
A Closer Look at Aspect Interference and Cooperation

Cynthia Disenfeld Shmuel Katz

Department of Computer Science

Technion - Israel Institute of Technology

{cdisenfe,katz}@cs.technion.ac.il

Abstract

In this work we consider specification and compositional

verification for interference detection when several aspects

are woven together under joint-weaving semantics without

recursion. In this semantics, whenever a joinpoint of an as-

pect is reached, the corresponding advice is begun even if the

joinpoint is inside the advice of other aspects. This captures

most of the possible aspect interference cases in AspectJ.

Moreover, the given technique is used to capture cooperation

among aspects, which enhances modularity. The extended

specification and proof obligations should provide insight to

the possible interactions among aspects in a reusable library.

Categories and Subject Descriptors D.2.1 [Software En-

gineering]: Requirements/Specifications; D.2.4 [Software

Engineering]: Software/Program Verification—Correctness

proofs, Model checking

General Terms Languages, Verification

Keywords Aspects, Joint-Weaving, Verification, Composi-

tion, Cooperation, Interference

1. Introduction

Aspects capture problems that may crosscut the application,

such as logging, persistence, exception management, and

others. Weaving several aspects within an application may

lead to interference: given a set of aspects, each aspect on its

own behaves as expected but when considering all aspects

woven together the expected behavior is no longer achieved.

In this work, we extend existing results on interference

detection, to treat the basic joint-weaving semantics seen in

AspectJ. In joint-weaving semantics, whenever a joinpoint

of an aspect is reached, the corresponding advice is begun

even if the joinpoint is inside the advice of other aspects.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

AOSD’12 March 25–30, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1092-5/12/03. . . $10.00

aspect Auth
be fo re () : doTrans ()

Usr u = r equ e s tU s r ()
Pwd p = requestPwd ()
a u t h e n t i c a t e d = us rPwdEx i s t (u , p)

aspect SaveCook ie
a f t e r (Usr u , Pwd p) r e t u r n i n g (boolean s u c c e s s) :

c a l l (∗ us rPwdEx i s t (. .)) && a rgs (u , p)
i f (s u c c e s s) saveCook i e (u , p)

aspect EncryptPwd
Pwd around () : c a l l (requestPwd ())

Pwd p = proceed ()
r e t u rn en c r yp t (p)

Figure 1. Aspects Auth, SaveCookie and EncryptPwd

The program listing in Figure 1 shows AspectJ-style as-

pects to authenticate transactions on a website (Auth), to

save a cookie on authentication success (SaveCookie), and

to encrypt passwords (EncryptPwd), where the latter two

are activated within the advice code of the first.

Note that SaveCookie does not affect the behavior of

Auth. However EncryptPwd may cause an existing user

and password not to be found anymore by Auth (because

the password is now encrypted by the time the check is

done). This interference is caused from the execution of

EncryptPwd within Auth. In this paper, we will consider

a precise representation of aspect specifications which allow

using formal verification techniques to detect such interfer-

ence.

If EncryptPwd assumes that every password satisfies

some necessary constraints (such as a minimum number of

characters, combination of letters, numbers and symbols),

then another aspect may collaborate in order to guarantee

that the assumptions of EncryptPwd hold. Such aspect col-

laboration will also be considered.

A restricted procedure for detecting interference among

aspects using model checking is presented in MAVEN [8].

This method assumes that there are no joinpoints inside ad-

vice and is valid for sequential weaving, where the advice of

an aspect is woven into the system at the joinpoints available

so far, and then another aspect can be woven. (In addition,

[8] considers simple cases in which joint weaving is equiva-

lent to sequential weaving.)

107

We will analyze and present a compositional verification

and interference detection technique for the case in which

aspects may have new joinpoints within the advice of other

aspects and that is valid for joint-weaving semantics. As ex-

plained in the following section, the verification technique

is based on model checking state machines derived from

AspectJ code. The method to be presented is for at most

weakly-invasive aspects [12], that is they may return to a

different state of the underlying system as long as the state

was already reachable from some other execution. This as-

sumption is in order to make notation simpler, but the same

ideas can be applied for the general case, as explained at the

begining of Section 5. We also assume that there is no recur-

sion, i.e. an aspect is never executed under its own execution

flow, not even indirectly.

The method predicates that aspects can be given a gen-

eralized assume-guarantee specification, where the underly-

ing system and environment are assumed to satisfy the as-

pect’s assumption, and the augmented system with the as-

pect should satisfy its guarantee. This form of specification

allows building a library of verified aspects where possible

interference has been analyzed in advance. Then, this library

may be used in any system that satisfies the properties that

the aspects assume, and the guarantees of the aspects hold

without the need to perform any additional checks.

This work provides the following main contributions:

• understanding the problems that arise when considering

joint-weaving semantics instead of sequential weaving.

By giving examples it will be shown how existing mech-

anisms that rely on sequential weaving do not always de-

tect interference when the joint-weaving model is used.

• treating joint weaving by distinguishing between global

and local guarantees. When aspects may add joinpoints

of other aspects, some aspects may not be aware of all

the matching joinpoints in the state machine model of as-

pect weaving. Hence, global guarantees express proper-

ties that should hold even when not all aspects are aware

of all joinpoints, and local guarantees express what is ex-

pected at those joinpoints of which the aspect is aware.

• treating aspects that contain joinpoints of other aspects

by adding an internal assumption to the specification of

every aspect A. The internal assumption of A represents

what every other aspect B to be executed within the

execution of A must satisfy.

Some default internal assumption sorts are presented, e.g.

when inserted aspects are assumed to satisfy an invariant;

however they are not restrictive and any such assumption

can be treated.

Being aware of the need for internal assumptions when

writing aspect specifications promotes a better under-

standing of the system, even when not applying formal

verification techniques: aspect interactions, dependencies

and cooperation requirements are conveyed by the inter-

nal assumptions.

• providing a compositional verification technique to ver-

ify non-interference in a set of aspects that may add new

joinpoints of other aspects under joint weaving seman-

tics. This technique takes into account the particular in-

ternal assumption, since certain defaults may lead to sim-

pler checks.

Given a library of aspects, they must be checked only

once, and then for any system which satisfies the neces-

sary aspect assumptions, the system augmented with the

aspects is already proven to satisfy all aspect guarantees.

Adding a new aspect to a library implies checking this

aspect against all the other aspects in the library, but the

proofs already done are still valid and used in the new

proof of interference-freedom.

• extending the compositional verification technique for

considering aspect cooperation.

The correctness proof of collaborative aspects yields as-

pect dependencies, and also allows incrementally verify-

ing as the system is being built - the assumptions of an

aspect A are considered to hold, and then the necessary

assistant aspects can be developed and verified to satisfy

the assumptions of A.

The next section gives background on aspects, temporal

logic, weaving semantics and the previous work on aspect

verification that is extended here. Sections 3 and 4 describe

the technique for detecting interference, including aspect

specification and verification. The soundness proof is given

in Section 5. Section 6 discusses cooperation. The technique

applied to removed joinpoints is considered in Section 7.

Section 8 presents related work and we conclude in Section

9.

2. Background

2.1 Aspects

Aspects allow describing crosscutting concerns of a system

by defining in which states (joinpoints) a certain response

should be woven, and what the response consists of (ad-

vice). Pointcut descriptors describe the joinpoints where the

response should be woven. Each advice consists of the code

to be executed when the pointcut is matched. In this work,

we consider aspect advices given by state machines. Even

though the examples are given in AspectJ, as mentioned be-

fore we assume the use of tools such as [5] that can transform

code to state machines automatically. Creating such a finite-

state model from Java code is a non-trivial task, and gen-

erally requires abstracting data domains and system states.

Often, a careful abstraction can guarantee that if the speci-

fication holds for the abstracted model it also holds for the

original version. Weaving an aspect A to a system S is then

a state machine transformation, where for each state s in S

108

that represents a joinpoint of A the next states of s are now
the entry points to the aspect execution. When A returns,

it returns to a state representing the program point where it

should go (if no exceptions were thrown) and the variable

contents according to the changes that A has applied.

Aspects can be categorized according to the semantic

transformation they make to the underlying system [12]:

Spectative aspects gather information, but do not change

control flow or the values of the variables non-local to

the aspect.

Regulative aspects may change the control flow, but do not

change the values of non-local variables.

Weakly-Invasive aspects may also change the values of the

variables, as long as the returning state was already reach-

able in the underlying system.

Strongly-Invasive aspects are allowed to change the con-

tents of the variables even when returning to states that

were not originally reachable in the underlying system.

2.2 Temporal logic

Temporal logic allows expressing properties related to time

formally. In particular, we work with linear temporal logic,

which expresses for every computation path what must be

satisfied. We will use propositional logic operators together

with linear temporal logic (LTL) formulas. The operators

available in LTL are

• Xϕ: next ϕ. The next state must satisfy ϕ.

• Gϕ: always ϕ. Every state in the future must satisfy ϕ.

• Fϕ: eventually ϕ. There exists a state in the future that

must satisfy ϕ.

• ψUϕ: ψ until ϕ. Every state must satisfy ψ until ϕ holds.

• ψWϕ: ψ weak-until ϕ. Equivalent to (Gψ) ∨ (ψUϕ)

2.3 Weaving semantics

In this work we extend the ideas of interference detection in

the sequential weaving model to the joint-weaving model.

The notation S+A indicates the system S with A woven

into it. A is aware of its joinpoints in S already, so S + A
results in the system whereA is executed at all its joinpoints.

However, in the sequential weaving (S +A) + B, B is

woven into S + A, but if B has joinpoints of A, they are

not recognized and the advice of A is not woven at those

points.

In the sequential weaving model each aspect is woven to

the system in a certain order, e.g. given the aspects A, B
where there is no precedence defined among the aspects, the

possible results are (S +A) +B or (S +B)+A. Note that
in both cases added joinpoints may not be recognized by the

first woven aspect.

In the joint-weaving model, aspects may add or remove

joinpoints of other aspects without restrictions, and all join-

points are recognized. S + (A,B) is used to denote this se-

mantic model, which corresponds to the semantics of As-

pectJ.

2.4 Previous work

In MAVEN [8], every weakly-invasive aspect has to satisfy

its specification (P,R), where P is the assumption and R
the guarantee. A sequence of aspects {A1, . . . , An} woven

sequentially in this order is said to be interference-free if

and only if whenever all assumptions are satisfied, and the

aspects in the set are woven in that order, then all of the

guarantees will be satisfied:

S �

n∧

i=1

PAi
⇒ ((S +A1) + . . .) +An �

n∧

i=1

RAi

In order to satisfy non-interference, every pair of aspects

A,B is shown to satisfy two rules:

KPAB: For any system S that satisfies PA ∧ PB , the as-

sumptions of both A and B, when A is woven into S the

obtained system (S + A) must preserve the assumption

of B: S � PA ∧ PB ⇒ S +A � PB .

KRAB: For any system S that satisfies the guarantee of A
(RA) and the assumption of B (PB), when B is woven

into S the obtained system (S + B) must preserve the

guarantee of A: S � RA ∧ PB ⇒ S +B � RA.

In proving these properties, the state machine of the as-

sumption (the tableau of the LTL formula) is used to rep-

resent all base programs satisfying the conjunction on the

left hand side of the implication, and the appropriate aspect

is woven to the state machine to yield a state machine that

should satisfy the formula on the right hand side of the im-

plication.

The rules are sufficient to guarantee correctness and non-

interference only if (1) A cannot interfere with B’s assump-

tion while advice of B is executing (2) B cannot interfere

with A’s guarantee while A is executing, and (3) B does not

in itself add new joinpoints of A. None of these conditions

are true in our new general setting.

3. Specification

In this section we will consider the aspects given in Figure 1

to understand the specification method. Intuitively, Auth is

correct if when woven to any system, every time it reaches

a before doTrans joinpoint, eventually Auth returns where

the value of authenticated is true if and only if the user

and password exist in the system. This field can be used

later to allow or not different actions on the transaction, for

instance when not authenticated, the user may read but not

write to the database.

The aspect SaveCookie is correct if when woven to

any system, every time after the method usrPwdExist is

completed and the user and password indeed exist, then a

cookie is saved.

109

Finally, EncryptPwd guarantees that when woven, the

aspect encrypts the password obtained by requestPwd().

In the temporal logic representations of the specifications,

for any aspect A, PA represents the assumption on the un-

derlying system and RA expresses the guarantee of the aug-

mented system when the aspect is woven. The formal speci-

fications of the aspects are:

Auth:
PAuth = true

RAuth = G(doTransbefore ⇒
(F(usrRequested ∧ usr = U0)∧
F(pwdRequested ∧ pwd = P0)∧
F(retAuth ∧ authed⇔ usrPwdInDB(U0, P0))))

SaveCookie:

PSaveCookie = true

RSaveCookie = G((call usrPwdExistafter ∧ Success)
⇒ F cookieSaved)

EncryptPwd:
PEncryptPwd = true

REncryptPwd = G(call reqPwd⇒ F pwdEncrypted)

The atomic propositions used for the aspects in Figure 1

are: doTransbefore, call usrPwdExistafter, call reqPwd
for every state which matches the respective aspect join-

points, retAuth to represent the return states of Auth, authed
represents the truth value of authenticated which may

be used elsewhere in the system, the atomic proposition

usrPwdInDB indicates that the user and password exist in

the database, Success represents the returned Boolean value
of the call to the method usrPwdExist(), and cookieSaved
represents that a cookie has been saved. Finally, pwdEncrypted
indicates that the password has been encrypted.

In the guarantee of Auth, U0 and P0 represent the input

values, and can be thought of as bound to a universal quan-

tifier. This can be expressed in propositional temporal logic

by substituting each user and password pair (the domain is

finite).

Note that for all three aspects, the guarantee has the form

G(pointcut⇒ expected behavior). We will use this below to

identify local and global guarantees.

4. Interference detection

4.1 Extended Specifications

If we attempt to apply the original rules to these aspects,

problems arise. For example, although there is in fact no

interference between Auth and SaveCookie, when the rule

KRSaveCookie,Auth is checked, it will fail because it does not

consider that SaveCookie will actually be executed at its

new joinpoint added within Auth.

To treat the three conditions listed at the end of Section

2.4 that no longer hold (and thus are sources of inconsis-

tency), we extend the specification of an aspect to include

a distinction between global guarantees and local ones, and

add an internal assumption.

Thus, we now consider guarantees of the form: R =
(RL,RG), whereRL represents the local guarantee, a prop-

erty that must be satisfied at each joinpoint, andRG a global

guarantee, a global property not connected to being at a join-

point.

The local guarantee can express properties both for each

advice that starts executing because the current joinpoint

matches the pointcut descriptor, or properties that should

hold each time an advice of A has finished executing. Then,

for an aspect A, RL is the conjunction of formulas of the

form:

G(ptcA ⇒ ϕ): Every time the pointcut of A is matched, ϕ
should hold. Note that ϕ is not necessary a state prop-

erty, but rather a temporal logic formula. ϕ is a formula

expressing what A’s execution guarantees.

In particular, guarantees of the form G(retA ⇒ φ) ex-
pressing what is expected at the end of each execution of A
can be translated to G(ptcA =⇒ (¬retAW (retA ∧ φ)))
which has the form presented before: (ϕ ≡ ¬retAW (retA∧
φ)).

This separation of the guarantee will be helpful in our

verification, because each part is treated differently.

However, we still need to consider the difficulty that even

if an aspect B does not interfere when activated before or

after an aspectA, it might interfere duringA’s execution. To
handle this, the specification is further extended to include

internal assumptions that describe for each aspect A what is

expected of aspects to be executed during A.
Thus, the specification of an aspect A now consists of:

external assumption of A (PEA): The assumption about

the system where A is to be woven. Equivalent to the

previous PA.

internal assumption of A (PIA): The assumption on as-

pects to be executed during A.

local guarantee of A (RLA): The guarantee of A true at

each of its joinpoints.

global guarantee of A (RGA): The part of the guarantee

that must be satisfied even when A is not aware of all

its joinpoints.

PA is now defined as (PEA, P IA) andRA is (RLA, RGA).
An aspect specification is given by (PA, RA).

4.2 Partial Guarantee

In this section, we present the solution to the problem pre-

sented in Section 4.1.

In the given example the check ofKRSaveCookie,Auth fails

because there exist joinpoints of SaveCookie in S + Auth

that SaveCookie is not aware of (in particular, the one

inside Auth).

In our extended aspect specification, we distinguished

between the global guarantees and the local ones: those that

express what must be satisfied at every place the advice is

110

executed. In our verification technique we consider only part

of the joinpoints of A, but show that this is sufficient to

guarantee correctness under full joint-weaving semantics.

In the model, we assume that weaving an aspect A to a

system S adds a label awA to those states in S where A is

aware of the joinpoint.

We now proceed to define a partial guarantee to express

what must be satisfied when there are aspects not aware

of every joinpoint. These do not follow the joint-weaving

semantics, but are possible under sequential weaving.

Definition 1. Let RLA =
∧
ψi. For each ψi we define

ψ̃i = G((ptcA ∧ awA) ⇒ ϕ). Then the partial local

guarantee of A is given by R̃LA =
∧
ψ̃i.

R̃LA is based on the local guarantee but including the

atomic proposition that identifies whether an aspect is aware

of a joinpoint, so it will be satisfied even when there are

unaware joinpoints. When all aspects are aware of all their

joinpoints, the original local guarantee is satisfied.

Definition 2. The partial guarantee of A denoted R̃A is

given by (R̃LA, RGA).

Note that for any system S, S � RA ⇒ S � R̃A.

Moreover, if S � R̃A and A is aware of all its joinpoints

in S, then S � RA.

Now, if the aspects of Figure 1 are checked taking the

partial guarantee of SaveCookie (R̃SaveCookie) as in equa-

tion (1), every check is satisfied proving non-interference.

R̃LSaveCookie = G((call usrPwdExistafter∧

ret val = Success ∧ awSaveCookie) ⇒

(Success = true⇒ F cookieSaved)) (1)

However, this change in the rules is by itself unsound for

joint-weaving semantics: when the aspects of Figure 1 are

considered and checked against the partial guarantees, then

every pairwise assertion is satisfied, returning that the set of

aspects is apparently interference-free even though there is

interference between EncryptPwd and Auth.

4.3 Augmented aspects

In order to present the full technique for verifying non-

interference, the internal assumption must be considered, as

seen in the following definition:

Definition 3. An aspect A is augmented (noted as A+PI) if

and only if it has the internal assumption model woven into

A.
The augmented aspect is built by adding for each state

that could be a joinpoint, a transition to the state machine

that represents the internal assumption, and transitions from

the final states of the internal assumption state machine to

corresponding states of the aspect.

Figure 2. Auth model

Figure 3. Auth+PI model

Example. A reasonable internal assumption for the aspect

Auth in Figure 1 is for any inserted aspect to return without

any exception thrown to the execution and preserve the val-

ues of the variables usr, pwd and authenticated. Hence,

the aspect and the augmented version of the aspect are pre-

sented in Figures 2 and 3, respectively. Note that * in the

figures represents some arbitrary initial value, different for

each field.

The states s0, . . . , s4 appear both in the aspect model and

in the augmented model of the aspect.

In the augmented aspect, there is a transition from the

state s0 to the states t0 and then t1. This means that if an

aspect is inserted at this point of Auth then the aspect can do

anything (t0) as long as eventually when reaching a returning
state (t1) the values of usr, pwd and authenticated are

preserved, and hence it then executes the statement Usr u

= requestUsr() of Auth (in state s1).
It is assumed in this example that the fairness constraints

are defined in order to avoid paths which stay infinitely in an

“anything here” state.

Note that the augmented version of the aspect captures

as well the assumption on aspects which share joinpoints,

hence, shared-joinpoints interference is also covered by this

compositional verification technique. In particular in the ex-

ample, t0 and t1 represent the assumption of any aspect that

may respond at the joinpoint before doTrans() and might

be executed before the first statement of the aspect Auth.

4.4 Formal verification

In this section a modular verification technique to guaran-

tee non-interference is presented, considering the extended

specification with partial guarantees and internal assump-

tions.

First, the definition of non-interference for joint-weaving,

based on that in [8], is presented.

111

Definition 4. Let Aspects = {A1, . . . , An} be a set of

aspects. Let (Pi, Ri) be the specification of each aspect Ai.

Then the set Aspects is said to be interference-free if and

only if OKAspects holds.

OKAspects , S �

n∧

i=1

Pi ⇒ S + (A1, . . . , An) �

n∧

i=1

Ri

OKAspects expresses that weaving all aspects together with

the joint-weaving model into any system S that satisfies the

assumptions, satisfies the expected guarantees.

In [8] aspects were assumed not to add joinpoints of other

aspects and hence the internal assumption was not neces-

sary. The verification technique for each aspect on its own

under the new specification simply incorporates the inter-

nal assumption by using the augmented aspect. Let A be the

aspect to be verified and let (PA, RA) be A’s specification.
Then,A is correct with respect to its specification if and only

if S � PEA ⇒ S + A+PIA � RA. This formula expresses

that for every system S that satisfies the external assump-

tion of A, when A is woven into S (with all its possible

inserted aspects that satisfy the internal assumption) the re-

sulting system satisfies both the local and global guarantees

of RA. Instead of verifying the aspect under the assumption

that it is the only one, we verify it under the assumption (PI)
that any other aspects maintain its correctness with respect

to its specification.

When several aspects are jointly woven into a system S,
all of them correct with respect to their specification, we

intend to guarantee non-interference.

In order to achieve this, a set of rules is presented. If a

library of aspects satisfies all the rules, then the library is

interference-free, otherwise there may be interference.

The rules that aspects must satisfy in order to guarantee

non-interference are now presented:

1. The aspect is correct by itself (OK+
A):

S � PEA ⇒ S +A+PIA � RA

As explained above, this rule guarantees aspect correct-

ness with respect to its specification. Given that the exter-

nal assumption holds, the system obtained from weaving

the aspect and all possibly inserted aspects must satisfy

the local and global guarantees.

2. Considering A as the aspect currently being verified, and

B any other aspect, the rules to detect interference are:

KPI+AB: S � R̃A ∧ PEB ⇒ S +B+PIB � PIA

This rule expresses that every aspect must satisfy the

internal assumptions of other aspects.

KPE+
AB: S � PEA ∧ PEB ⇒ S +A+PIA � PEB

This rule expresses that when weaving A augmented to a

system where the external assumption of another aspect

B holds, this assumption should be preserved.

KR+
AB: S � R̃A ∧ PEB ⇒ S +B+PIB � R̃A

This rule expresses that when an aspect A has already

been woven, weaving another aspect B preserves the

partial guarantee of A (even if it adds new joinpoints of

A).

In order to guarantee non-interference, rules KPI+AB ,

KPE+
AB and KR+

AB must be satisfied by every pair of

aspects.

In the next sections we explain in more detail each rule.

4.4.1 KPI+AB

As mentioned above, rule KPI+AB expresses that every as-

pect must satisfy the internal assumptions of other aspects.

The internal assumption of an aspect A determines what

is expected of aspects that execute during A.
The general form of the internal assumption is (ρ, ϕ)

where ρ is a propositional logic formula describing join-

points and ϕ is a temporal logic formula describing restric-

tions on the behavior of the possible aspects executed at

those joinpoints.

Example (Trans). An aspect A may initiate a transaction

and do some actions, and then close the transaction. We

want to avoid that during the execution of the transaction

any possibly woven aspect B may perform commit for that

transaction. Then the internal assumption of A is defined

as: any advice B to be executed at any state within the

transaction of A should never perform commit until the

return point is reached.

Such an internal assumption is given by the pair (ρ, ϕ)
where ρ : inTrans and ϕ : G¬commit.

Definition 5. An augmented aspect B+PI satisfies A’s in-
ternal assumption (ρ, ϕ) if and only if: for every execution

π of B that starts from a state in A which satisfies ρ and

matches B’s pointcut descriptor, π satisfies ϕ.

Example. In Example (Trans), B+PI � PIA with PIA =
(ρ, ϕ) as presented above if and only if for every join-

point of B in A where A is in a transaction, B+PI satisfies

G¬commit.

Internal Assumption Defaults There are default internal

assumptions that can be defined. Typical examples are:

PIA = NoAspect: If the guarantee of the aspect A is sen-

sitive to next state assertions (X) or real time constraints,

PIA may assume that no aspect is woven during A’s ex-
ecution.

PIA = Spectative: It may be assumed from the environ-

ment that any aspect to be woven during the execution of

A is spectative.

PIA = ReturningV aluesPreserved (V): Perhaps, any

woven aspect B may change things as long as when re-

turning to the execution flow of A the values of a certain

set of variables (V) remain as they were before executing

112

aspect LogDB : a f t e r c a l l (send (msg))
b e f o r e S t a r tT r a n s ()
s t a r tT r a n s ()
ge tTab l e (Log)−>newRecord ()
ge tTab l e (Log)−>s e t F i e l d (msgFie ld , msg)
ge tTab l e (Log)−>s e t F i e l d (d a t eF i e l d , today)
commit ()

Figure 4. Internal assumption example

B. This is the internal assumption needed to preserve the

values of usr, pwd and authenticated in Auth.

PIA = Invariant (I): Any aspect to be executed duringA
may need to satisfy a certain invariant I at every state.

PIA = ReturnsOK: It can be assumed that every aspect

executed within A terminates without throwing excep-

tions.

PIA = NoMandatoryProceed: It can be assumed that

by default all around advices have the proceed state-

ment, but if aspects are allowed to be inserted into

A without having to satisfy this condition (and hence

possibly removing joinpoints), it can be identified by

NoMandatoryProceed. This internal assumption dif-

fers from the previous ones in that instead of restricting

the possible aspects, it allows more behaviors. The idea

is that in most cases around advices still have proceed,
and with this PI the particular cases in which there is no
proceed are considered.

Internal assumptions can be combined by overriding

⊕, conjunction ∧ or disjunction ∨ of PI assumptions.

Thus, combining a ReturningV aluesPreserved assump-

tion with an internal assumption (ρ, ϕ) may look like:

PI = ReturningV aluesPreserved (V) ⊛ (ρ, ϕ) where

⊛ ∈ {⊕,∧,∨}.

Example. In Figure 4, the aspect LogDB exhibits the use

of an internal assumption as explained above. In this case:

PILogDB = ReturningV aluesPreserved (msg)∧

(inTrans,G¬commit)

expresses that any other aspect B to be executed during

LogDB while in a transaction should not commit that trans-

action. The intersection of assumptions guarantees that as

well every advice to be woven preserves the value ofmsg.

Checking that an aspect satisfies the internal assumptions

of another aspect may involve model checking or syntactic

checks, depending on the internal assumption.

Now, we present the satisfiability conditions of default

internal assumptions.

Definition 6. An augmented aspect B+PI satisfies the de-

fault internal assumptions of A (PIA) - noted as B+PI �

PIA - if one of the following conditions hold:

1. There are no joinpoints of B in A.

2. If PIA = Spectative and there is a joinpoint of B in

A, then all the possible augmented executions of B from

joinpoints ofA are spectative. In terms of temporal logic:

B+PI � G (V = V0) where V are all the variables that

are not local toB and V0 represents their original values
before B is executed.

3. If PIA = ReturningV aluesPreserved (V) and there

is a joinpoint of B in A, then all possible augmented

executions of B from joinpoints of A preserve the values

of the variables in V at the returning state. In terms of

temporal logic: B+PI � G (retB ⇒ V = V0).

4. If PIA = Invariant (I) and there is a joinpoint of B
in A, then all possible augmented executions of B from

joinpoints of A satisfy the invariant at every state. In

terms of temporal logic: B+PI � GI .

5. If PIA = ReturnsOK and there is a joinpoint of B
in A, then all possible augmented executions of B from

joinpoints of A reach a returning state without throw-

ing any exception. In terms of temporal logic: B+PI �

F(retB ∧ ¬exception thrown)

6. If NoMandatoryProceed /∈ PIA and there is a join-

point of an around advice B in A, then B should have

a proceed statement for every execution path in the aug-

mented model of B starting from joinpoints of A.

Example. Considering the program listing in Figure 1 and

the rule KPI+AB: the augmented version of EncryptPwd

should satisfy the internal assumptions of Auth to prove

that these aspects do not interfere. The specifications of the

aspects are now extended to include the following internal

assumptions:

Auth:
PIAuth = ReturnsOK∧
ReturningV aluesPreserved(usr, pwd, authed)
EncryptPwd:

PIEncryptPwd = Spectative

The actual interference will be detected in this example

when evaluatingKPI+Auth,EncryptPwd: In this case EncryptPwd
does not satisfy the internal assumption of Auth of preserv-

ing the value of the password.

4.4.2 KPE+
AB andKR+

AB

Rules KPE+
AB and KR+

AB are the extensions of the rules

described in 2.4, now considering possibly inserted aspects

and partial guarantees.

Rule KPE+
AB expresses that when weaving A aug-

mented to a system where the external assumption of another

aspect B holds, this assumption should be preserved.

RuleKR+
AB expresses that when an aspectA has already

been woven, weaving another aspect B preserves the partial

guarantee of A.
Moreover, given that the conditions for checkingKPI+AB

and KR+
AB are the same, in certain cases both rules can

be considered together. However, in several situations the

113

model is smaller when checking both properties separately.

Note that even though the rules only imply that the partial

guarantee is preserved, eventually all aspects will be aware

of all their joinpoints, hence the partial guarantee will imply

the guarantee.

4.5 Steps for each aspect added

If a set of aspects {A1, . . . , An−1} has been proven to be

correct with respect to their specification and without in-

terference, when adding a new aspect An with specification

((PEn, P In) , (RLn, RGn)), then the following properties

should be checked:

1. Check that OK+
An

holds.

2. Check thatKPI+AiAn
,KPI+AnAi

,KPE+
AiAn

,KPE+
AnAi

,

KR+
AiAn

, and KR+
AnAi

are satisfied for all 1 ≤ i ≤
n− 1.

When building a library of n aspects we must do: n
checks for the OK+ rule, n2 for each of the rules KPI+,
KPE+ and KR+. In several cases checking KPI+ does

not require model checking but perhaps uses static/syntactic

analysis to detect joinpoints, check whether an aspect B
satisfies an invariant or B is spectative. All these checks

are done as the library is constructed and then a set of

interference-free aspects can be used for any system that

satisfies all aspect assumptions.

5. Justifying the rules

5.1 Assumptions

In this paper we treat weakly-invasive aspects [12], where

control is returned after an advice execution to a state which

existed in some execution of the original system. In [10], ver-

ification is shown for strongly-invasive aspects, by adding

an assumption U about the base system states previously

unreachable that now can occur in the woven system af-

ter aspect advice completes. A relatively complex modular

verification technique is given that treats sequential weaving

without joinpoints in advice. The treatment here can also be

applied to that technique, both for each aspect on its own and

for the rules to detect interference.

We also assume that the aspects treated are never acti-

vated under their own execution flow, i.e. there is no recur-

sion. Allowing recursion introduces the problem of analyz-

ing termination and liveness properties possibly affected.

These assumptions can often be checked by already ex-

isting techniques. In [3], dataflow techniques were presented

to detect aspect categories. To guarantee no recursion a de-

pendency graph can be built and analyzed to check that no

aspect depends on itself.

5.2 Soundness proof

We now show the soundness of the rules in order to guar-

antee non-interference of a set of aspects that satisfies the

necessary conditions.

First we prove how the augmented versions of the aspects

satisfy the partial guarantees when their preconditions ini-

tially hold. Secondly we show that this also holds for the

original aspects and the full guarantee when considering

joint-weaving semantics and all aspects are woven.

Lemma 1. Let {A1, . . . , An} be a set of aspects such that

for all of them the previous checks have been applied and all

assertions have been proven to hold. Then, for any system S
such that S �

∧n
i=1

PEi, S with all the augmented aspects

woven satisfies their partial guarantees, i.e.

S +
(
A+PI

1 , . . . , A+PI
n

)
�

n∧

i=1

R̃i

Proof. By induction on the number of aspects in the set.

• Base case: When adding one aspect A to the system S
which satisfies PEA, from OK+

A , S + A+PIA � RA.

Then in particular, S +A+PIA � R̃A

• Inductive step: We assume by inductive hypothesis that

for any system S such that S �
∧n−1

i=1
PEi, then S +(

A+PI
1 , . . . , A+PI

n−1

)
�

∧n−1

i=1
R̃i and we want to see

that for any system S such that S �
∧n

i=1
PEi, then

S +
(
A+PI

1 , . . . , A+PI
n

)
�
∧n

i=1
R̃i.

Given that S �
∧n

i=1
PEi, then in particular, S �∧n−1

i=1
PEi and by the inductive hypothesis

S +
(
A+PI

1 , . . . , A+PI
n−1

)
�

n−1∧

i=1

R̃i

First, we need to see that An’s assumption still holds.

From KP+
AiAn

the assumption of An is preserved as

other aspects are woven to the system. Hence, S +(
A+PI

1 , . . . , A+PI
n−1

)
� PEn.

Then, when weaving A+PI
n to S +

(
A+PI

1 , . . . , A+PI
n−1

)
,

the conjunction
∧n−1

i=1
R̃i is preserved fromKR+

AnAi
and

for those places where the An is woven in the execu-

tion of an aspect Ai, the correctness is preserved from

KPI+AiAn
andOK+

Ai
: the paths added byAn are already

considered in A+PI
i and satisfy the corresponding R̃i.

Weaving An may add joinpoints of already woven as-

pects, but these paths are already considered in the aug-

mented version of An, and due toKPI
+
An,Ai

and OK+
An

the guarantee of An is also preserved.

Therefore S +
(
A+PI

1 , . . . , A+PI
n

)
�
∧n

i=1
R̃i.

The lemma shows that if all the conditions hold then

weaving all the augmented versions of the aspects is interference-

free. The next theorem uses this lemma in order to prove that

if we have established that all the augmented versions of the

aspects are interference-free then, in particular, there is no

interference when considering the resulting system with the

(not augmented) aspects woven.

114

Theorem 1. Let {A1, . . . , An} be a set of aspects such that

for all of them the previous checks have been applied and

all assertions have been proven to hold. Then {A1, . . . , An}
is interference-free. That is, for any system S such that

S �
∧n

i=1
PEi, then S with all the aspects woven satisfies

their guarantees, i.e.

S + (A1, . . . , An) �
n∧

i=1

Ri

Proof. From Lemma 1, for any system S such that S �∧n
i=1

PEi it holds that

S +
(
A+PI

1 , . . . , A+PI
n

)
�

n∧

i=1

R̃i

In particular, S+
Aspects = S +

(
A+PI

1 , . . . , A+PI
n

)
is an

over-approximation of SAspects = S + (A1, . . . , An). That
is, every path in SAspects is a path in S

+
Aspects. Given that all

Ri are formulas in LTL, S+
Aspects �

∧n
i=1

R̃i ⇒ SAspects �∧n

i=1
R̃i. Moreover, given that all aspects are already woven,

then all aspects are aware of all their joinpoints, and hence:

SAspects �
∧n

i=1
R̃i ⇒ SAspects �

∧n

i=1
Ri

Theorem 1 shows that this procedure is sound under the

given assumptions. However, it is not complete. In particu-

lar, modularity affects completeness: there could be sets of

aspects which are interference-free but this cannot be shown

with the assumptions and guarantees defined. That is, there

may be two aspects A and B, both correct with respect to

their specification and when woven together there is no in-

terference, but the rules fail because the assumption or guar-

antee are not preserved in an intermediate state of building

the augmented model.

The main advantages of this interference detection pro-

cess is that it is modular, it provides flexibility to different

external and internal assumptions, and is also used to prove

the correctness and non-interference of collaborative aspects

(described in the next section).

6. Cooperation

Cooperation is tightly related to modularity: an aspect A
may assume the existence of an aspect B that takes care of

certain functionality and then A can be shown to be correct.

6.1 Examples of cooperation

Following, two examples are presented to show different

types of cooperation.

Example (Encrypt). The aspect EncryptPwd that encrypts

the password being sent from a registration form may as-

sume the existence of another aspect (CheckPwd) that only

allows sending passwords that satisfy some criteria, e.g. that

the password includes a combination of numbers, lowercase

and uppercase letters.

CheckPwd:
PECheckPwd = true

RCheckPwd = G (to be sent⇒ correct)
EncryptPwd:
PEEncryptPwd = G (to be sent⇒ correct)
REncryptPwd = G(to be sent⇒ F (sent ∧ encrypted))

It is obvious that not necessarily every system satisfies

the assumption of EncryptPwd, but if CheckPwd is also

woven, and satisfies its specification, then the assumption

of EncryptPwd holds.

Example (Copy). An aspect (Copy) saves the objects of

a certain class when necessary, trying initially to save

them to a database and cooperating with another aspect

(CopyToFile) when copying to the database fails. CopyToFile

copies objects to an xml file. Either way, the objects are guar-

anteed to be saved.

Copy:
PECopy = true

PICopy = EXISTS ASPECT
G((call(DB.saveObject) ∧DBerror) ⇒
FsavedObjectToF ile)

RCopy = G(objectChanged⇒
F (savedObjectToDB ∨ savedObjectToF ile))

CopyToFile:
PECopyToFile = true

PICopyToFile = Spectative
RCopyToFile = G((objectChanged∧
F((call(DB.saveObject) ∧DBerror)))
⇒ FsavedObjectToF ile)

EXISTS ASPECT represents the assumption that

theremust be an aspect satisfying the internal assumption.

The specification of Copy guarantees that when an object

is changed, it is eventually copied, either to the database or

to a file. Copy assumes (PICopy) the existence of an aspect

that saves the object to a file if there is an error when trying

to save an object to the database.

The specification of CopyToFile does in fact guarantee

this.

In the first example one aspect helps establish the exter-

nal assumption of another, while in the second, it helps to

establish the internal assumption.

6.2 Formal verification of cooperation

The idea is that if there exists an order in which the joint-

weaving model can be built such that all preconditions are

eventually satisfied and there is no interference, then the

whole system can be woven together under joint-weaving

semantics and the set of aspects is interference-free.

Definition 7. An aspectA is augmented considering cooper-

ation, if it is augmented and it includes only the paths where

the expected EXISTS ASPECT assumptions are woven.

115

Example. In the augmented version of Copy, all paths in-

clude the cooperation assumption of an aspect that on error

saves to a file.

Definition 8. A set of aspects {A1, . . . , An} is cooper-

ation inductive if they can be arranged in a sequence

Ai1 , Ai2 , . . . , Ain such that for all k, 1 ≤ k < n

S � PEik ⇒ S +A+PI
ik

� PEik+1
(2)

Equation (2) expresses that when the assumption of Aik

holds, then when weaving the augmented model of Aik , the

assumption of Aik+1
holds.

Given a set of aspects, finding an cooperation inductive

sequence of the aspects is a necessary condition in order

to prove correctness and interference-freedom, otherwise an

aspect assumption may not hold, and hence weaving it does

not imply its guarantee.

This sequence is not to indicate an order in which aspects

are woven or executed, but in order to guarantee that eventu-

ally all aspect’s assumptions will be satisfied, and hence the

aspects can be woven and their guarantees will hold.

The proof of soundness of the method consists of three

parts:

1. Proving that weaving the augmented version of the first

k − 1 aspects leads to the assumptions of the kth aspect

to hold (by induction on the length of a cooperation

inductive sequence of aspects).

2. Use the previous proof in order check that when all the

augmented aspects are woven then their partial guaran-

tees are proven to hold (by induction on the length of an

cooperation inductive sequence of aspects).

3. Finally, given that all the augmented aspects are woven

and their partial guarantees hold, it can be proven that

when all aspects are woven (not augmented), their guar-

antees do in fact hold.

The proofs mentioned in 1 and 2 are very similar to the proof

of Lemma 1. The proof mentioned in item 3 follows the same

logic as in Theorem 1.

Example. Considering the previous examples, now the cor-

rectness of both EncryptPwd in Example (Encrypt) and

Copy in Example (Copy) can be shown.

In Example (Encrypt), it is enough to consider Ai1 =
ACheckPwd and Ai2 = AEncryptPwd.

In Example (Copy), the expected internal assumption is

woven to build the augmented version of the aspect Copy

and then CopyToFile is shown to satisfy the internal as-

sumption.

Note that by means of the cooperation proofs, and a sub-

set of aspects that is intended to be woven in an application,

the necessary cooperative aspects are found, either by those

that are found before in the sequence of assumptions, or that

are forced to exist by the keyword EXISTS ASPECT .

aspect Req&EncrPwd
a f t e r r e t u r n i n g : e n t e rU s r ()

enterPwd ()
encryptDES ()

aspect DESSave
a f t e r r e t u r n i n g : encryptDES ()

savePwd ()

aspect AESEncr
vo id around : encryptDES ()

encryptAES ()

Figure 5. Removed joinpoints

7. Removing Joinpoints

In this section, we show that the extended specification and

verification also handle the removal of joinpoints of one

aspect by another.

Example. In Figure 5 we show an example with removed

joinpoints. It is easy to see that the aspect AESEncr removes

joinpoints of DESSave. DES and AES are encryption algo-

rithms.

In a system in which initially the DES encryption algo-

rithm was used, the specification of the aspects could be

given by:

Req&EncrPwd:

PEReq&EncrPwd = true

PIReq&EncrPwd = EXISTS ASPECT
G(encryptedDES ⇒ FsavePwd)

RReq&EncrPwd = G(enterUsrafter ⇒
F(enterPwd ∧ F(encryptedPwd ∧ FsavePwd)))

DESSave:

PEDESSave = true

PIDESSave = Spectative
RDESSave = G(encryptedDES ⇒ FsavePwd)

AESEncr:

PEAESEncr = true

PIAESEncr = Spectative
RAESEncr = G(call encryptDES

⇒ X((G ¬encryptedDES) ∧ F(encryptedAES)))

That is, Req&EncrPwd takes care of requesting a pass-

word and calling the encryption algorithm and assumes the

existence of DESSave, an aspect that guarantees that eventu-

ally the encrypted password is saved. It is possible to see the

cooperation in the assertion PIReq&EncrPwd. For now, we con-

centrate on the guarantee that the password must be saved

(not necessarily encrypted).

However, due to a security problem, it is decided to

create an aspect such that around every call to DES it

uses now the AES encryption algorithm. The guarantee

of AESEncr indicates that every time encryptDES() is

called, it guarantees that no password is encrypted using

DES (G ¬encryptedDES), but now every call to en-

crypt the password is replaced by encryptAES(). Then,

116

when the aspect AESEncr is checked with other aspects

to detect interference, given that AESEncr has no proceed

and NoMandatoryProceed /∈ PIReq&EncrPwd the rule

KPI+
Req&EncrPwd,AESEncr is not satisfied.

This interference causes that the joinpoint of the call to

encryptDES() is removed, and hence the password is no

longer saved.

Note that even if NoMandatoryProceed did belong

to the definition of PIReq&EncrPwd, then when checking

OK+

Req&EncrPwd
the problem would have been detected, as

there would be paths in Req&EncrPwd+PI where the call

to the encryption would not be reachable and hence, the

password would not be saved.

Thus, in both cases there is interference, and the interference-

freedom checks, as expected, do not succeed.

The cooperation among Req&EncrPwd and DESSave

shows our technique with removed joinpoints, but this exam-

ple serves also to get a better understanding of interference

detection. We now consider the following, perhaps more

natural, specification of Req&EncrPwd:

PEReq&EncrPwd = true

PIReq&EncrPwd = ReturningV aluesPreserved(pwd)
RReq&EncrPwd = G(enterUsrafter

⇒ F(enterPwd ∧ FencryptDES))

If the set of aspects is checked for interference, the rule

KPI+
Req&EncrPwd,AESEncr fails again because of the absence

of NoMandatoryProceed in PIReq&EncrPwd. Detecting in-

terference in this case is correct given that around advices

without proceed() may cause the password not to be en-

crypted.

Furthermore, if NoMandatoryProceed belonged to

PIReq&EncrPwd, the ruleOK
+

Req&EncrPwd
would fail as it would

no longer be guaranteed that after each joinpoint the pass-

word is eventually entered and encrypted.

8. Related work

Advice specification composition has been considered in

[4], where aspects that may change the effective specifica-

tion are called assistants. However, only method invocation

joinpoints are considered and obliviousness is affected - ac-

cepted aspects must be specified in the specification, and dy-

namic context is not considered.

Besides MAVEN [8, 9], other previous work [1, 6, 7, 13,

15] has treated estricted forms of syntactic and/or semantic

interference, considering in some cases disjoint joinpoints

and in others shared ones.

Shared joinpoints interference has been considered in

[11]. By answering some questions given in natural language

regarding the expected behavior, an automatic extended ver-

sion of the specification is built, and then, MAVEN can be

used to detect interference. However, the method does not

work for joint-weaving semantics.

The work in [14] discusses modular reasoning in aspect

oriented programming. The concept of aspect-aware inter-

faces extends object and aspect interfaces to include global

knowledge. In our work, we represent this global knowledge

using specification: what is expected of the system and other

cross-cutting concerns. These specifications serve to char-

acterize each aspect without giving details of its implemen-

tation, and the technique presented allows checking aspect

correctness, and non-interference even before the underly-

ing system is completely programmed.

Aspects may be woven at joinpoints exposed by a mod-

ule’s signature in [2], and other joinpoints within the module

are ignored. This affects obliviousness (a module must ex-

pose the places where an aspect may be woven in its signa-

ture) and does not consider joinpoints internal to a module.

In [13] the idea of internal assumptions is represented by

Hoare-logic assertions that cross-cutting concerns must sat-

isfy. This approach describes the acceptable state changes. In

our approach we show that a general temporal logic formula

or some syntactic check is satisfied instead of considering

only a Hoare logic assertion where advice is woven and re-

turns.

The work in [15] works with interfaces in temporal logic

(CTL in their case), covers removed joinpoints due to the

absence of proceed, but assumes that any advice restores the

stack to the same state it had before the advice execution,

not covering weakly-invasive aspects in general. To capture

cascading advice, the states at which advice might apply

must have an accurate interface. Knowing which are the

states and what advice might apply affects obliviousness.

This might also be a problem in our approach, especially

for cooperation.

In [6] unification conflicts are detected, which may yield

false positives when considering the problem of detecting

semantic aspect interference.

In [17], aspect dependencies are found using as a base

Reaching Definitions Data-flow Analysis [16]. These depen-

dencies do not necessarily lead to semantic interference, pos-

sibly yielding false positives (i.e., it only detects cases of

suspected interference), and the summary transfer functions

imply analyzing a particular underlying system, instead of

considering the aspects as an independent library.

9. Conclusions

Systems that work under the aspect paradigm usually in-

clude more than one aspect. It is important to check both that

each aspect satisfies its specification and that the interaction

of aspects does not lead to interference.

Existing work did not capture important cases of aspect

composition and cooperation under joint-weaving seman-

tics. Here, we have extended the verification technique to

detect interference under joint-weaving semantics when as-

pects may insert or remove joinpoints of other aspects as

117

long as this does not create a recursive call stack to a certain

aspect.

The assumption part of an aspectA’s specification should
now consider both assumptions of the system to which A is

woven, and the aspects that may be woven in the execution

of A. This gives a better understanding of an aspect: its

specification now characterizes the environment where the

aspect executes correctly.

We have presented a set of possible default internal as-

sumptions as well as the possibility to define special inter-

nal assumptions, identifying the joinpoints and the temporal

logic formulas that woven aspects must satisfy.

Moreover, adding aspect internal assumptions to as-

pect specification allows building a modular proof of non-

interference among a set of aspects. The proof can be built

once - when the library is built - and when interference-

freedom is established, the aspects may be used for any sys-

tem guaranteeing the necessary external assumptions.

The guarantee of the specification is now divided into lo-

cal and global guarantee in order to represent global prop-

erties and properties related to the places where advice is

woven. This separation aids in characterizing the proof obli-

gations under joint-weaving semantics.

This same technique, considering internal assumptions

and partial guarantees, allows extending the techniques to

prove the correctness of cooperative aspects, both in the case

an aspect is needed to satisfy the external assumptions of an-

other one, or when the internal assumption of an aspect A
forces an aspect to exist in order to guarantee A’s correct-
ness.

This verification technique exposes aspect interactions,

dependencies and cooperation that can help AOP developers

gain a deeper insight into the system under development.

References

[1] M. Aksit, A. Rensink, and T. Staijen. A graph-transformation-

based simulation approach for analysing aspect interference

on shared join points. In Proceedings of the 8th ACM interna-

tional conference on Aspect-oriented software development,

AOSD ’09, pages 39–50, New York, NY, USA, 2009. ACM.

[2] J. Aldrich. Open modules: A proposal for modular reasoning

in aspect-oriented programming. In In Workshop on founda-

tions of aspect-oriented languages, pages 7–18, 2004.

[3] Y. Alperin-Tsimerman and S. Katz. Dataflow analysis for

properties of aspect systems. In Proceedings of 5th Haifa

Verification Conference, LNCS 6405, 2009.

[4] C. Clifton and G. T. Leavens. Observers and assistants: A

proposal for modular aspect-oriented reasoning. In In FOAL

Workshop, 2002.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.

Păsăreanu, Robby, and H. Zheng. Bandera: extracting finite-

state models from java source code. In Proceedings of the

22nd international conference on Software engineering, ICSE

’00, pages 439–448, New York, NY, USA, 2000. ACM.

[6] R. Douence, P. Fradet, and M. Südholt. A framework for the

detection and resolution of aspect interactions. In Proceedings

of the 1st ACM SIGPLAN/SIGSOFT conference on Generative

Programming and Component Engineering, GPCE ’02, pages

173–188, London, UK, 2002. Springer-Verlag.

[7] P. E. A. Durr, T. Staijen, L. M. J. Bergmans, and M. Akşit.

Reasoning about semantic conflicts between aspects. Techni-

cal Report TR-CTIT-05-73, Centre for Telematics and Infor-

mation Technology University of Twente, Enschede, Septem-

ber 2005.

[8] M. Goldman, E. Katz, and S. Katz. Maven: modular aspect

verification and interference analysis. Form. Methods Syst.

Des., 37:61–92, November 2010.

[9] E. Katz and S. Katz. Incremental analysis of interference

among aspects. In Proceedings of the 7th workshop on

Foundations of aspect-oriented languages, FOAL ’08, pages

29–38, New York, NY, USA, 2008. ACM.

[10] E. Katz and S. Katz. Modular verification of strongly invasive

aspects: summary. In Proceedings of the 2009 workshop on

Foundations of aspect-oriented languages, FOAL ’09, pages

7–12, New York, NY, USA, 2009. ACM.

[11] E. Katz and S. Katz. User queries for specification refinement

treating shared aspect join points. SEFM ’10, pages 73–82,

Washington, DC, USA, 2010. IEEE Computer Society.

[12] S. Katz. Aspect categories and classes of temporal properties.

T. Aspect-Oriented Software Development I, pages 106–134,

2006.

[13] R. Khatchadourian, J. Dovland, and N. Soundarajan. En-

forcing behavioral constraints in evolving aspect-oriented

programs. In Proceedings of the 7th workshop on Founda-

tions of aspect-oriented languages, FOAL ’08, pages 19–28,

New York, NY, USA, 2008. ACM.

[14] G. Kiczales and M. Mezini. Aspect-oriented programming

and modular reasoning. In Proceedings of the 27th interna-

tional conference on Software engineering, ICSE ’05, pages

49–58, New York, NY, USA, 2005. ACM.

[15] S. Krishnamurthi and K. Fisler. Foundations of incremental

aspect model-checking. ACM Trans. Softw. Eng. Methodol.,

16, April 2007.

[16] F. Nielson, H. R. Nielson, and C. Hankin. Principles of

Program Analysis. Springer-Verlag NewYork, Inc., Secaucus,

NJ, USA, 1999.

[17] N. Weston, F. Taiani, and A. Rashid. Interaction analysis for

fault-tolerance in aspect-oriented programming. In In Proc.

Workshop on Methods, Models, and Tools for Fault Tolerance,

pages 95–102, 2007.

118

