineering (MBE) Approach

� An approach to system and software development in which
software models play an indispensable role

� Based on two time-proven ideas:

(2) AUTOMATION

S1

S3

e3/action3

(1) ABSTRACTION

S1

S3

e3/action3

Realm of Realm of

© Copyright Malina Software24

switch (state) {

case‘1:action1;

newState(‘2’);

break;

case‘2:action2;

newState(‘3’);

break;

case’3:action3;

newState(‘1’);

break;}

S2

e1/action1

e2/action2

switch (state) {

case‘1:action1;

newState(‘2’);

break;

case‘2:action2;

newState(‘3’);

break;

case’3:action3;

newState(‘1’);

break;}

S2

e1/action1

e2/action2

Realm of
modeling
languages

Realm of
tools

Styles of MBSEStyles of MBSE

Model

Model onlyCode only

Model

Code

Visualization

visualize

Model

Model-centric

generate

Levels of

Abstraction

Automation

Model

Round Trip

Engineering

synchronize

© Copyright Malina Software25

“Who cares

about the

code?”

“What’s a

model?”

Code

“The code is

the model”

Code

visualize

“The model is

the code”

Code

generate

Time

“Manage

code and

model”

Code

synchronize

Roundtrip EngineeringRoundtrip Engineering

Implementation
transformation

© Copyright Malina Software26

NB: Slide idea borrowed from an itemis AG presentation

transformation

Reverse
engineering

Automatic Code GenerationAutomatic Code Generation

� A form of model transformation (model to text)

� To a lower level of abstraction

� State of the art:

� All development done via the model (i.e., no modifications
of generated code)

� Size: Systems equivalent to ~ 10 MLoC

© Copyright Malina Software27

� Size: Systems equivalent to ~ 10 MLoC

� Scalability: teams involving hundreds of developers

� Performance: within ±5-15% of equivalent manually coded
system

Major Telecom Equipment ManufacturerMajor Telecom Equipment Manufacturer

� MBE technologies used

� UML, Rational Technical Developer, RUP

� Example 1: Radio Base Station

� 2 Million lines of C++ code (87% generated by tools)

� 150 developers

© Copyright Malina Software28

� Example 2: Network Controller

� 4.5 Million lines of C++ code (80% generated by tools)

� 200 developers
BenefitsBenefits

80% fewer bugs

30% productivity
increase

..and a Few Extreme Cases..and a Few Extreme Cases

� Major Equipment Manufacturer 1:

� Code production rate went from 40 LoC/day to 250
Loc/day (>600% improvement)

� Major Equipment Manufacturer 2:

� Code production rate went from 200 LoC/week to 950

© Copyright Malina Software29

� Code production rate went from 200 LoC/week to 950
Loc/week (~500% improvement)

� 6-person team developed 120 KLoC system in 21.5 weeks
compared to planned 40 weeks (~100% improvement)

� Fault density (per line of code) reduced 17-fold (1700%)

Automated doors, Base Station, Billing (In Telephone Switches),
Broadband Access, Gateway, Camera, Car Audio, Convertible roof

controller, Control Systems, DSL, Elevators, Embedded Control, GPS,
Engine Monitoring, Entertainment, Fault Management, Military

Data/Voice Communications, Missile Systems, Executable Architecture
(Simulation), DNA Sequencing, Industrial Laser Control, Karaoke,
Media Gateway, Modeling Of Software Architectures, Medical

Devices, Military And Aerospace, Mobile Phone (GSM/3G), Modem,

Sampling of Successful MBE ProductsSampling of Successful MBE Products

© Copyright Malina Software30

Media Gateway, Modeling Of Software Architectures, Medical
Devices, Military And Aerospace, Mobile Phone (GSM/3G), Modem,
Automated Concrete Mixing Factory, Private Branch Exchange (PBX),
Operations And Maintenance, Optical Switching, Industrial Robot,

Phone, Radio Network Controller, Routing, Operational Logic, Security
and fire monitoring systems, Surgical Robot, Surveillance Systems,
Testing And Instrumentation Equipment, Train Control, Train to
Signal box Communications, Voice Over IP, Wafer Processing,

Wireless Phone

Where We Stand at PresentWhere We Stand at Present

Levels of

Abstraction

Automation

Model

Model onlyCode only

Model

Code

Visualization

visualize

Model

Model-centric

generate

Model

Round Trip

Engineering

synchronize

Predominant
State of the

Practice

© Copyright Malina Software31

Time

“Who cares

about the

code?”

“What’s a

model?”

Code

“The code is

the model”

Code

visualize

“The model is

the code”

Code

generate

“Manage

code and

model”

Code

synchronize

State of the
Art

Practice

Q: If this stuff is so good, why
isn’t everybody doing it?

© Copyright Malina Software32

isn’t everybody doing it?

Root Causes of Low Adoption RateRoot Causes of Low Adoption Rate

� Social/Cultural issues

� Conservative mindset of many practitioners

� Economic factors

� Retraining

� Retooling

© Copyright Malina Software33

� Reorganizing development

� Integration with legacy

� Technical issues

� Immaturity of tools

� Lack of systematic theoretical underpinnings

Tutorial OutlineTutorial Outline

� On Models and Model-Based Software Engineering

� The Key Dimensions of Modeling Language Design

� Defining a Modeling Language

� Case Study: UML

� Language Refinement: UML Profiles

© Copyright Malina Software34

� Language Refinement: UML Profiles

� Model Transformations

Current “Hot” Topic of ControversyCurrent “Hot” Topic of Controversy

“Surely it is better to design a small language that
is highly expressive, because it focuses on a
specific narrow domain, as opposed to a large and
cumbersome language that is not particularly well-

© Copyright Malina Software35

cumbersome language that is not particularly well-
suited to any particular domain?”

This is a high-level design issue, but not
the only one by any means...

Key Modeling Language Design DimensionsKey Modeling Language Design Dimensions

� Scope?

� Broad (general) or narrow (domain specific)?

� Formal or informal? (executable?)

� Semantics?

� Static: Ontology (concepts and relationships)?

� Dynamic: Model of computation (how do things happen?)

© Copyright Malina Software36

� Dynamic: Model of computation (how do things happen?)

� New language or an extension or refinement of an
existing one?

� Concrete syntax?

� Graphical? Textual? Heterogeneous?

� Extensible?

� Method of language specification?

Scope: How General/Specialized?Scope: How General/Specialized?

� Generality often comes at the expense of expressiveness

� Expressiveness: the ability to specify concisely yet accurately
a desired system or property

� Example:

• UML does not have a concept that specifies mutual exclusion devices
(e.g. semaphore) ⇒⇒⇒⇒ to represent such a concept in our model, we
would need to combine a number of general UML concepts in a

© Copyright Malina Software37

would need to combine a number of general UML concepts in a
particular way (e.g., classes, constraints, interactions)

� ...which may(?) be precise, but not very concise

� It also comes at the cost of detail that is necessary to:

� Execute models

� Generate complete implementations

Specialization: Inevitable TrendSpecialization: Inevitable Trend

� Constant branching of application domains into ever-
more specialized sub-domains

� As our knowledge and experience increase, domain concepts
become more and more refined

• E.g., simple concept of computer memory → ROM, RAM,
DRAM, cache, virtual memory, persistent memory, etc.

One of the core principles of MBE is raising the

© Copyright Malina Software38

� One of the core principles of MBE is raising the
level of abstraction of specifications to move them
closer to the problem domain

• This seems to imply that domain-specific
languages are invariably the preferred solution

• But, there are some serious hurdles here...

The Case of Programming LanguagesThe Case of Programming Languages

� Literally hundreds of domain-specific programming
languages have been defined over the past 50 years
� Fortran: for scientific applications

� COBOL for “data processing” applications

� Lisp for AI applications

� etc.

� Some relevant trends

© Copyright Malina Software39

� Some relevant trends
� Many of the original languages are still around

� More often than not, highly-specialized domains still tend to
use general-purpose languages with specialized domain-specific
program libraries and frameworks instead of domain-specific
programming languages

� In fact, the trend towards defining new domain-specific
programming languages seems to be diminishing

� Why is this happening?

Success* Criteria for a Language (1)Success* Criteria for a Language (1)

� Technical validity: absence of major design flaws
and constraints

� Ease of writing correct programs

� Expressiveness

� Simplicity: absence of gratuitous/accidental
complexity

© Copyright Malina Software40

complexity

� Ease of learning

� Run-time efficiency: speed and (memory) space

� Familiarity: proximity to widely-available skills

� E.g., syntax

* “Success” ⇒⇒⇒⇒ language is adopted by a substantive development
community and used with good effect for real-world applications

Success Criteria for a Language (2)Success Criteria for a Language (2)

� Language Support & Infrastructure:

� Availability of necessary tooling

� Effectiveness of tools (reliability, quality, usability,
customizability, interworking ability)

� Availability of skilled practitioners

� Availability of teaching material and training courses

© Copyright Malina Software41

� Availability of teaching material and training courses

� Availability of program libraries

� Capacity for evolution and maintenance (e.g.,
standardization)

Basic Tooling CapabilitiesBasic Tooling Capabilities

� Essential

� Model Authoring

� Model validation
(syntax, semantics)

� Model export/import

� Document generation

� Practical

� Code generation

� Model
simulation/debug/trace

� Model transformation

� Model review/inspection

© Copyright Malina Software42

� Document generation

� Version management

� Model compare/merge

� Collaborative
development support

� Language customization
support

� Test generation

� Test execution

� Traceability

Design Challenge: Simplicity (Scope)Design Challenge: Simplicity (Scope)

� How complex (simple) should a language be to make
it effective?

simple complex

Turing C Java PL/I Java +C++

limited expressive

© Copyright Malina Software43

Turing

machine

language

C Java PL/I Java +

Basic Java libs +

Java-based frameworks

C++

� The art of computer language design lies in finding the right
balance between expressiveness and simplicity

– Need to minimize accidental complexity while recognizing and
respecting essential complexity

– Small languages solve small problems

– No successful language has gotten smaller

Design Challenge: ScopeDesign Challenge: Scope

� Real-world systems often involve multiple
heterogeneous domains

� Each with its own ontology and semantic

� Example: wireless telecom system

� Basic bandwidth management

� Equipment and resource management

© Copyright Malina Software44

� Equipment and resource management

� Operations, administration, and systems management

� Accounting (customer resource usage)

� Computing platform (OS, supporting services)

The Fragmentation ProblemThe Fragmentation Problem

Wireless Base Station

Comm.
Channel

Bandwidth Mgmt. System

Resource Mgmt. System

Call Processing System

© Copyright Malina Software45

� FRAGMENTATION PROBLEM: combining
independently specified domain-specific subsystems
specified using different DSLs into a coherent and
consistent whole

Bandwidth Mgmt. System

Approach to Dealing with FragmentationApproach to Dealing with Fragmentation

� Having a common syntactic and semantic foundations for the
different DSLs seems as if it should facilitate specifying the
formal interdependencies between different DSMLs

DSL1 Class Library DSL2 Class Library

. . .etc.

© Copyright Malina Software46

Common Abstract Syntax and Semantic Foundation

DSL1 Refinements DSL2 Refinements

. . .etc.

� NB: Same divide and conquer approach can be used to
modularize complex languages

� Core language base + independent sub-languages (e.g., UML)

Key Modeling Language Design DimensionsKey Modeling Language Design Dimensions

� Scope?

� Broad (general) or narrow (domain specific)?

� Formal or informal? (executable?)

� Semantics?

� Static: Ontology (concepts and relationships)?

� Dynamic: Model of computation (how do things happen?)

© Copyright Malina Software47

� Dynamic: Model of computation (how do things happen?)

� New language or an extension or refinement of an
existing one?

� Concrete syntax?

� Graphical? Textual? Heterogeneous?

� Extensible?

� Method of language specification?

Formal vs. Informal: CategoriesFormal vs. Informal: Categories

� Based on degree of “formality”

� Precision of definition, internal consistency, completeness,
level of detail covered

IMPLEMENTATION
Defined, formal, consistent,

complete, detailed
Prediction,

Implementation

Category Characteristics Primary Purpose

© Copyright Malina Software48

FORMAL Defined, formal, consistent
Analysis,
Prediction

CODIFIED Defined, informal
Documentation,

Analysis

AD HOC Undefined, informal
Documentation,

Analysis

EXECUTABLE
Defined, formal, consistent,

complete
Analysis,
Prediction

FormalityFormality

� Based on a well understood mathematical theory with
existing analysis tools
� E.g., automata theory, Petri nets, temporal logic, process

calculi, queueing theory, Horne clause logic

� NB: precise does not always mean detailed

� Formality provides a foundation for automated validation
of models
� Model checking (symbolic execution)

© Copyright Malina Software49

� Model checking (symbolic execution)

� Theorem proving

� However, the value of these is constrained due to scalability
issues (“the curse of dimensionality”)

� It can also help validate the language definition

� But, it often comes at the expense of expressiveness
� Only phenomena recognized by the formalism can be expressed

accurately

How We Can Learn From ModelsHow We Can Learn From Models

??

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)

� By execution

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

?

� By inspection

– mental execution

– unreliable

© Copyright Malina Software50

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

??� By formal analysis

– reliable (provided the models
are accurate)

– formal methods do not
scale very well

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5– more reliable than inspection

– direct experience/insight

Executable ModelsExecutable Models

� Ability to execute a model on a computer and
observe its behavior

� With possible human intervention when necessary

� D. Harel: “Models that are not executable are like
cars without engines”

� However, not all models need be executable

© Copyright Malina Software51

� Key capabilities

� Controllability: ability to start/stop/slow down/speed
up/drive execution

� Observability: ability to view execution and state in model
(source) form

� Partial model execution: ability to execute abstract and
incomplete models

Modeling Languages for ImplementationModeling Languages for Implementation

� Much of the evolution of computer languages is
motivated by the need to be more human-centric

Application

specific

Modeling

Degree of
(computing
technology)
abstraction

© Copyright Malina Software52

Computing

technology

specific

Assemblers (2G),
machine
languages (1G)

Classical (3G)
programming
languages

Modeling
languages

Implementation

level

Compiler Compiler
filled detailfilled detail

Can we do
the same
here ?

Modeling Languages for ImplementationModeling Languages for Implementation

� A number of “descriptive” modeling languages have
evolved into fully-fledged implementation languages

Application

specific

Modeling

Degree of
(computing
technology)
abstraction

e.g., UML e.g., UML e.g., UML e.g., UML

© Copyright Malina Software53

Computing

technology

specific

Assemblers (2G),
machine
languages (1G)

Classical (3G)
programming
languages

Modeling
languages

Implementation

level

Compiler Compiler
filled detailfilled detail

HL Action
languages

Translator Translator
filled filled detaildetail

e.g., UML e.g., UML
Action Action
Language Language
((fUMLfUML))

Implementation Modeling LanguagesImplementation Modeling Languages

� Typically a heterogeneous combination of syntaxes
and executable languages with different models of
computation

producer

void generate ()
{for (int i=0; i<10;
i++)
{out1 = i;}}

© Copyright Malina Software54

NotStarted

Started

start

St1 St2

/generate ()

Too detailed:
⇒⇒⇒⇒ needs to be
supplemented with
abstraction (model)
transformations to
obtain the full
benefits of models

Key Modeling Language Design DimensionsKey Modeling Language Design Dimensions

� Scope?

� Broad (general) or narrow (domain specific)?

� Formal or informal? (executable?)

� Semantics?

� Static: Ontology (concepts and relationships)?

� Dynamic: Model of computation (how do things happen?)

© Copyright Malina Software55

� Dynamic: Model of computation (how do things happen?)

� New language or an extension or refinement of an
existing one?

� Concrete syntax?

� Graphical? Textual? Heterogeneous?

� Extensible?

� Method of language specification?

Semantics: Ontology (Information Science)Semantics: Ontology (Information Science)

� “A formal representation of knowledge as a set of
concepts within a domain and the relationships
between those concepts” [Wikipedia]

� In modeling language design:

� The set of primitive concepts that represent (model) the
phenomena in a domain

© Copyright Malina Software56

phenomena in a domain

� The rules for combining these concepts to construct valid
(well-formed) statements in the language

� Example [UML]:

� Concepts: Class, Association, Dependency, Attribute, etc.

� Relationships: Attributes are owned by Classes

� Requires a specialized language (e.g., OWL, MOF)

Semantics: Model of Computation (Semantics: Model of Computation (MoCMoC))

� Model of Computation: A conceptual framework
(paradigm) used to specify how a (software) system
realizes its prescribed functionality

� Where and how does behavior (computation) take place

� Selecting the dominant MoC(s) is a primary language
design decision

© Copyright Malina Software57

design decision

� Based on characteristics of the application and requirements

� Closely coupled to the chosen formalism

MoCMoC DimensionsDimensions

� Concurrency paradigm: does computation occur sequentially
(single thread) or in parallel (multiple threads)?

� Causality paradigm: what causes behavior

� event driven, control driven, data driven (functional), time driven,
logic driven, etc.

� Execution paradigm: nature of behavior execution

� Synchronous (discrete), asynchronous, mixed (LSGA)

© Copyright Malina Software58

� Synchronous (discrete), asynchronous, mixed (LSGA)

� Interaction paradigm: how do computational entities interact

� synchronous, asynchronous, mixed

� Distribution paradigm: does computation occur in a single site
or multiple?

� Multisite (⇒⇒⇒⇒ concurrent execution) vs. single site

� If multisite: Coordinated or uncoordinated (e.g., time model, failure
model)?

Nesting Nesting MoCsMoCs

� Most practical
languages use a
combination of
MoCs

NotStarted

start

producer

void generate ()
{for (int i=0; i<10;
i++)
{out1 = i;}}

/generate ()
ControlControl--flow flow
driven driven MoCMoC

© Copyright Malina Software59

«sc_method»

producer
start out1

Started

start

St1 St2

/generate ()

EventEvent--driven driven
concurrent concurrent
MoCMoC

Distributed Distributed
MoCMoC

On Specifying SemanticsOn Specifying Semantics

� Semantics are specified using a language whose semantics
are already defined

� Numerous approaches to defining run-time semantics of
computer languages

� Informal natural language description are the most common way

� Denotational, operational, axiomatic

� The “Executable UML Foundation” specification provides

© Copyright Malina Software60

� The “Executable UML Foundation” specification provides
a standard for defining semantics

� Defines the dynamic semantics for a subset of standard UML
concepts that have a run-time manifestation

� Semantics of modeling languages can be specified as programs
written using a standardized executable modeling language
(operational (interpretive) approach)

� The semantics of Executable UML itself are defined
axiomatically

OMG Approach to OMG Approach to Specifying UML Specifying UML SemanticsSemantics

� UML semantics hierarchy

� As defined by the Executable UML Foundation proto-standard

Map (compile) toMap (compile) to

HigherHigher--level behavioral formalisms (with SVPs)level behavioral formalisms (with SVPs)

UMLUML
statechartstatechart
semanticssemantics

UMLUML
activitiesactivities

semanticssemantics

UMLUML
interactionsinteractions
semanticssemantics

UMLUML
Action Language(s)Action Language(s)

HigherHigher--levellevel
UML actionUML action
semanticssemantics

© Copyright Malina Software61

Core structural elements (objects, links, etc.)Core structural elements (objects, links, etc.)

Foundational UML (fUML) action semanticsFoundational UML (fUML) action semantics
(action executions, token flows, etc.)(action executions, token flows, etc.)

Act on (create, destroy, read, write, etc.)Act on (create, destroy, read, write, etc.)

Generic Generic
UML VMUML VM

(with (with
SVPs)SVPs)

SVP = Semantic Variation PointSVP = Semantic Variation Point

Map (compile) toMap (compile) to

Foundational UML (fUML) and Basic UML (bUML)Foundational UML (fUML) and Basic UML (bUML)

� A subset of fUML actions is used as a core language (Basic
UML) that is used to describe fUML itself

Foundational UML (fUML) action semanticsFoundational UML (fUML) action semantics
(action executions, token flows, etc.)(action executions, token flows, etc.)

Maps to Maps to
(Operational(OperationalBasic UML action semantics (bUML)Basic UML action semantics (bUML)

© Copyright Malina Software62

(Operational(Operational
Specification)Specification)

Basic UML action semantics (bUML)Basic UML action semantics (bUML)

Maps to (Axiomatic Specification)Maps to (Axiomatic Specification)

Formal mathematical model Formal mathematical model
(Process Specification Language)(Process Specification Language)

Basis for a formalization of UMLBasis for a formalization of UML

Key Modeling Language Design DimensionsKey Modeling Language Design Dimensions

� Scope?

� Broad (general) or narrow (domain specific)?

� Formal or informal? (executable?)

� Semantics?

� Static: Ontology (concepts and relationships)?

� Dynamic: Model of computation (how do things happen?)

© Copyright Malina Software63

� Dynamic: Model of computation (how do things happen?)

� New language or an extension or refinement of an
existing one?

� Concrete syntax?

� Graphical? Textual? Heterogeneous?

� Extensible?

� Method of language specification?

Approaches to DSML DesignApproaches to DSML Design

1. Define a completely new language from scratch

2. Extend an existing language: add new domain-
specific concepts to an existing (base) language

3. Refine an existing language: specialize the concepts
of a more general existing (base) language

© Copyright Malina Software64

Refinement Refinement vsvs ExtensionExtension

� Semantic space = the set of all valid programs that
can be specified with a given computer language

� Refinement: subsets the semantic space of the base
language (e.g., UML profile mechanism)

� Enables reuse of base-language infrastructure

� Extension: intersects the semantic space of the

© Copyright Malina Software65

� Extension: intersects the semantic space of the
base language

Base Language SpaceBase Language Space

RefinementExtension

Comparison of ApproachesComparison of Approaches

ApproachApproach
ExpressiveExpressive

PowerPower

Ease of Ease of

Lang.DesignLang.Design

InfrastructureInfrastructure

ReuseReuse

MultimodelMultimodel

IntegrationIntegration

New Language High Low Low Low

© Copyright Malina Software66

Extension Medium Medium Medium Medium

Refinement Low High High High

Refine, Define, or Extend?Refine, Define, or Extend?

� Depends on the problem at hand

� Is there significant semantic similarity between the UML metamodel
and the DSML metamodel?

• Does every domain concept represent a semantic specialization of some UML
concept?

• No semantic or syntactic conflicts?

� Is language design expertise available?

� Is domain expertise available?

© Copyright Malina Software67

� Is domain expertise available?

� Cost of maintaining a language infrastructure?

� Need to integrate models with models based on other DSMLs?

� Example: Specification and Description Language (SDL: ITU-T
standard Z.100)

� DSML for defining telecommunications systems and standards

� First defined in 1970

� Currently being redefined as a UML profile (Z.109)

Key Modeling Language Design DimensionsKey Modeling Language Design Dimensions

� Scope?

� Broad (general) or narrow (domain specific)?

� Formal or informal? (executable?)

� Semantics?

� Static: Ontology (concepts and relationships)?

� Dynamic: Model of computation (how do things happen?)

© Copyright Malina Software68

� Dynamic: Model of computation (how do things happen?)

� New language or an extension or refinement of an
existing one?

� Concrete syntax?

� Graphical? Textual? Heterogeneous?

� Extensible?

� Method of language specification?

Concrete Concrete Syntax DesignSyntax Design

� Two main forms:

� For computer-to-computer interchange (e.g., XMI)

� For human consumption – “surface” syntax

� Designing a good surface syntax is the area where we know
least

� If a primary purpose of models is communication and understanding,
what syntactical forms should we use for a given language?

� Requires multi-disciplinary skills

© Copyright Malina Software69

� Requires multi-disciplinary skills

� Domain knowledge

� Computer language design

� Cognitive science

� Psychology

� Cultural Anthropology

� Graphic design

� Computer graphics

Concrete Syntax Design DimensionsConcrete Syntax Design Dimensions

� Graphical (visual) or textual?

� …or both?

� If visual: what are the primary and secondary metaphors (for visual
languages)?

� Consistency, intuitive appeal

� Multiple viewpoints

� Which ones?

� How are they represented?

© Copyright Malina Software70

� How are they represented?

� How are they linked?

� How is the syntax defined?

� Examples or some formalism (which one?)?

� Mapping to abstract syntax?

� How is the syntactical information stored in the model?

� We may want to use different notations for the same model depending on viewpoint

� Interchange format

� Human readable as well? (e.g., XML based)

Key Modeling Language Design DimensionsKey Modeling Language Design Dimensions

� Scope?

� Broad (general) or narrow (domain specific)?

� Formal or informal? (executable?)

� Semantics?

� Static: Ontology (concepts and relationships)?

� Dynamic: Model of computation (how do things happen?)

© Copyright Malina Software71

� Dynamic: Model of computation (how do things happen?)

� New language or an extension or refinement of an
existing one?

� Concrete syntax?

� Graphical? Textual? Heterogeneous?

� Extensible?

� Method of language specification?

Key Language Design QuestionsKey Language Design Questions

� Who are the primary users?

� Authors / readers? (i.e., primary use cases)

� What is its primary purpose?

� Documentation, analysis, prediction, implementation?

� Context

© Copyright Malina Software72

� What is the context in which models defined in the language
will have to fit?

• What is the dominant model of behavior ⇒⇒⇒⇒ MoC

Tutorial OutlineTutorial Outline

� On Models and Model-Based Software Engineering

� The Key Dimensions of Modeling Language Design

� Defining a Modeling Language

� Case Study: UML

� Language Refinement: UML Profiles

© Copyright Malina Software73

� Language Refinement: UML Profiles

� Model Transformations

Defining a Modeling LanguageDefining a Modeling Language

� The definition of a modeling language consists of:

� Set of language concepts/constructs (“ontology”)

• e.g., Account, Customer, Class, Association, Attribute, Package

� Rules for combining language concepts (well-formedness
rules)

• e.g., “each end of an association must be connected to a class”A
B
S
T
R
A
C
T

S
Y
N
T
A
X

© Copyright Malina Software74

• e.g., “each end of an association must be connected to a class”

� CONCRETE SYNTAX (notation/representation)

• e.g., keywords, graphical symbols for concepts

� SEMANTICS: the meaning of the language concepts

• i.e., what real-world artifacts do the concepts represent?

The Key Elements of a Modeling LanguageThe Key Elements of a Modeling Language

Modeling
Language

0..*

1

1

© Copyright Malina Software75

Concrete
Syntax

Abstract
Syntax

Semantics

Language
Concepts

Composition
Rules(A)

1..*

1..* 1..*

0..*

1

1..*

Notational
Element

1..*

Composition
Rules(C)

1..* Model of
Computation

1..*

0..*

10..*

ModelModel--Driven Architecture (MDA)™Driven Architecture (MDA)™

� In recognition of the increasing importance of MBE,
the Object Management Group (OMG) is developing
a set of supporting industrial standards

(1) ABSTRACTION (2) AUTOMATION

© Copyright Malina Software76

(3) INDUSTRY STANDARDS
• UML 2
• OCL
• MOF
• SysML
• SPEM
• …etc.

http://www.omg.org/mda/

MDA Languages ArchitectureMDA Languages Architecture

� MDA = OMG’s initiative to support model-based
engineering with a set of industry standards:

UML Profiles

© Copyright Malina Software77

Core Specifications:Core Specifications:

MOF 2, XMI 2.1, MOF Versioning, MOF QVT, MOF to TextMOF 2, XMI 2.1, MOF Versioning, MOF QVT, MOF to Text

UML 2 Infrastructure

UML 2UML 2 CWMCWM SPEMSPEM
ODMODM

(Ontology)(Ontology)
RASRAS

The OMG 4The OMG 4--Layer “Architecture”Layer “Architecture”

Real Objects
(computer memory,

run-time environment)

Model
(model repository)

CustomerOrderCustomerOrder

itemitem

CustomerCustomer

idid

<sawdust><sawdust>
<2 tons><2 tons>

<DeliIceCream><DeliIceCream>
<lard><lard>
<5 tons><5 tons>

01011
01011

01011

(M0)(M0)

(M1)(M1)

«representedBy» «representedBy»«representedBy»

© Copyright Malina Software78

(model repository)

Meta-Model
(modeling tool)

itemitem
quantityquantity

idid

Meta-Meta-Model
(modeling tool)

ClassClass AssociationAssociation . . . (M2 = UML, (M2 = UML,
CWM)CWM)

(M3 = MOF)(M3 = MOF)Class(MOF) . . .

«specifiedBy»

«specifiedBy»«specifiedBy»

«specifiedBy»

InfrastructureLibrary

Infrastructure Library Infrastructure Library –– ContentsContents

PrimitiveTypes

(Integer, String, Boolean…)

Abstractions

«import»

Constructs

«import»

Basic

«import»

© Copyright Malina Software79

Abstractions

(Grab-bag of fine-grain

OO modeling

primitives/mix-ins)

Constructs

(Sophisticated forms of

OO modeling concepts)

Basic

(Simple forms of basic OO

modeling concepts: Class,

Operation, Package, etc.)

Profiles

(Extensibility mechanisms)

«import»

The MOF = Meta
Object Facility

© Copyright Malina Software80

Object Facility

The Structure of MOF (simplified)The Structure of MOF (simplified)

UML Infrastructure

© Copyright Malina Software81

CMOF

EMOF

«merge»

Extension

«merge»

Identifiers

«merge»

Reflection

«merge»

Essential MOF Concepts (Example)Essential MOF Concepts (Example)
� Key concepts used to define an abstract syntax

Vehicle

Class
(concept)

Generalization
(relationship)

Package

construct)

Package
(modularization

construct)

© Copyright Malina Software82

Automobile

make : String
power : Integer

Person

driver 0..*

vehicle 0..2

Wheel
w

3..*

AssociationAssociation
(relationship)

Composition
(relationship)

(driver.age <= 16) implies

(power <= 10)

ConstraintConstraint
(well-formedness

rule)

Example: EMOF Metamodel (Root)Example: EMOF Metamodel (Root)

� Using MOF to define
(E)MOF

Element

CommentNamedElement

Metaclass = A MOF Metaclass = A MOF
Class that models a
Language Concept

0..1

© Copyright Malina Software83

Comment

body : String

NamedElement

name : String

TypedElementType

0..*

Example: EMOF Metamodel (simplified)Example: EMOF Metamodel (simplified)

TypedElement

Class

isAbstract : Boolean
Property

isReadOnly : Boolean

0..*

Type
type

0..1

0..*

© Copyright Malina Software84

isReadOnly : Boolean
default : String [0..1]
isComposite : Boolean
isDerived : Boolean

Operation
0..*

Parameter
0..*

opposite

0..1

The Meaning of Class ModelsThe Meaning of Class Models

� A key element of abstract syntax definition

� What does this model represent?

� There is much confusion about the meaning of this type of

TypedElementType
type

0..1

0..*

© Copyright Malina Software85

� There is much confusion about the meaning of this type of
diagram (model)

� Questions:

� What do the boxes and lines represent?

� How many Types are represented in this diagram?

� What does “type” mean?

� What does “0..*” mean?

Example: Two Populations with RelationshipsExample: Two Populations with Relationships

Bob

Karl

ChildrenAdults

Cory Ida

© Copyright Malina Software86

Bob

Alice

Jill

Peggy

Fred

Dee

Guy

Hayley Les

Some Facts We Can StateSome Facts We Can State

� Particular statements:

� Bob has no children (in the set Children)

� Karl is the father of Dee and Ida

� Karl and Jill are the parents of Cory

� Fred and Peggy are the parents of Guy

� Peggy is the mother of Hayley

© Copyright Malina Software87

� Peggy is the mother of Hayley

� Alice is the mother of Les

� General statements (through abstraction):

� Children can have one or two Adult parents

� Some Adults are parents of Children

� Every Person has a name and a gender

Classes and Associations in MOF (and UML)Classes and Associations in MOF (and UML)

� Class: A specification of a collection of object
instances characterized by posessing the same set
of features and behaviours

� Association: A specification of a collection of links
whose ends conform respectively to the same type

© Copyright Malina Software88

Classes and Association ClassifiersClasses and Association Classifiers

Bob

Karl

Jill

Adults

Fred

Children

Cory

Dee

Guy

Ida

© Copyright Malina Software89

Alice
Peggy

Guy

Hayley Les

Adult

name : String

gender : [M, F]

Child

name : String

gender : [M, F]

parents

1..2

children

0..*

Interpreting Association EndsInterpreting Association Ends

Adult

name : String

gender : [M, F]

Child

name : String

gender : [M, F]

parents

1..2

children

0..*

Children
Adults

The “children” The “children”
(set) of Karl(set) of Karl

© Copyright Malina Software90

Karl

Cory
Dee

Ida

Jill

The “parents” The “parents”
(set) of Cory(set) of Cory

Karl.children->includes(Cory)

An OCL An OCL
constraintconstraint

OBJECT CONSTRAINT
LANGUAGE (OCL): WRITING

© Copyright Malina Software91

LANGUAGE (OCL): WRITING
CONSTRAINTS

Example: A CommunityExample: A Community

Alice Bob Eunice Fred Jill Karl

friend

friend friend

© Copyright Malina Software92

Cory Dee Guy Hayley Ida Les

Millie Nick Orville Peggy

friend

friend

A Corresponding Class DiagramA Corresponding Class Diagram

Person

+name: String
+isMarried: Boolean
+gender: Gender
+age: Integer

+isSenior(): Boolean

+friend

0..*

0..*

+wife

+husband

0..1

0..1

Gender
<<enumeration>>

+M
+F

© Copyright Malina Software93

Adult Child
+child+parent

0..*0..*

+isSenior(): Boolean

Propositions, Predicates, and ConstraintsPropositions, Predicates, and Constraints

� Proposition: A statement that is either True of False

� Bob is an Adult

� Les and Ida are friends

� Predicates: Propositions that involve variables; e.g.:

� There is at least one Adult with the name “Bob”

� All Adults are married

© Copyright Malina Software94

� All Adults are married

� Every Child has at least one Adult parent

� A predicate require a range for its variables

� Constraints: predicates that, by design, must evaluate to
True; e.g.:

� Only Adults can have Children

� An Adult who is married must have a spouse

FirstFirst--Order (Predicate) Logic(s)Order (Predicate) Logic(s)

� Used to reason about predicates

� Basic operators of FOL:

� The usual Boolean operators

• AND (∧∧∧∧)

• OR (∨∨∨∨)

• NOT (¬¬¬¬)

� Conditional:

• If <predicate-1> is True (hypothesis) then <predicate-2> (conclusion) must be

© Copyright Malina Software95

• If <predicate-1> is True (hypothesis) then <predicate-2> (conclusion) must be
True

• <predicate-1> →→→→ <predicate-2>

� Existential quantifier (∃∃∃∃):

• There exists at least one member of the domain such that predicate <predicate>
is True

• ∃∃∃∃ a ∈∈∈∈ Dom | <predicate>

� Universal quantifier (∀∀∀∀):

• For all members of the specified domain <predicate> is True

• ∀∀∀∀ a ∈∈∈∈ Dom | <predicate>

FOL Examples and OCL EquivalentsFOL Examples and OCL Equivalents

� There is at least one Adult with the name “Bob”

� ∃∃∃∃ a ⊂⊂⊂⊂ Adult | (name(a) = “Bob”)

� All Adults are married

� ∀∀∀∀ a ⊂⊂⊂⊂ Adult | (married(a) = True)

� Every Child has at least one Adult parent

© Copyright Malina Software96

� ∀∀∀∀ c ⊂⊂⊂⊂ Child | (size(parents(c)) ≥≥≥≥ 1)

� ...and their OCL equivalents

� exists (a:Adult| a.name = “Bob”)

� forAll (a:Adult | a.isMarried)

� forAll (c:Child | parents->size() >= 1)

The Object Constraint Language (OCL)The Object Constraint Language (OCL)

� An OMG standardized language for specifying
constraints and queries for UML and MOF
classifiers and objects

� http://www.omg.org/spec/OCL/2.2/PDF

� Declarative side-effect-free language

� Primarily used in conjunction with MOF to specify
the abstract syntax of modeling language constructs

© Copyright Malina Software97

the abstract syntax of modeling language constructs

� Example:
Adult Child

+child+parent

0..*0..*

context Child inv:

self.parent->size() <= 2

OCL Basics OCL Basics –– Contexts and ConstraintsContexts and Constraints

� Context: identifies the class (or object) to which
the constraint (also called an invariant) applies

Person

+name: String
+isMarried: Boolean
+gender: Gender
+age: Integer

+isSenior(): Boolean

+wife

+husband

0..1

0..1

+friend

0..*

0..*

© Copyright Malina Software98

the constraint (also called an invariant) applies

context Person inv: ...

� Class constraints are written from the perspective
of a generic member of the context class

� ...which means that they apply to all members of the class

((self.isMarried) and (self.gender = #M))

implies((self.wife->size() = 1) and
(self.husband->size () = 0))

OCL Basics OCL Basics –– Data Types Used in OCLData Types Used in OCL

� Reuses basic UML/MOF primitive types
� Boolean, Integer, String

� Adds type Real

� Support all common arithmetic and logic operators

� Collection types
� Set, OrderedSet, Bag, Sequence

� Model types

© Copyright Malina Software99

� Model types
� Modeler-defined application-specific classes

� E.g., Person, Adult, Child, Gender

� OclType = the type of all types (metatype)
� Useful operation on any type: allInstances()

Person.allInstances() -- returns the set of all
-- instances of Person

OCL Basics OCL Basics –– Standard Arithmetic OperatorsStandard Arithmetic Operators

� <numeric-expr-1> < <numeric-expr-2>

� <numeric-expr-1> > <numeric-expr-2>

� <numeric-expr-1> <= <numeric-expr-2>

� <numeric-expr-1> >= <numeric-expr-2>

� <numeric-expr-1> + <numeric-expr-2>

© Copyright Malina Software100

� <numeric-expr-1> + <numeric-expr-2>

� <numeric-expr-1> - <numeric-expr-2>

� <numeric-expr-1> * <numeric-expr-2>

� <numeric-expr-1> / <numeric-expr-2>

� <numeric-expr-1>.mod(<numeric-expr-2>)

� ...

OCL Basics OCL Basics –– Common Logic OperatorsCommon Logic Operators

� not <Boolean-expr>

� <Boolean-expr-1> or <Boolean-expr-2>

� <Boolean-expr-1> and <Boolean-expr-2>

� <Boolean-expr-1> xor <Boolean-expr-2>

� <expression-1> = <expression-2>

© Copyright Malina Software101

� <expression-1> = <expression-2>

� <expression-1> <> <expression-2>

� <Boolean-expr-1> implies <Boolean-expr-1>

� if <Boolean-expr-1> then <expression-2>

[else <expression-3> endif]

OCL Basics OCL Basics –– OclAnyOclAny

� Supertype of all types

� Not to be confused with OclType (which is a metatype)

• The type of OclAny is OclType

� Defines a useful set of operations that can be
applied to any primitive or user-defined object

oclType() -- returns the type of an object

© Copyright Malina Software102

oclType() -- returns the type of an object

oclIsTypeOf(<type>) -- returns True if object is of

-- type <type>

oclIsKindOf (<type>)-- returns True if object is of

-- type <type> or its subtype

OCL Basics OCL Basics –– Accessing PropertiesAccessing Properties

� Classifier (and object) attributes and operations are
accessed by the dot (.) operator

Person

+name: String
+isMarried: Boolean
+gender: Gender
+age: Integer

+isSenior(): Boolean

+wife

+husband

0..1

0..1

+friend

0..*

0..*

© Copyright Malina Software103

accessed by the dot (.) operator

self.name -- returns name String

self.isSenior() -- returns True or False

self.friend -- returns a collection

-- persons who are friends

-- of “self”

OCL Basics OCL Basics –– Association/Link NavigationAssociation/Link Navigation

� Association ends are accessed like all other
Properties of Classifiers

� OCL can navigate from a Classifier context to any
outgoing association end...regardless of navigability

Person
0..*

0..*

© Copyright Malina Software104

self.friend
self.person -- uses default naming rule for

-- unnamed ends

� Unless the multiplicity is exactly 1, the result of
the navigation is a collection

+name: String
+isMarried: Boolean
+gender: Gender
+age: Integer

+isSenior(): Boolean

+friend

0..*

OCL Basics OCL Basics –– OCL Collections and Operations OCL Collections and Operations

� Collections represent groups of values (e.g., Classes)

� Collections can be manipulated using special collection operations

� size() -- the size of the collection (Integer)

Collection

SetOrderedSet Bag Sequence

© Copyright Malina Software105

� size() -- the size of the collection (Integer)

� count(<value>) -- the number of occurrences of <value> (Integer)

� includes(<value>) -- True if collection includes <value>

� includesAll(<collection>) -- True if collection includes <collection>

� isEmpty() -- True if collection is empty

� notEmpty() -- True if collection is not empty

� exists(<expression>) -- True if <expression> is True for at least 1 element

� forAll(<expression>) -- True if <expression> is True for all elements

� ...

OCL Basics OCL Basics –– Applying Operations to CollectionsApplying Operations to Collections

� The application of an operation to a collection is
indicated by the use of the right-arrow (->) operator

� self.friend->size() -- number of friends of self

� self.friend->isEmpty() -- checks if set of

-- friends is empty

© Copyright Malina Software106

OCL Basics OCL Basics –– Universal and Existential QuantifiersUniversal and Existential Quantifiers

� “exists” and “forAll” operations are used to specify
predicates over collections

� exists = ∃∃∃∃ (first-order logic existential quantifier operator)

• self.friend->exists (f:Person | f.name = ‘Bob’)

-- at least one friend must be named ‘Bob’

� forAll = ∀∀∀∀ (first-order logic universal quantifier operator)

© Copyright Malina Software107

• Person.allInstances()->forAll(p:Person| p.name <> ‘’)

-- the name of a Person cannot be an empty string

� Avoids confusing mathematical symbols (+ avoids need for
special typesetting)

OCL Basics OCL Basics –– Select and Collect OperationsSelect and Collect Operations

� Special iteration operations for deriving useful new
collections from existing ones

� Select provides a subset of elements that satisfy a
predicate
� <collection>->select (<element> : <type> |

<expression>)

� Person->select (p:Person | p.isMarried)

© Copyright Malina Software108

� Person->select (p:Person | p.isMarried)

� Collect returns a new collection of values obtained
by applying an operation on all of the elements of a
collection
� <collection>->collect (<element> : <type> |

<expression>)

� Person->collect (p:Person | p.name)

OCL Basics OCL Basics –– Other Useful Collection OperationsOther Useful Collection Operations

� For Sets, Bags, Sequences

� <Coll-1>->union (<Coll-2>) -- returns the union of
-- <Coll-1> and <Coll-2>

� <Coll-1>->intersection(<Coll-2>) -- returns the
-- intersection of
-- <Coll-1> and <Coll-2>

� <Coll-1> - (<Coll-2>) -- returns a collection of
-- elements in <Coll-1>
-- that are not in <Coll-2>

© Copyright Malina Software109

-- elements in <Coll-1>
-- that are not in <Coll-2>

� For OrderedSets and Sequences

� <Coll>->at(i) -- access element at position i

� <Coll>->append(<object>) -- add <object> to end of <Coll>

� <Coll>->first() -- return first element in <Coll>

� <Coll>->last() -- return last element in <Coll>

OCL Basics OCL Basics –– PrePre-- and Postand Post--ConditionsConditions

� “Design by contract” for Operations, Receptions,
and UML Behaviors

� Pre-conditions: Conditions that must hold before an
operation

� Post-conditions: Conditions that must hold after an
operation has completed

© Copyright Malina Software110

� Syntax:

� pre: <Boolean-expr>

� post: <Boolean-expr>

� Also can use <attribute>@pre in a post-condition to refer
to the value of <attribute> prior to the execution of the
operation

OCL Basics OCL Basics –– Defining OperationsDefining Operations

� Syntax
context <operation-name>(<parameters>) : <return-

type>

[pre: <Boolean-expr>]

[post: <Boolean-expr>]
[body: <expression>] -- must evaluate to

-- a kind of <return-type>

� Example

© Copyright Malina Software111

� Example
context Person::isSenior() : Boolean

pre: age >= 0

post: age = age@pre -- age is unchanged

-- after operation

-- completes

body: (age >= 65)

Summary: OCLSummary: OCL

� OCL constraints are one of the means to define
well-formedness (i.e., syntactic) rules for MOF-
based models

� Complement class (meta)models

� It is based on basic first-order logic and set
theory and operates on class (and instance)

© Copyright Malina Software112

theory and operates on class (and instance)
diagrams

� Since class diagrams deal with relationships between sets
and elements of sets

� Defines primarily static semantics but can also be
used to specify dynamic semantics (e.g., through
pre- and post- statements on operations)

MOF Mechanism: Association SpecializationMOF Mechanism: Association Specialization

BankAccount BankCustomer
accounts

1..*

customers

1..*

Corporate Corporate
ownerC-accounts

© Copyright Malina Software113

Corporate
Account

Personal
Account

Corporate
Customer

Private
Customer

owners

1..*

P-accounts

1..*

11..*

NB: tightenedNB: tightened
constraintconstraint

More Refined SpecificationMore Refined Specification

BankAccount BankCustomer
accounts

1..*

customers

1..*

Corporate Corporate
ownerC-accounts

{subsets accounts} {subsets customers}

{union}

/accounts

{union}

/customers

© Copyright Malina Software114

Corporate
Account

Personal
Account

Corporate
Customer

Private
Customer

owners

1..*

P-accounts

1..*

11..*

{subsets accounts}

{subsets customers}

Composition (“Black Diamond”) AssociationsComposition (“Black Diamond”) Associations

� Implies “ownership” of one element by another

� i.e., An instance of Person owns an instance of String that
specifies that person’s “name”

0..1 name

1

Person String

value

© Copyright Malina Software115

� Semantics: “Deletion” semantics

� When the owner is removed, all its owned elements are also
removed with it

1 value

a : Person

name

:String

value = “Bran”

Key MOF Abstraction: Names and NamespacesKey MOF Abstraction: Names and Namespaces

� Names are specified by Strings

� No pre-defined character set or size limit

� E.g.: “Alice”, “R2->D2”, “4 Sale”, “Ceлић”, “多音字多音字多音字多音字”, “”

� NB: An empty name is a valid name

� A namespace is a model element that owns a collection of model
elements (that may be) distinguished by their names

� The features (attributes, operations, etc.) of a Class

� Used as a basis for specifying other MOF concepts: Package, Class,

© Copyright Malina Software116

� Used as a basis for specifying other MOF concepts: Package, Class,
Operation, etc.

� General rules (may be further constrained in a profile)

� Names in a namespace are not necessarily unique (but is preferred)

• E.g. Two operations may have the same name but different parameter sets

• E.g.: an operation and an attribute of a class can have the same name

� Namespaces can contain other namespaces ⇒⇒⇒⇒ hierarchical (qualified)
names

• Use of double-colon (::) to separate names in a qualified name

• E.g.: “System::CoolingSubsystem::ACUnit”

The Concept of VisibilityThe Concept of Visibility

� Named elements owned by a MOF namespace have a
defined visibility:

� The capacity for an element to be referenced by other model
elements (possibly in other namespaces)

� Pre-defined visibility kinds:

� public (+) – named element is visible to all elements that can
access its namespace

© Copyright Malina Software117

access its namespace

� private (-) – visible only within the namespace that owns it

� protected (#) – visible only to elements in its extended
namespace (i.e., its namespace and the namespaces of all
specializing classifiers – for classifier type namespaces only)

• E.g., a Class attribute visible to all subclasses of that Class

� package – (~) visible only to other elements in the same package

• e.g., a Class attribute visible to all elements in the same Package as
the Class

MOF PackagesMOF Packages

� A Package is a means for grouping the parts of a
(meta)model

� Packages are (typically) not intended to model anything

� Analogous to file system folders

� A package is a kind of namespace

� Public elements from other packages can be imported into

© Copyright Malina Software118

� Public elements from other packages can be imported into
the package namespace (analogous to “external” declarations
in programming)

Package DiagramsPackage Diagrams

� Show relationships (import, merge) between
packages in a model

� A design-time view

«modelLibrary»

UtilityClassesKernel
«import»

© Copyright Malina Software119

ExtendedKernel

Top

«import»

«import»

«merge»

X Y

Package Import SemanticsPackage Import Semantics

«import
»A

B +C
-D

+EC

© Copyright Malina Software120

� Following importing, namespace X contains the
following names:

� A, B, C, Y::C, E

� ...but not D

� However, Y::C and E are not owned by X

Package Import Semantics Package Import Semantics (cont’d)(cont’d)

X::A

X::B

Y

«import
»

X::C

+D

X

Abc

Aab

Aad

© Copyright Malina Software121

� Y owns D and the associations

+A

+B +C

«import»
A

B +B
-D

+E

X Y

Element ImportElement Import

X Y
same class

«import»

{-C}

© Copyright Malina Software122

An imported element can be given a local alias and a
local visibility

A

B +B
-D

X Y

+E
«import»

+Y::E

-C

Package MergePackage Merge

� Allows selective incremental concept extension

ElementElement

InfrastructureLibrary

«merge»

© Copyright Malina Software123

EMOF::Reflection

Element

getMetaClass()
…

Object

EMOF::Reflection

ElementElement

getMetaClass()
…

Object

resultresult

Package Merge SemanticsPackage Merge Semantics

� A graphically-specified operation on packages and
their contents

� Extends definition and scope of a concept through an
increment

� Why not just use subclassing?

� The additional specifications apply to the original concept

© Copyright Malina Software124

� The additional specifications apply to the original concept
wherever it was used

Element

Object

Element

Object

We would need to replace Element
with the new ObjectElement class
in all parts of the model where
Element originally appeared

EMOF Metamodel: Modular (EMOF Metamodel: Modular (MixinMixin) Generalizations) Generalizations

� A meta-modeling pattern for adding capabilities
using specialized superclasses

� Each increment adds a well-defined primitive capability

� To be used with extreme caution because it can lead to
semantic conflicts and overgeneralization problems

• Especially if the mixin classes have associations

© Copyright Malina Software125

Property Operation Parameter

MultiplicityElement

lower : Integer
upper : UnlimitedInteger

NamedElement

name: String [0..1]

PackageableElement

MetaMeta--Modeling Trap: OvergeneralizationModeling Trap: Overgeneralization

� Fragment of the UML 2 metamodel (simplified):

What does it

Over-
generalization

Element

ownedElement 0..*

owner

0..1

© Copyright Malina Software126

Relationship

Dependency

Classifier

Use Case

What does it
mean for a
Dependency to
own a Use Case?

Dealing with OvergeneralizationDealing with Overgeneralization

� Caused by “abstract” associations

� Can sometimes be avoided using association
specialization (covariance) or constraints

Element

ownedElement 0..*

owner

© Copyright Malina Software127

Relationship

Element

Classifier

owner

0..1

ownedElement->size() = 0

Element

OwnedBy

Classifier

RDFS RDFS –– An Alternative to MOFAn Alternative to MOF

� Resource Description Framework Schema (RDFS)

� A standardized format for knowledge (ontology)
representation and interchange on the World-Wide Web

� Standardized by the W3C consortium

� http://www.w3.org/standards/techs/rdf

� Based on simple <object-attribute-value> paradigm:

© Copyright Malina Software128

� Based on simple <object-attribute-value> paradigm:

http://www.library.org/books#WarAndPeace

Leo Tolstoy

author

Resource
(object)

Attribute
Value

Encoded using an
XML syntax

http://www.library.org/content#WarAndPeace

publisher
Doubleday Co.

content
etc.

URI

RDFS Metamodel (simplified)RDFS Metamodel (simplified)

� Everything is a resource (identified by a URI)

RDFSResource

localName : String
namespace : String
uri : String

1 predicate

subject

1
object

1 RDFSLiteral

© Copyright Malina Software129

RDFStatement

RDFProperty RDFClass
domain

0..*
range

0..*

Properties can be Properties can be
defined independently
of Resources and can
be associated with
multiple classes

Tutorial OutlineTutorial Outline

� On Models and Model-Based Software Engineering

� The Key Dimensions of Modeling Language Design

� Defining a Modeling Language

� Case Study: UML

� Language Refinement: UML Profiles

© Copyright Malina Software130

� Language Refinement: UML Profiles

� Model Transformations

UML 1: The First CutUML 1: The First Cut

Booch
OMT

etc.

© Copyright Malina Software131

OOSE The primary intent
was to facilitate

documentation of the
results of analysis and

design.

UML Roots and Evolution: UML 1UML Roots and Evolution: UML 1

MDA

UML 1.5 (Action Semantics)
2003

© Copyright Malina Software132

UML 1.1 (First OMG Standard)

UML 1.3 (profiles)

UML 1.4 (bug fixes)

1967

Semantic Foundations of OO (Nygaard, Goldberg, Meyer,
Stroustrup, Harel, Wirfs-Brock, Reenskaug,…)

JacobsonHarelBoochRumbaugh

1996

UML 1.5 (Action Semantics)
2003

UML Roots and Evolution: UML 2UML Roots and Evolution: UML 2

2005

UML 2.0 (MDA)UML 2.0 (MDA)

UML UML 2.42.4
2010

.

.

.

© Copyright Malina Software133

UML 1.1 (First OMG Standard)

UML 1.3 (profiles)

UML 1.4 (bug fixes)

1967

Semantic Foundations of OO (Nygaard, Goldberg, Meyer,
Stroustrup, Harel, Wirfs-Brock, Reenskaug,…)

JacobsonHarelBoochRumbaugh

1996

UML 1 UML 1 vsvs UML 2UML 2

� UML 1 was intended primarily as a design and
documentation tool
� Informal and semi-formal definition

� Overlapping and ambiguous concepts

� UML 2 is intended to support MDA
� Much more formal and precise definition

• Executable UML Foundation

© Copyright Malina Software134

• Executable UML Foundation

� Opens up potential to use UML as an implementation language

� UML 2 added capabilities
� Highly-modular language architecture

� Improved large-system modeling capability

• Interactions, collaboration (instance) structures, activities all
defined recursively for scalability

� More powerful language extensibility capability

UML 2 Language ArchitectureUML 2 Language Architecture
� A user-selectable collection of different languages for different needs

based on a set of shared conceptual cores

� Organized into user-selectable increments of increasing sophistication

FlowFlow--BasedBased

Actions (L1)Actions (L1)
Interactions Interactions

(L1)(L1)

Use Use
Cases Cases
(L1)(L1)

State State
Machines Machines

(L1)(L1)

Activities Activities
(L1)(L1) Components

(L2)

L2 ∆∆∆∆ L2 ∆∆∆∆ L2 ∆∆∆∆ L2 ∆∆∆∆

Deployments
(L3)

L3 ∆∆∆∆L3 ∆∆∆∆L3 ∆∆∆∆L3 ∆∆∆∆L3 ∆∆∆∆

© Copyright Malina Software135

Classes (L1)Classes (L1)
(Structure)(Structure)

UML Infrastructure Kernel (L0)UML Infrastructure Kernel (L0)

Composite Structures Composite Structures
(L1)(L1)

FlowFlow--BasedBased
BehaviorBehavior CoreCore

General General BehaviorBehavior CoreCore

(L1)(L1)
Cases Cases
(L1)(L1)

L2
∆∆∆∆

L2
∆∆∆∆

L3
∆∆∆∆

L3
∆∆∆∆

UML Language Compliance LevelsUML Language Compliance Levels

� 4 levels of compliance (L0 – L3)

� compliance(Lx) ⇒⇒⇒⇒ compliance (Lx-1)

� Dimensions of compliance:

� Abstract syntax (UML metamodel, XMI interchange)

� Concrete syntax

• Optional Diagram Interchange compliance

� Forms of compliance

© Copyright Malina Software136

� Forms of compliance

� Abstract syntax

� Concrete syntax

� Abstract and concrete syntax

� Abstract and concrete syntax with diagram interchange

� However, this architecture has been deemed as too complex
for implementation and the compliance levels and the use of
package merge in the definition of UML are being eliminated in
UML 2.5 (due in 2012)

UML Language Specification FormatUML Language Specification Format

� Abstract Syntax

� Concepts, their features, and mutual relationships

� Described by a MOF metamodel + additional constraints
(OCL or English)

� Concrete Syntax

� Notation (diagrams, text, tables, graphical representation)

� UML concrete syntax definition is incomplete and informally

© Copyright Malina Software137

� UML concrete syntax definition is incomplete and informally
defined

� XML-based Interchange format (XMI)

� Language Semantics

� The meaning of UML models and the concepts used to
express them

� English (+ fUML model + mathematical model)

UML Concrete
Syntax

© Copyright Malina Software138

Syntax

DIAGRAM CONTENTS AREA

[<diagramKind>] <diagramName> [<parameters>]

General General Diagram FormatDiagram Format

� An optional structured form for UML
diagrams

HEADER

© Copyright Malina Software139

act
class
cmp
dep
sd
pkg
stm
uc

pkgpkg TopPkgDiagramTopPkgDiagram

PkgAPkgA PkgBPkgB
«import»«import»

UML Concrete Syntax: Diagram TypesUML Concrete Syntax: Diagram Types

UML Diagram

Class
Diagram

Instance
Diagram

Statechart
Diagram

Activity
Diagram

Structure

Diagram

Behavior

Diagram

© Copyright Malina Software140

Diagram

Package
Diagram

Composite
Structure

Collaboration
Diagram

Deployment
Diagram

Diagram Diagram

UseCase
Diagram

Interaction

Diagram

Diagram

Sequence
Diagram

Interaction
Overview

Communication
Diagram

Timing
Diagram

Profile
Diagram

UML Concrete SyntaxUML Concrete Syntax

� Incomplete and informally defined

� No definitive rules on what is a valid syntactical construction

� Creates difficulties in model interchange and confuses users

� The relationship between concrete and abstract syntax
is not fully defined

� The “Diagram Interchange” specification defines a one-way link
from the concrete syntax elements of a model (e.g., diagrams)

© Copyright Malina Software141

from the concrete syntax elements of a model (e.g., diagrams)
to the abstract syntax elements

� Allows for multiple different representations of a given model
(e.g., textual, graphical)

� A standard “Diagram Definition” specification has
recently been adopted by the OMG

� Can serve as a basis for a precise and complete specification
of the concrete syntax of UML and other MDA languages

UML Abstract
Syntax

© Copyright Malina Software142

Syntax

New Approach to the UML MetamodelNew Approach to the UML Metamodel

� In UML 2, a more incremental approach was used to
define the abstract syntax (compared to UML 1)

� Based on a core of fine-grained abstract concepts (e.g.,
namespace, multiplicity, redefinition)

� More complex concepts derived using mixin-based
composition of core concepts and package merge

� More refined semantics through the use of association

© Copyright Malina Software143

� More refined semantics through the use of association
specialization

� Enables:

� Cleaner definition of core semantics (concepts are isolated
from each other)

� More flexible definition of complex concepts

� Simpler evolution and extension

The Root of the UML MetamodelThe Root of the UML Metamodel

Represents the Represents the
generalization (union) generalization (union)
of all varieties of of all varieties of
compositions between compositions between
conceptsconcepts

© Copyright Malina Software144

The Namespaces MetamodelThe Namespaces Metamodel

Introduces capability Introduces capability
to be part of a to be part of a
packagepackage

© Copyright Malina Software145

Adding Namespace RelationshipsAdding Namespace Relationships

© Copyright Malina Software146

Types MetamodelTypes Metamodel

© Copyright Malina Software147

� NB: typed elements may not actually have a type
declared (lower bound of TypedElement::type = 0)

� To support incomplete models

Packages MetamodelPackages Metamodel

© Copyright Malina Software148

ConstraintsConstraints

� Captures some semantics for elements of a
namespace

� Expressed in either formal or natural language

� E.g., Object Constraint Language (OCL), English, Australian

� Notation choices:

© Copyright Malina Software149

Stack

size : Integer {size >= 0}

IN LINE

Stack

size : Integer

{size >= 0}

ATTACHED NOTE

Constraints MetamodelConstraints Metamodel

© Copyright Malina Software150

� ValueSpecification: modeling element that contains an
expression which evaluates to a Boolean value
(true/false)

� The namespace can be a Class, Package, Interface, etc.

Core Structural Concepts: ValuesCore Structural Concepts: Values

� Value: universal, unique, and unchanging

� Numbers, characters, strings

� Represented by a symbol (e.g., 7, VII, “a”, “fubar”)

� Includes object identifiers (“InstanceValue”)

� Represented by ValueSpecification in the UML metamodel

© Copyright Malina Software151

Core Structural Concepts: ObjectsCore Structural Concepts: Objects

� “Value containers”: a (physical) space for storing values

� Can be created and destroyed dynamically

� Limited to storing only values conforming to a given type

� The stored value may be changed (e.g., variables, attributes)

� Multiple forms in UML: variables, attribute slots, objects

� Object: a complex value container with a unique identity

© Copyright Malina Software152

� Object: a complex value container with a unique identity
conforming to a Class type

� May own attribute slots (containers for attribute values)

� May be capable of performing behaviours (operations, etc.)

� Identity does not change during its lifecycle

� ...but its type could change over type (type reclassification)

Specifying Instances in UMLSpecifying Instances in UML

� InstanceSpecification: a generic facility for modeling
objects and other things that occupy memory space

� The metamodel

© Copyright Malina Software153

Multiplicity ConceptMultiplicity Concept

Adult

name : String [0..*]

Child

name : String [0..*]

parent

1..2

child

0..*

MultiplicityMultiplicity

MultiplicityMultiplicity

MultiplicityMultiplicity

MultiplicityMultiplicity

© Copyright Malina Software154

� For specifying usages that are collections

� Attributes, association ends, parameters, etc.

� Can specify ranges (upper and lower bounds)

� 0 = absence of elements

� * (or [0..*]) = open-ended upper bound

MultiplicityMultiplicity MultiplicityMultiplicity

Multiplicity ModifiersMultiplicity Modifiers

� {unique} = no two elements of the collection can have the

Adult

name : String [0..*]

Child

name : String [0..*]

parent

1..2

child

0..*

{unique,
ordered} Multiplicity Multiplicity

modifiersmodifiers

© Copyright Malina Software155

� {unique} = no two elements of the collection can have the
same value

� Default value: true

� {nonunique} if false

� {ordered} = the elements in the collection are ordered in
some appropriate manner (⇒⇒⇒⇒ an ordered collection)

� Default value: false = {unordered}

Multiplicities MetamodelMultiplicities Metamodel

© Copyright Malina Software156

The UML Concept of ClassifierThe UML Concept of Classifier

� A classifier is a specification of a collection of
entities (things, concepts, etc.) that

1. Share a set of characteristics (features) and which

2. Can be classified (divided) into sub-collections according to
the nature of some of their characteristics

� E.g., people can be classified based on their gender
into men and women

© Copyright Malina Software157

into men and women

� . . . or, they may be classified according to their age into
adults and children

� Kinds of Classifiers in UML:

� Classes, Associations, AssociationClasses, DataTypes,
Enumerations, Interfaces, Behaviors (Activities,
Interactions, StateMachines), Signals, UseCases,
Collaborations, Components, Nodes, etc.

UML Classifier ConceptUML Classifier Concept

� Introduces concepts that can be:

� Classified based on the nature of their features

� Generalized/specialized

© Copyright Malina Software158

Redefinition in UMLRedefinition in UML
Introduces capability Introduces capability
to be redefined (in a to be redefined (in a
subsub--classifier)classifier)

© Copyright Malina Software159

Classifier FeaturesClassifier Features

� Two basic kinds:

� Structural features (e.g., attributes, associations)

� Behavioural features (e.g., operations, receptions)

� Structural features are type usages and have:

� Multiplicity

© Copyright Malina Software160

� Visibility

� Scope [static(classifier), instance]

• Static features are singletons and apply to the classifier as a
whole rather than individual instances

� Behavioural features have

� Visibility and scope

Features MetamodelFeatures Metamodel

© Copyright Malina Software161

Class and Association MetamodelClass and Association Metamodel

© Copyright Malina Software162

DependenciesDependencies

� An informal statement that one or more “client”
items require one or more “supplier” items in some
way

� A change in a supplier affects the clients (in some way)

� Semantics are very open (loose), but can be specialized

Optional Optional Optional Optional

© Copyright Malina Software163

Car

Factory

«manufacturedBy»

Optional Optional
useruser--defined defined
namename

Car

Factory

«manufacturedBy»

Motorcycle

Dependencies MetamodelDependencies Metamodel

� In general, dependencies can be drawn between any
two named elements in the model

© Copyright Malina Software164

UML Semantics

© Copyright Malina Software165

Foundational UML (fUML) and Basic UML (bUML)Foundational UML (fUML) and Basic UML (bUML)

� A subset of fUML actions is used as a core language (Basic
UML) that is used to describe fUML itself

Foundational UML (fUML) action semanticsFoundational UML (fUML) action semantics
(action executions, token flows, etc.)(action executions, token flows, etc.)

Maps to Maps to
(Operational(OperationalBasic UML action semantics (bUML)Basic UML action semantics (bUML)

© Copyright Malina Software166

(Operational(Operational
Specification)Specification)

Basic UML action semantics (bUML)Basic UML action semantics (bUML)

Maps to (Axiomatic Specification)Maps to (Axiomatic Specification)

Formal mathematical model Formal mathematical model
(Process Specification Language)(Process Specification Language)

Basis for a formalization of UMLBasis for a formalization of UML

UML Model of ComputationUML Model of Computation

� Structure dominant

� All behavior stems from (active) objects

� Distributed

� Multiple sites of execution (“localities”)

� Concurrent

� Active objects ⇒⇒⇒⇒ multiple threads of execution

© Copyright Malina Software167

� Active objects ⇒⇒⇒⇒ multiple threads of execution

� Heterogeneous causality model

� Event driven at the highest level

� Data and control flow driven at more detailed levels

� Heterogeneous interaction model

� Synchronous, asynchronous, mixed

Behavioral Semantic Base

UML UML RunRun--Time (Dynamic) Semantics ArchitectureTime (Dynamic) Semantics Architecture

ActionsActions

.ActivitiesActivities
StateState

MachinesMachines
InteractionsInteractions

© Copyright Malina Software168

Structural Semantic Base (Objects)

ActionsActions

InterInter--object object CommsCommsObject ExistenceObject Existence

FlowFlow--Based Behavior SemanticsBased Behavior Semantics

UML Model of Causality (How Things Happen)UML Model of Causality (How Things Happen)

� A discrete event-driven model of computation
� Network of communicating objects

� All behaviour stems from objects

obj1:C1

s1

s2

obj2:C2

act1

act2

obj1:C1

s1s1

s2

obj2:C2

act1

act2

obj1:C1

s1

s2s2

obj2:C2

act1

act2

obj1:C1

s1

s2s2

obj2:C2

act1act1

act2act2

obj1:C1

s1

s2s2

obj2:C2

act1

act2

© Copyright Malina Software169

s2

obj3:C1

s1

s2

a1:A1

a2:A2

s2

obj3:C1

s1

s2s2

s2s2

obj3:C1

s1

s2s2

s2s2

obj3:C1

s1

s2s2

s2s2

obj3:C1

s1s1

s2

How Things Happen in UMLHow Things Happen in UML

� An action is executed by an object

� May change the contents of one or more variables or slots

� If it is a communication (“messaging”) action, it may:

• Invoke an operation on another object

• Send a signal to another object

• Either one will eventually cause the execution of a procedure on

© Copyright Malina Software170

• Either one will eventually cause the execution of a procedure on
the target object…

• …which will cause other actions to be executed, etc.

� Successor actions are executed

• Determined either by control flow or data flow

Basic Structural ElementsBasic Structural Elements
� Values

� Universal, unique, constant

� E.g. Numbers, characters, object identifiers (“instance value”)

� “Cells” (Slots/Variables)

� Container for values or objects

� Can be created and destroyed dynamically

� Constrained by a type

� Have identity (independent of contents)

© Copyright Malina Software171

� Have identity (independent of contents)

� Objects (Instances)

� Containers of slots (corresponding to structural features)

� Just a special kind of cell

� Links

� Tuples of object identifiers

� May have identity (i.e., some links are objects)

� Can be created and destroyed dynamically

ClassifierFeature
feature

0..* 0..*
Class

Relationship Between Structure and BehaviourRelationship Between Structure and Behaviour

� From the UML metamodel:

Actor

Class

Because:
when

executed,
a special

“execution”
object is

Behavior

owned
Behavior

0..*

0..1

context

© Copyright Malina Software172

Activity StateMachine Interaction OpaqueBehavior

Class

Collaboration

UseCase

For flow-based For flow-based
behaviours

For event-driven For event-driven
behaviours

For event-driven
system behaviours

object is
created

context

Classifier Behaviours Classifier Behaviours vs.Methodsvs.Methods

� Methods: Intended primarily for passive objects

� Can be synchronous (for operations) or asynchronous (for receptions)

� Classifier behaviour: Intended primarily for active objects

� Executed when the object is created

Behavior

owned
Behavior

0..*

0..10..1

context

© Copyright Malina Software173

classifier
Behavior 0..1

0..1

0..* method

Behavioral
Feature

specification 0..1

Operation Reception

Parameter

0..*

0..1

0..*

context

Active Object DefinitionActive Object Definition

� Active object definition:

An active object is an object that, as a direct
consequence of its creation, commences to execute its
classifier behavior, and does not cease until either the
complete behavior is executed or the object is
terminated by some external object.

� Also:

The points at which an active object responds to
[messages received] from other objects is determined

© Copyright Malina Software174

The points at which an active object responds to
[messages received] from other objects is determined
solely by the behavior specification of the active
object...

AnActiveClass

Parallel lines
used to
distinguish from
passive classes

Passive vs. Active ObjectsPassive vs. Active Objects

� Passive objects respond whenever an operation (or
reception) of theirs is invoked

� NB: invocations may be concurrent ⇒⇒⇒⇒ conflicts possible!

� Active objects run concurrently and respond only
when they execute a “receive” action

© Copyright Malina Software175

obj:C

setA(a:Integer)
getA() : Integer

a1a1: a1a2:

setA(1) getA()

active:A

a1a1: a1a2:

reqB() reqA()

reqA reqB

Message queue
Event selection Event selection
based on chosen
scheduling policy

RunRun--ToTo--Completion (RTC) SemanticsCompletion (RTC) Semantics

� Any messages arriving between successive “receive”
actions are queued and only considered for handling
on the next “receive” action

� Simple “one thing at a time” approach

� Avoids concurrency conflicts

ReceivReceivReceiv

© Copyright Malina Software176

Message queue

ReceivReceiv
ee

. . .

Receiv
e

reqA

Receiv
e

.

Receiv
e

reqBreqC

Receive

. . .

ReceiveReceive

reqC

The Problem with RTCThe Problem with RTC

� Message (event) priority: in some systems (e.g.,
real-time systems) messages may be assigned
different priorities

� To differentiate important (high priority) events from those
that are less so and to give them priority handling (e.g.,
interrupting handling of a low priority message)

� Priority inversion: The situation that occurs when a

© Copyright Malina Software177

� Priority inversion: The situation that occurs when a
high priority message has to wait for a low priority
message

� The RTC approach is susceptible to priority
inversion
� But, it is limited to situations where the high-priority and

low-priority events are being handled by the same object
(rather than the system as a whole)

Active1 Active2

RTC SemanticsRTC Semantics

� If a high priority event arrives for an object that
is ready to receive it, the processing of any low
priority events by other active objects can be
interrupted

lo

© Copyright Malina Software178

hi

hi

(queue
d)

Handling of low Handling of low
priority event
suspended while
high priority
event is processed

Processing of queued high
priority event can commence at
this point

UML Communications TypesUML Communications Types
� Synchronous communications: (Call and wait)

� Calling an operation synchronously

� Asynchronous communications: (Send and continue)

� Sending a signal to a reception

� Asynchronous call of an operation (any replies discarded)

Object1 Object2Object1 Object2

© Copyright Malina Software179

send sigX()

sigX method
executing

Asynchronous
Communications

call opX()

opX method
executing

Synchronous
Communications

reply

Purpose of UML ActionsPurpose of UML Actions

� For modelling fine-grained behavioural phenomena which
manipulates and accesses UML entities (objects, links,
attributes, operations, etc.)

� E.g. create link, write attribute, destroy object

� A kind of UML “assembler”

� The UML standard defines:

� A set of actions and their semantics (i.e., what happens when

© Copyright Malina Software180

� A set of actions and their semantics (i.e., what happens when
the actions are executed)

� A method for combining actions to construct more complex
behaviours

� The standard does not define:

� A concrete syntax (notation) for individual kinds of actions

� Proposal exists for a concrete semantics for UML Actions

Categories of UML ActionsCategories of UML Actions

� Capabilities covered
� Communication actions (send, call, receive,…)

� Primitive function action

� Object actions (create, destroy, reclassify,start,…)

� Structural feature actions (read, write, clear,…)

� Link actions (create, destroy, read, write,…)

� Variable actions (read, write, clear,…)

© Copyright Malina Software181

� Variable actions (read, write, clear,…)

� Exception action (raise)

� Capabilities not covered
� Standard control constructs (IF, LOOP, etc. – handled through

Activities)

� Input-output

� Computations of any kind (arithmetic, Boolean logic, higher-
level functions)

a1:TestIdentityAction result : Boolean
first:

second:

Action Specification (a design-time specification)

Output PinOutput PinInput PinInput Pin

Action Specifications and Action ExecutionsAction Specifications and Action Executions

© Copyright Malina Software182

a1[i]:TestIdentity
ActionExecution

first:
result : Boolean

second:

Action Execution (a run-time concept)

object1:C1

object2:C1

false
(value)

NB: each time action a1 needs to be executed,
a new action execution is created

a1:
o1: T3

i1:T1

i2:T2

a2:i1:T3

a3: o1: T3i2:T3

�Data flow MoC: output to input connections

a1:
o1: T3

i1:T1

i2:T2

a2:i1:T3

a3: o1: T3i2:T3

Combining ActionsCombining Actions

© Copyright Malina Software183

�Control flow MoC: identifying successor actions

Contention (a2 and a3) Data replication

a1:
i1:T1

i2:T2

a4:

a5: o1: T3

a3:i1:T3a2: o1: T3

�Execution order can be modeled as an exchange of
data/control “tokens” between nodes

a1x:
i1:T1

i2:T2

a4x:

a3x:i1:T3a2x: o1: T3
a1x:a1x:

aa44x:x:

a3x:a3x:a2x:a2x:

Controlling Execution: Token PassingControlling Execution: Token Passing

© Copyright Malina Software184

i2:T2

a5x: o1: T3a5x:a5x:

�General execution rules:

� All tokens have to be available before actions execute

� Tokens are offered only after action execution completes

Summary: UML SemanticsSummary: UML Semantics

� The UML model of computation is:

� Structure dominant

� Distributed

� Concurrent

� Event driven (at the highest level)

� Data and control flow driven (at finer grained levels)

© Copyright Malina Software185

� Data and control flow driven (at finer grained levels)

� Supports different interaction models

� The core part of the UML semantics is defined
formally

� Provides an opportunity for automated formal analyses

Tutorial OutlineTutorial Outline

� On Models and Model-Based Software Engineering

� The Key Dimensions of Modeling Language Design

� Defining a Modeling Language

� Case Study: UML

� Language Refinement: UML Profiles

© Copyright Malina Software186

� Language Refinement: UML Profiles

� Model Transformations

UML as a Platform for DSMLsUML as a Platform for DSMLs

� DSML = Domain-Specific Modeling Language

� Designed as a “family of modeling languages”

� Contains a set of semantic variation points (SVPs) where the
full semantics are either unspecified or ambiguous

� SVP examples:

• Precise type compatibility rules

© Copyright Malina Software187

• Precise type compatibility rules

• Communications properties of communication links (delivery
semantics, reliability, etc.)

• Multi-tasking scheduling policies

� Enables domain-specific customization

� Open to both extension (“heavyweight” extension)
and refinement (“lightweight” extension)

Example: Adding a Semaphore Concept to UMLExample: Adding a Semaphore Concept to UML

� Semaphore semantics:

� A specialized object that limits the number of concurrent
accesses in a multithreaded environment. When that limit is
reached, subsequent accesses are suspended until one of
the accessing threads releases the semaphore, at which
point the earliest suspended access is given access.

� What is required is a special kind of object

© Copyright Malina Software188

� What is required is a special kind of object

� Has all the general characteristics of UML objects

� …but adds refinements

Example: The Semaphore StereotypeExample: The Semaphore Stereotype

� Design choice: Refine the UML Class concept by

� “Attaching” semaphore semantics

• Done informally as part of the stereotype definition

� Adding constraints that capture semaphore semantics

• E.g., when the maximum number of concurrent accesses is reached,
subsequent access requests are queued in FIFO order

� Adding characteristic attributes (e.g., concurrency limit)

© Copyright Malina Software189

� Adding characteristic attributes (e.g., concurrency limit)

� Adding characteristic operations (getSemaphore (),
releaseSemaphore ())

� Create a new “subclass” of the original metaclass with
the above refinements

� For technical reasons, this is done using special mechanisms
instead of MOF Generalization (see slide Why are Stereotypes
Needed?)

Example: Graphical Definition of the StereotypeExample: Graphical Definition of the Stereotype

«metaclass»

UML::Class
“Extension”Special icon

(Optional)

© Copyright Malina Software190

«stereotype»

Semaphore

limit : Integer
getSema : Operation
relSema : Operation

active->size()

<= limitlimit <= MAXlimit

Constraints

Example: Applying the StereotypeExample: Applying the Stereotype

Object

print()

© Copyright Malina Software191

«semaphore»

limit = 1
getSema = get
relSema = release

BinarySem

get ()
release ()

SomeOtherClass
«semaphore»

DijkstraSem

p ()
v ()

«semaphore»

limit = MAXlimit
getSema = p
relSema = v

«semaphore»

BinarySem

The Semantics of Stereotype ApplicationThe Semantics of Stereotype Application

BinarySem

get ()
release ()

«semaphore»

BinarySem

get ()
release ()

«semaphore»

limit = 1
getSema = get
relSema = release

«semaphore»

limit = 1
getSema = get

NB: attaching a
stereotype does
not change the
original!

© Copyright Malina Software192

:Class

name = “BinarySem”

:Operation

name = “get”

:Operation

name = “release”

:Class

name = “BinarySem”

:Operation

name = “get”

:Operation

name = “release”

getSema = get
relSema = release

not change the
original!

Stereotype Stereotype Representation OptionsRepresentation Options

«semaphore»

MySema

(a)

MySema

(b)

© Copyright Malina Software193

(a) (b)

MySema

(c)

Why are Stereotypes Needed?Why are Stereotypes Needed?

� Why not simply create a new metaclass?

Semaphore

UML::
Class

MOF
generalization

© Copyright Malina Software194

Semaphore

Rationale:

1. Not all modeling tools support meta-modeling ⇒ need to
define (M2) extensions using (M1) models

2. Need for special semantics for the extensions:

– multiple extensions for a single stereotype

– extension of abstract classes (applicable to all subclasses)

The MOF Semantics of UML ExtensionThe MOF Semantics of UML Extension

� How a stereotype is attached to its base class
within a model repository:

UML::Class
: MOF::Class

“Base” metaclass

base_Class

extension_Semaphore

Semaphore
: MOF::Stereotype

Stereotype

1

0..1

© Copyright Malina Software195

� Association ends naming convention:
base_<base-class-name>

extension_<stereotype-name>

� Required for writing correct OCL constraints
for stereotypes

Example: OCL Constraint for a StereotypeExample: OCL Constraint for a Stereotype

� Semaphore constraint:
the base Class must have an owned ordered attribute

UML::Class
: MOF::Class

“Base” metaclass

base_Class

extension_Semaphore

Semaphore
: MOF::Stereotype

Stereotype

1

0..1

© Copyright Malina Software196

Semaphore constraint:
the base Class must have an owned ordered attribute
called “msgQ” of type Message

context Semaphore inv:
self.base_Class.ownedAttribute->
exists (a | (a.name = ‘msgQ’)

and (a.type->notEmpty())
and (a.type = Message)
and (a.isOrdered)
and (a.upperValue = self.limit))

Adding New MetaAdding New Meta--AssociationsAssociations

� This was not possible in UML 1.x profiles

� Meta-associations represent semantic relationships between
modeling concepts

� New meta-associations create new semantic relationships

� Possibility that some tools will not be able to handle such
additions

© Copyright Malina Software197

� UML 2.0 capability added via stereotype attribute
types:

� To be used with care!

«metaclass»

UML::Class

«stereotype»

Semaphore

msgQ : Message [0..*]

Creates an association

exist in UML

Creates an association
between Class and
Message that does not
exist in UML

UML ProfilesUML Profiles

� Profile: A special kind of package containing
stereotypes and model libraries that, in conjunction
with the UML metamodel, define a group of domain-
specific concepts and relationships

� The profile mechanism is also available in MOF where it can
be used for other MOF-based languages

Profiles can be used for two different purposes:

© Copyright Malina Software198

� Profiles can be used for two different purposes:

� To define a domain-specific modeling language

� To define a domain-specific viewpoint (cast profiles)

ReRe--Casting Models Using ProfilesCasting Models Using Profiles

� A profile can be dynamically applied or unapplied to a
given model
� Without changing the original model

� Allows a model to be interpreted from the perspective of a
specific domain

� Example: viewing a UML model fragment as a queueing
network

© Copyright Malina Software199

user1

user2

DBase

unapplyunapply
profileprofile

user1

user2

DBase

«client»

user1

«client»

user2

«server»

DBase

serviceRate = . . .

arrivalRate = . . .

arrivalRate = . . .

applyapply

profileprofile

MultiMulti--Base StereotypesBase Stereotypes

� A domain concept may be a specialization of more
than one base language concept

SemCollaboration
«metaclass»

UML::

ConnectableElement

«metaclass»

UML::

Class

NB: stereotyping an NB: stereotyping an
abstract class

© Copyright Malina Software200

client1

client2

«semaphore»

Sem

«stereotype»

Semaphore

ConnectableElement Class

NB: disjunctive semantics NB: disjunctive semantics
(unlike generalization)

Analysis with Cast ProfilesAnalysis with Cast Profiles

� E.g., recast a model as a queueing network model

ModelingModeling

ToolTool Model AnalysisModel Analysis

M2M Transform

© Copyright Malina Software201

ToolTool

5555

33 1133..11

4444
ToolTool

µ

Inverse M2M Transform

22 5522..55

QoS annotations

“Required” Extensions“Required” Extensions

� An extension can be marked as “required”

� Implies that every instance of the base class will be
stereotyped by that stereotype

• Used by modeling tools to autogenerate the stereotype instances

� Facilitates working in a DSML context by avoiding manual
stereotyping for every case

� E.g., modeling Java

© Copyright Malina Software202

� E.g., modeling Java

«metaclass»

UML::Class

«stereotype»

JavaClass

{required}

Strict Profile ApplicationStrict Profile Application

� A strict application of a profile will hide from view
all model elements that do not have a corresponding
stereotype in that profile

� Convenient for generating views

� Strictness is a characteristic of the profile
application and not of the profile itself

� Any given profile can be applied either way

© Copyright Malina Software203

� Any given profile can be applied either way

Metamodel Subsetting with Profiles (1)Metamodel Subsetting with Profiles (1)

� It is often useful to remove segments of the full
UML metamodel resulting in a minimal DSML
definition

� NB: Different mechanism from strict profile application –
the hiding is part of the profile definition and cannot be
applied selectively

� The UML 2.1 profile mechanism adds controls that

© Copyright Malina Software204

� The UML 2.1 profile mechanism adds controls that
define which parts of the metamodel are used

� Based on refinement of the package import and element
import capabilities of UML

Metamodel Subsetting with Profiles (Metamodel Subsetting with Profiles (22))

� Case 1: Metamodel Reference

� All elements of the referenced MOF package (PackageX) are visible (but
not the elements of PackageY)

� These elements can also serve as the base metaclasses for stereotypes in
MyProfile

MetamodelZMetamodelZ

PackageXPackageX PackageYPackageY«merge»«profile» «profile»
MYProfileMYProfile

«reference»

© Copyright Malina Software205

� Case 2: Explicit Metaclass Reference
– Metaclass Q is visible and can serve as a base metaclass for stereotypes in

MyProfile

MetamodelZMetamodelZ

PackageXPackageX

QQ
«profile» «profile»
MYProfileMYProfile

«reference»

NB: Care must be
taken to ensure that
all prerequisite parts
for Q (superclasses,
merge increments,
etc.) are also
referenced

Metamodel Subsetting with Profiles (Metamodel Subsetting with Profiles (33))

� Case 3: Implicit metaclass reference

� Metaclass M is visible

«profile»«profile» MyProfileMyProfile
MetamodelZMetamodelZ

© Copyright Malina Software206

«stereotype»«stereotype»
SS

«metaclass»«metaclass»
MetamodelZ::MMetamodelZ::M

MM

PP

QQ

Model LibrariesModel Libraries

� M1 level model fragments packaged for reuse

� Identified by the «modelLibrary» standard stereotype

� Can be incorporated into a profile

� Makes them formally part of the profile definition

• E.g., define an M1 “Semaphore” class in a library package and include the package
in the profile

� The same implicit mechanism of attaching semantics used for stereotypes
can be applied to elements of the library

© Copyright Malina Software207

� Overcomes some of the limitations of the stereotype mechanism

� Can also be used to type stereotype attributes

� However, it also precludes some of the advantages of the
profiling mechanism

� E.g., the ability to view a model element from different viewpoints

� Model libraries should be used to define useful types shared by
two or more profiles or profile fragments as well as by models at
the M1 level

Example: Model LibraryExample: Model Library

«modelLibrary»«modelLibrary»

TimeTypesTimeTypes

«profile» RealTimeProfile

value : Integer
unit : TimeUnit

TimeValue

usec
msec
sec
min

«enumeration»

TimeUnit

© Copyright Malina Software208

AnalysisBaseAnalysisBase
SystemSystem

ModelingModeling

ConceptsConcepts

«import» «import»

PerformancePerformance

AnalysisAnalysis

SubprofileSubprofile

SchedulabilitySchedulability

AnalysisAnalysis

SubprofileSubprofile

«import» «import»

NB: these
can also be
used in M1
models

The UML Profile MetamodelThe UML Profile Metamodel

© Copyright Malina Software209

Guidelines for Defining ProfilesGuidelines for Defining Profiles

� Always define a pure domain model (using MOF) first and
the profile elements second

� Allows separation of two different concerns:

• What are the right concepts and how are they related?

• How do the domain-specific concepts map to corresponding UML
concepts?

� Mixing these two concerns often leads to inadequate profiles

© Copyright Malina Software210

� Mixing these two concerns often leads to inadequate profiles

� For each domain concept, find the UML concept(s) that
most closely match and define the appropriate
stereotype

� If no matching UML concept can be found, a UML profile is
probably unsuitable for that DSML

� Fortunately, many of the UML concepts are quite general
(object, association) and can easily be mapped to domain-
specific concepts

Matching Stereotypes to MetaclassesMatching Stereotypes to Metaclasses

� A suitable base metaclass implies the following:

� Semantic proximity

• The domain concept should be a special case of the UML concept

� No conflicting well-formedness rules (OCL constraints)

� Presence of required characteristics and (meta)attributes

• e.g., multiplicity for domain concepts that represent collections

• New attributes can always be added but should not conflict with existing ones

� No inappropriate or conflicting characteristics or (meta)attributes

© Copyright Malina Software211

� No inappropriate or conflicting characteristics or (meta)attributes

• Attributes that are semantically unrelated to the domain concept

• These can sometimes be eliminated by suitable constraints (e.g., forcing
multiplicity to always have a value of 1 or 0)

� Presence of appropriate meta-associations

• It is possible to define new meta-associations

� No inappropriate or confliciting meta-associations

• These too can be eliminated sometimes by constraints

Beware of Syntactic Matches!Beware of Syntactic Matches!

� Avoid seductive appeal of a syntactic match

� In particular, do not use things that model M1 entities to
capture M0 elements and vice versa

• Example: using packages to represent groupings of run-time
entities

• Example: using connector and part structures to capture design
time dependencies (e.g., requirements dependencies)

© Copyright Malina Software212

time dependencies (e.g., requirements dependencies)

� This may confuse both tools and users

Catalog of Adopted OMG ProfilesCatalog of Adopted OMG Profiles

� UML Profile for CORBA

� UML Profile for CORBA Component Model (CCM)

� UML Profile for Enterprise Application Integration (EAI)

� UML Profile for Enterprise Distributed Object Computing (EDOC)

� UML Profile for Modeling QoS and Fault Tolerance Characteristics
and Mechanisms

© Copyright Malina Software213

� UML Profile for Schedulability, Performance, and Time

� UML Profile for System on a Chip (SoC)

� UML Profile for Systems Engineering (SysML)

� UML Testing Profile

� UML Profile for Modeling and Analysis of Real-Time and Embedded
Systems (MARTE)

� UML Profile for DoDAF/MoDAF (UPDM)

BibliographyBibliography

� OMG UML Profiles specifications

� http://www.omg.org/technology/documents/profile_catalog.h
tm

© Copyright Malina Software214

Tutorial OutlineTutorial Outline

� On Models and Model-Based Software Engineering

� The Key Dimensions of Modeling Language Design

� Defining a Modeling Language

� Case Study: UML

� Language Refinement: UML Profiles

© Copyright Malina Software215

� Language Refinement: UML Profiles

� Model Transformations

Model Transformations: PurposeModel Transformations: Purpose

� Generating a new model from a source model—
according to formally defined rules—to:

1. Extract an interesting subset of the source model (Query)

• Example: Find all classes that have multiple parents

2. Generate a new model, based on a different metamodel,
that is “equivalent” to the source model (Transformation)

• Example: Create a queueing network model of a UML model to

© Copyright Malina Software216

• Example: Create a queueing network model of a UML model to
facilitate performance analysis

• Example: UML to Java transformation for code generation

• Definition of “equivalence” depends on the particular case

3. Represent the source model from a particular viewpoint
(View)

• In effect, just a special case of Transformation

M2
MM1 to MM2

Transformation
Rules

A Basic Representation of Model TransformationA Basic Representation of Model Transformation

� Source to target mapping based on pre-defined
transformation rules

� Conceptually similar to source code compilation

MetamodelMetamodel

MM1MM1

MetamodelMetamodel

MM2MM2

© Copyright Malina Software217

M1

Rules

modelmodel22

: MM: MM22

model1 model1

: MM1: MM1

Transformation
Mapping

MM1MM1 MM2MM2

Can be either a Can be either a
process or an object

(1) Source element

Model Transformations: StylesModel Transformations: Styles

(2) Source pattern

© Copyright Malina Software218

(1) Source element

to target pattern

(2) Source pattern

to target element

(3) Source pattern

to target pattern

The Traditional Template ApproachThe Traditional Template Approach

� A basic “element-to-pattern” style

� Generate a target pattern for each element of the source model

� Example (S. Mellor: “archetype” language that generates a Java
class):

.for each object in O_OBJ

public class ${object.name} extends StateMachine
private StateMachineState currentState;

.select many attributes related by object->O_ATTR[R_105]

.for each attribute in attributes
private ${attribute.implType} ${attribute.name};

© Copyright Malina Software219

private ${attribute.implType} ${attribute.name};
.end for
.
.
.
.select many signals related by object->SM_SM[R301]->SM_EVT[R303]

.for each signal in signals
protected void ${signal.name} () throws ooadException;
.
.
.
.end for }
.emit to file ${object.name}.java
.end for

� Open source example: Jave Emitter Templates (JET) in Eclipse

Some Drawbacks of the Template ApproachSome Drawbacks of the Template Approach

� Primarily intended for model-to-code transforms

� Optimized for working with strings

� Model-to-model transforms possible but may be difficult to
specify

� Cons:

� E.g., no dedicated support for a system-level optimization
pass

© Copyright Malina Software220

E.g., no dedicated support for a system-level optimization
pass

� Unidirectional: no built-in support for inverse mapping

� Localized perspective: no support for incremental
transformation (“recompile the world” for every change,
regardless of scope)

� Serialized transformation process (like Cfront): No ability
to exploit application level knowledge for optimization

MDA Transformation StandardsMDA Transformation Standards

� MOF to XMI

� MOF to JMI

� MOF 2 Queries/Views/Transformations

� MOF to Text

© Copyright Malina Software221

QVT BasicsQVT Basics

� Three types of transformations defined:

� Core

� Relations

� Operational Mappings

� The first two forms are declarative the third is
imperative (procedural)

© Copyright Malina Software222

� Core is a “minimal” form based on minor extensions to OCL and
EMOF

� Relations is more user-friendly but may be less efficient

� The standard defines a formal mapping from Relations to Core

� Operational style provides more flexibility but is more
complex

� All allow invocation of external (“black box”) transforms

QVT Metamodel Structure (simplified)QVT Metamodel Structure (simplified)

EMOF
«import»

Essential
OCL

Imperative

«import»

Common

«import» «import»

© Copyright Malina Software223

Imperative
OCL

Operational
QVT

«import»

«import»

Mapping

Relations
QVT

«import»

Core
QVT

«import»

Common

M2

Transform
[MM1-MM2]

MetamodelMetamodel

MM1MM1

MetamodelMetamodel

MM2MM2

A Generalized Model of QVT Model TransformationsA Generalized Model of QVT Model Transformations

� Transformations can be viewed as an instantiable
collection of relations between metamodel patterns

relationshiprelationshiprelationshiprelationshipRelationRelation

© Copyright Malina Software224

M1 modelmodel22

: MM: MM22

model1 model1

: MM1: MM1

relationshiprelationshiprelationshiprelationshipRelationRelationii

aTransform
: Transform

relationshiprelationshiprelationshiprelationshipri:Relationri:Relationii

TraceTrace

Relations and TransformationsRelations and Transformations

� A relation specifies a matching between two (or
more) model patterns in respective models

© Copyright Malina Software225

� A pattern (domain) in a relation can be designated as
– “checkonly” – only detects and flags violations of relation

– “enforced” – modifies corresponding model to assure relation holds

� A relation may invoke (depend on) other relations

� A transformation consists of one or more “top-level” relations
that must hold

– …and a set of relations invoked (transitively) by top-level
relations

Class2Table

Relational Transforms: Graphical SyntaxRelational Transforms: Graphical Syntax

� Only practical for binary relations

c:Class

name = cn

«domain»

t : Table

name = cn+’_tid’

«domain»

u1 : UML r1 : RDBMS

© Copyright Malina Software226

cn.notEmpty ()

when

Property2Column (c, t)

where

p : Property

name = pn

col : Column

name = pn

C E

u1 : UML r1 : RDBMS

Relational Transforms: Textual SyntaxRelational Transforms: Textual Syntax

� Equivalent textual specification:

relation Class2Table {

checkonly domain u1:UML c:Class {

name = cn, p:Property {name = pn}}

enforce domain r1:RDBMS t:table {

name = cn + ‘_tid’,

col:Column {name = pn }}

when { cn.notEmpty() }

© Copyright Malina Software227

when { cn.notEmpty() }

where { Property2Column (c, t) }}

� Any number of domains (patterns) can be included in
a relation

Transformation Relations as ObjectsTransformation Relations as Objects

� Model transformation can be viewed as enforcement
of pre-defined formal relations between two or
more models

� This can be achieved by instantiating a set of
“relation” objects (traces) that enable continuous
transformation

© Copyright Malina Software228

� If one model changes, trace objects react to ensure that
the declared relations between models always hold (for
enforced domains)

� Only the necessary changes are made ⇒⇒⇒⇒ incremental change
model

Example: UML to MOF Model TransformExample: UML to MOF Model Transform

� Translate a UML-based metamodel into a proper
MOF metamodel

� e.g., MOF does not support association classes

© Copyright Malina Software229

Example: UML Metamodel (Simplified Fragment)Example: UML Metamodel (Simplified Fragment)

© Copyright Malina Software230

Example: MOF Metamodel (Simplified Fragment)Example: MOF Metamodel (Simplified Fragment)

© Copyright Malina Software231

«domain»

«domain»

u : UML m : MOF

UMLAssocClass2MOF

Example: Relationship DefinitionExample: Relationship Definition

© Copyright Malina Software232

C E

Alternative: Operational Mappings ApproachAlternative: Operational Mappings Approach

� A “how” (vs “what”) approach to transformation
� Unidirectional: source and target clearly identified

� However: support for incremental transforms

• Uses concept of “trace” objects that incarnate a transformation
instance

� Provides explicit control over the entire transformation
process

E.g., can specify sub-transformations that can be executed in

© Copyright Malina Software233

� E.g., can specify sub-transformations that can be executed in
parallel

� Extends OCL with imperative statements and side-
effects
� E.g.: assignment statement, imperative ”if-then-else”, loops,

etc.

� Used to specify transformation procedure

� Includes a “standard library” of OCL operations

Operational Mapping: BasicsOperational Mapping: Basics

� Some conceptual overlap with Relations
� Source is always “checkonly” and target is always “enforced”

� Transformations are reified as objects

� Each “transformation instance” (trace) ensures continuous
updating of the target model in the presence of ongoing
modifications of the source model

� General format:

© Copyright Malina Software234

� transformation <name> (in im:MM1, out om:MM2)
main () {-- <imperative transformation
description> }

� A transformation occurs by creating an instance of the
appropriate transformation and invoking its “transform()”
operation
� The results can be checked for success or failure

� Exceptions can be handled explicitly, etc.

Operational Mapping: Mapping SpecificationOperational Mapping: Mapping Specification

� Each mapping is defined as an operation on the appropriate
metamodel element

� E.g. (see slide xxx):

� mapping AssociationClass::UMLAssocClass2MOF(){
// this will create an end object if it does not exist
object ca : MOFClass

{name := self.end[0].umlclass.name;};
object cb : MOFClass

{name := self.end[1].umlclass.name;};
object a1e1 : MOFProperty

© Copyright Malina Software235

object a1e1 : MOFProperty
{name := self.end[0].name;
lower := self.end[0].lower;
upper := self.end[0].upper;}

object a1e2 : MOFProperty
{name := self.end[1].name;
lower := self.end[1].lower;
upper := self.end[1].upper;}

...
object ac : MOFAssociation

{name := ca.name + ‘_’ + cb.name; }
}

Operational Mapping: Invoking the MappingsOperational Mapping: Invoking the Mappings

transformation UML2MOF (in um:UML, out mm:MOF)

main (){

im.objectsOfType(AssociationClass)->

map UMLAssocClass2MOF ()}

mapping AssociationClass::UMLAssocClass2MOF() {

...}

© Copyright Malina Software236

Alternative: The Core Language ApproachAlternative: The Core Language Approach

� Similar to Relations but simpler

� Trace classes need to be specified explicitly

� Mappings tend to be more verbose

Guard

Pattern

Guard

Pattern

Guard

Pattern

© Copyright Malina Software237

Domain

Pattern

“check”“check”

Domain

Pattern

“enforce”“enforce”

Trace

Pattern

map <mappingName> {

[check] [enforce] <metamodelName> (<guardPattern>) {<domainPattern>}

[check] [enforce] <metamodelName> (<guardPattern>) {<domainPattern>}

...

where (<guardPattern>) {<tracePattern>} }

Summary: MDA TransformationsSummary: MDA Transformations

� A key element of MDA

� An operation on MDA models to

� Convert models into equivalent models suitable for analysis
or viewing

� Refine or generalize models (e.g., PIM to PSM, or PSM to
PIM)

� Generate code from models

© Copyright Malina Software238

� Generate code from models

� OMG provides a technology-neutral standard for defining
transformations

� Declarative style (Core and Relations)

� Imperative style (Operational Mappings)

� Work on model transformations is in its infancy and more
research is required to deal with scalability, performance,
optimization, etc.

Summary (1)Summary (1)

� The definition of a modeling languages comprises a
concrete syntax, an abstract syntax, and semantics

� Greater emphasis on communication/understanding aspects
compared to most programming languages

• E.g., multiple DSMLs, each chosen for its expressiveness

� We have neither a deep understanding nor a

© Copyright Malina Software239

� We have neither a deep understanding nor a
systematic approach to modeling language design

� A discipline lacking theoretical underpinnings ⇒⇒⇒⇒ but
definitely not lacking in controversy

� But, a critical discipline to help us contend with the growing
complexity of modern software

Summary (2)Summary (2)

� Designing a useful domain-specific computer
language (modeling or programming) is challenging
and requires diverse and highly-specialized skills

� Domain expertise

� Modeling language design expertise

• No established and reliable theory of modeling language design

© Copyright Malina Software240

• No established and reliable theory of modeling language design
to guide the designer

� Dealing with the fragmentation problem

� And remember: if the support infrastructure is
inadequate, the language may not be viable

� Despite its potential technical excellence

Bibliography/ReferencesBibliography/References

� A. Kleppe, “Software Language Engineering”, Addison-Wesley,
2009

� Kelly, S. and Tolvanen, J-P., "Domain-Specific Modeling:
Enabling Full Code Generation," John Wiley & Sons, 2008

� J. Greenfield et al., “Software Factories”, John Wiley &
Sons, 2004

� Kermeta Workbench (http://www.kermeta.org/)

� OMG’s Executable UML Foundation Spec

© Copyright Malina Software241

� OMG’s Executable UML Foundation Spec
(http://www.omg.org/spec/FUML/1.0/Beta1)

� UML 2 Semantics project
(http://www.cs.queensu.ca/~stl/internal/uml2/index.html)

� ITU-T SDL language standard (Z.100)
(http://www.itu.int/ITU-
T/studygroups/com10/languages/Z.100_1199.pdf)

� ITU-T UML Profile for SDL (Z.109)
(http://www.itu.int/md/T05-SG17-060419-TD-WP3-3171/en)

–– THANK YOU THANK YOU ––
QUESTIONS, QUESTIONS,
COMMENTS,COMMENTS,

© Copyright Malina Software242

COMMENTS,COMMENTS,
ARGUMENTS... ARGUMENTS...

